Skip to main content

Advertisement

Log in

Ultrasound Theranostics in Adult and Pediatric Cardiovascular Research

  • Short Communication
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Theranostics, the practice of systematically integrating diagnostics with treatment, has evolved as a field of medicine. In the context of ultrasound based theranostics, both traditional microbubbles and inorganic nanoparticles have emerged as technologies of clinical interest. Ultrasound induced microbubble cavitation has demonstrated efficacy in a variety of applications, including thrombolysis, tumor ablation, targeted microvascular flow enhancement, and targeted drug and gene delivery. This commentary summarizes the mechanisms and applications of ultrasound-based theranostics in cardiovascular medicine, including its impact in pediatric cardiology. It also provides an overview of ongoing clinical trials for theranostics in cardiovascular medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL, et al. Clinical practice of contrast echocardiography: recommendation by the European Association of Cardiovascular Imaging (EACVI) 2017. Eur Hear Journal-Cardiovascular Imaging. Oxford University Press. 2017;18:1205–1205af.

    Article  Google Scholar 

  2. Porter TR, Mulvagh SL, Abdelmoneim SS, Becher H, Belcik JT, Bierig M, et al. Clinical applications of ultrasonic enhancing agents in echocardiography: 2018 American Society of Echocardiography guidelines update. J Am Soc Echocardiogr. Elsevier. 2018;31:241–74.

    Article  Google Scholar 

  3. Yani L, Davidson BP, Qi Y, Todd B, Aris X, Yoichi I, et al. Molecular imaging of inflammation and platelet adhesion in advanced atherosclerosis effects of antioxidant therapy with NADPH oxidase inhibition. Circ Cardiovasc Imaging [Internet]. American Heart Association. 2013;6:74–82.

    Article  Google Scholar 

  4. Mathias W, Tsutsui JM, Tavares BG, Fava AM, Aguiar MOD, Borges BC, et al. Sonothrombolysis in ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. J Am Coll Cardiol. 2019;73:2832–42.

    Article  Google Scholar 

  5. Vignon F, Shi WT, Powers JE, Everbach EC, Liu J, Gao S, et al. Microbubble cavitation imaging. IEEE Trans Ultrason Ferroelectr Freq Control. IEEE. 2013;60:661–70.

    Article  Google Scholar 

  6. Culp WC, Flores R, Brown AT, Lowery JD, Roberson PK, Hennings LJ, et al. Successful microbubble sonothrombolysis without tissue-type plasminogen activator in a rabbit model of acute ischemic stroke. Stroke [Internet]. American Heart Association. 2011;42:2280–5.

    Google Scholar 

  7. Molina CA, Ribo M, Rubiera M, Montaner J, Santamarina E, Delgado-Mederos R, et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke. Am Heart Assoc. 2006;37:425–9.

    CAS  Google Scholar 

  8. Porter TR, Xie F, Lof J, Powers J, Vignon F, Shi W, et al. The thrombolytic effect of diagnostic ultrasound-induced microbubble cavitation in acute carotid thromboembolism. Invest Radiol. NIH Public Access. 2017;52:477–81.

    Article  CAS  Google Scholar 

  9. Mathias W, Tsutsui JM, Tavares BG, Xie F, Aguiar MOD, Garcia DR, et al. Diagnostic ultrasound impulses improve microvascular flow in patients with STEMI receiving intravenous microbubbles. J Am Coll Cardiol. 2016;67:2506–15.

    Article  Google Scholar 

  10. Aguiar MOD, Tavares BG, Tsutsui JM, Fava AM, Borges BC, Oliveira MT Jr, et al. Sonothrombolysis improves myocardial dynamics and microvascular obstruction preventing left ventricular remodeling in patients with ST elevation myocardial infarction. Circ Cardiovasc Imaging. Am Heart Assoc. 2020;13:e009536.

    Google Scholar 

  11. Belcik JT, Mott BH, Xie A, Zhao Y, Kim S, Lindner NJ, et al. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation. Circ Cardiovasc Imaging. Am Heart Assoc. 2015;8:e002979.

    Google Scholar 

  12. Cooper B, Bachoo P. Extracorporeal shock wave therapy for the healing and management of venous leg ulcers. Cochrane Database Syst Rev. Wiley. 2018;6:CD011842.

  13. Atar S, Siegel RJ, Akel R, Ye Y, Lin Y, Modi SA, et al. Ultrasound at 27 kHz increases tissue expression and activity of nitric oxide synthases in acute limb ischemia in rabbits. Ultrasound Med Biol. Elsevier. 2007;33:1483–8.

    Article  Google Scholar 

  14. Messa CA IV, Chatman BC, Rhemtulla IA, Broach RB, Mauch JT, D’Angelantonio AM III, et al. Ultrasonic debridement management of lower extremity wounds: retrospective analysis of clinical outcomes and cost. J Wound Care. MA Healthcare London. 2019;28:S30–40.

    Article  Google Scholar 

  15. Kutty S, Wu J, Hammel JM, Xie F, Gao S, Drvol LK, et al. Microbubble mediated thrombus dissolution with diagnostic ultrasound for the treatment of chronic venous thrombi. PLoS One. Public Library of Science. 2012;7:e51453.

    Article  CAS  Google Scholar 

  16. Kutty S, Liu N, Zhou J, Xiao Y, Wu J, Danford DA, et al. Ultrasound-induced microbubble cavitation for the treatment of catheterization-induced vasospasm. JACC Basic to Transl Sci. 2017;2:748–56.

    Article  Google Scholar 

  17. Mathias W, Arrieta SR, Tavares GMP, Sbano JCN, Tsutsui JM, Kutty S, et al. Successful recanalization of thrombotic occlusion in pulmonary artery stent using sonothrombolysis. CASE. Elsevier. 2019;3:14–7.

    Google Scholar 

  18. Chen S, Ding J, Bekeredjian R, Yang B, Shohet RV, Johnston SA, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci. National Acad Sciences. 2006;103:8469–74.

    Article  CAS  Google Scholar 

  19. Mofid A, Newman NS, Lee PJH, Abbasi C, Matkar PN, Rudenko D, et al. Cardiac overexpression of S100A6 attenuates cardiomyocyte apoptosis and reduces infarct size after myocardial ischemia-reperfusion. J Am Heart Assoc. Am Heart Assoc. 2017;6:e004738.

    Google Scholar 

  20. Cao WJ, Rosenblat JD, Roth NC, Kuliszewski MA, Matkar PN, Rudenko D, et al. Therapeutic angiogenesis by ultrasound-mediated microRNA-126-3p delivery. Arterioscler Thromb Vasc Biol. Am Heart Assoc. 2015;35:2401–11.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Fuad Zain, HeartStudio, Rochester, NY for the illustrative figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelby Kutty.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, V., Shivaram, P., Porter, T.R. et al. Ultrasound Theranostics in Adult and Pediatric Cardiovascular Research. Cardiovasc Drugs Ther 35, 185–190 (2021). https://doi.org/10.1007/s10557-020-07016-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07016-7

Keywords

Navigation