Skip to main content

Advertisement

Log in

Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Proprotein convertase subtilisin/kexin 9 (PCSK9) serves a key regulatory function in the metabolism of low-density lipoprotein (LDL)-cholesterol (LDL-C) through interaction with the LDL receptor (LDLR) followed by its destruction that results in the elevation of the plasma levels of LDL-C. The aims of the present study were to separate and select a number of single-stranded DNA (ssDNA) aptamers against PCSK9 from a library pool (n > 1012) followed by their characterization.

Methods

The aptamers obtained from the DNA-PCSK9 complexes which presented the highest affinity against PCSK9 were separated and selected using capillary electrophoresis evolution of ligands by exponential enrichment (CE-SELEX). The selected aptamers were amplified and cloned into a T/A vector. The plasmids from the positive clones were extracted and sequenced. The Mfold web server was used to predict the secondary structure of the aptamers.

Results

Following three rounds of CE-SELEX, the identified anti-PCSK9 ssDNA aptamers, namely aptamer 1 (AP-1) and aptamer 2 (AP-2), presented half maximal inhibitory concentrations of 325 and 327 nM, lowest dissociation constants of 294 and 323 nM, and most negative Gibbs free energy values of − 9.17 and − 8.28 kcal/mol, respectively.

Conclusion

The results indicated that the selected aptamers (AP-1 and AP-2) induced potent inhibitory effects against PCSK9. Further in vivo studies demand to find out AP-1 and AP-2 aptamers as suitable candidates, instead of antibodies, for using in therapeutic purposes in patients with hypercholesterolemia and cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are included in this published article.

References

  1. Levine GN, Lange RA, Bairey-Merz CN, Davidson RJ, Jamerson K, Mehta PK, et al. Meditation and cardiovascular risk reduction: a scientific statement from the American Heart Association. J Am Heart Assoc. 2017;6(10):e002218.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sniderman AD, Islam S, Yusuf S, McQueen MJ. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis. 2012;225(2):444–9.

    Article  CAS  PubMed  Google Scholar 

  3. Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Primers. 2017;3:17093.

    Article  PubMed  Google Scholar 

  4. Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    Article  CAS  PubMed  Google Scholar 

  5. Nicholls SJ, Ballantyne CM, Barter PJ, Chapman MJ, Erbel RM, Libby P, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–87.

    Article  CAS  PubMed  Google Scholar 

  6. Hovingh GK, Davidson MH, Kastelein JJ, O’connor AM. Diagnosis and treatment of familial hypercholesterolaemia. Eur Heart J. 2013;34(13):962–71.

    Article  CAS  PubMed  Google Scholar 

  7. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc Natl Acad Sci U S A. 2003;100(3):928–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abifadel M, Varret M, Rabès J-P, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  CAS  PubMed  Google Scholar 

  9. Burke AC, Dron JS, Hegele RA, Huff MW. PCSK9: regulation and target for drug development for dyslipidemia. Annu Rev Pharmacol Toxicol. 2017;57:223–44.

    Article  CAS  PubMed  Google Scholar 

  10. Seidah NG, Awan Z, Chrétien M, Mbikay M. PCSK9: a key modulator of cardiovascular health. Circ Res. 2014;114(6):1022–36.

    Article  CAS  PubMed  Google Scholar 

  11. Dahagam C, Goud A, Abdelqader A, Hendrani A, Feinstein MJ, Qamar A, et al. PCSK9 inhibitors and their role in high-risk patients in reducing LDL cholesterol levels: evolocumab. Future Cardiol. 2016;12(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo. Arterioscler Thromb Vasc Biol. 2016;36(5):783–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschøn H, et al. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310–8.

    Article  CAS  PubMed  Google Scholar 

  14. Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11(10):563–75.

    Article  CAS  PubMed  Google Scholar 

  15. He N-y, Li Q, Wu C-y, Ren Z, Gao Y, Pan L-h, et al. Lowering serum lipids via PCSK9-targeting drugs: current advances and future perspectives. Acta Pharmacol Sin. 2017;38(3):301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202.

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, You M, Pu Y, Liu H, Ye M, Tan W. Recent developments in protein and cell-targeted aptamer selection and applications. Curr Med Chem. 2011;18(27):4117–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 2005;77(19):6107–12.

    Article  CAS  PubMed  Google Scholar 

  20. Dong L, Tan Q, Ye W, Liu D, Chen H, Hu H, et al. Screening and identifying a novel ssDNA aptamer against alpha-fetoprotein using CE-SELEX. Sci Rep. 2015;5:15552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang P, Yang Y, Hong H, Zhang Y, Cai W, Fang D. Aptamers as therapeutics in cardiovascular diseases. Curr Med Chem. 2011;18(27):4169–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaur H, Bruno JG, Kumar A, Sharma TK. Aptamers in the therapeutics and diagnostics pipelines. Theranostics. 2018;8:4016–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Povsic TJ, Vavalle JP, Alexander JH, Aberle LH, Zelenkofske SL, Becker RC, et al. Use of the REG1 anticoagulation system in patients with acute coronary syndromes undergoing percutaneous coronary intervention: results from the phase II RADAR-PCI study. EuroIntervention. 2014;10(4):431–8.

    Article  PubMed  Google Scholar 

  24. Jilma-Stohlawetz P, Gorczyca ME, Jilma B, Siller-Matula J, Gilbert JC, Knöbl P. Inhibition of von Willebrand factor by ARC1779 in patients with acute thrombotic thrombocytopenic purpura. Thromb Haemost. 2011;105(03):545–52.

    Article  CAS  PubMed  Google Scholar 

  25. Hamedani NS, Müller J. Capillary electrophoresis for the selection of DNA aptamers recognizing activated protein C. Methods Mol Biol. 2016;1380:61–75.

    Article  CAS  PubMed  Google Scholar 

  26. Kouhpayeh S, Hejazi Z, Khanahmad H, Rezaei A. Real-time PCR: an appropriate approach to confirm ssDNA generation from PCR product in SELEX process. Iran J Biotechnol. 2017;15(2):143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31(13):3406–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chan JC, Piper DE, Cao Q, Liu D, King C, Wang W, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U SA. 2009;106(24):9820–5.

    Article  CAS  Google Scholar 

  29. Liang H, Chaparro-Riggers J, Strop P, Geng T, Sutton JE, Tsai D, et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J Pharmacol Exp Ther. 2012;340(2):228–36.

    Article  CAS  PubMed  Google Scholar 

  30. Heiger DN. High performance capillary electrophoresis: an introduction: a primer. Agilent Technologies; 2000.

  31. Agarwal SK, Avery CL, Ballantyne CM, Catellier D, Nambi V, Saunders J, et al. Sources of variability in measurements of cardiac troponin T in a community-based sample: the atherosclerosis risk in communities study. Clin Chem. 2011;57(6):891–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):E146.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  34. Abifadel M, Elbitar S, El Khoury P, Ghaleb Y, Chémaly M, Moussalli M-L, et al. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep. 2014;16(9):439.

    Article  PubMed  Google Scholar 

  35. Seidah NG. The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob Cardiol Sci Pract. 2017;1:e201702.

    Google Scholar 

  36. Chaudhary R, Garg J, Shah N, Sumner A. PCSK9 inhibitors: a new era of lipid lowering therapy. World J Cardiol. 2017;9(2):76–91.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dunn MR, Jimenez RM, Chaput JC. Analysis of aptamer discovery and technology. Nat Rev Chem. 2017;1(10):0076.

    Article  CAS  Google Scholar 

  38. Haghighi M, Khanahmad H, Palizban A. Selection and characterization of single-stranded DNA aptamers binding human B-cell surface protein CD20 by cell-SELEX. Molecules. 2018;23(4):e715.

    Article  PubMed  Google Scholar 

  39. Palizban AA, Salehi R, Nori N, Galehdari H. In vivo transfection rat small intestine K-cell with pGIP/Ins plasmid by DOTAP liposome. J Drug Target. 2007;15(5):351–7.

    Article  CAS  PubMed  Google Scholar 

  40. Stoekenbroek RM, Lambert G, Cariou B, Hovingh GK. Inhibiting PCSK9 - biology beyond LDL control. Nat Rev Endocrinol. 2018;15(1):52–62.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Isfahan University of Medical Sciences for providing academic and laboratory supports.

Funding

The present study was supported by the Iran National Science Foundation (INSF grant no. 93016087) and the Isfahan University of Medical Sciences (project no. 395902).

Author information

Authors and Affiliations

Authors

Contributions

AAP conceived the study, designed the experiments, performed the capillary electrophoresis evolution of ligands by exponential enrichment, and analyzed the data. RS prepared the samples for capillary electrophoresis and performed the experiments. HK facilitated the molecular biology experiments.

Corresponding author

Correspondence to Abbasali Palizban.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict interests.

Ethics Approval and Consent to Participate

This study was approved by the Ethics Committee (no. 395902) of the Isfahan University of Medical Sciences, Iran.

Patient consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattari, R., Palizban, A. & Khanahmad, H. Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection. Cardiovasc Drugs Ther 34, 475–485 (2020). https://doi.org/10.1007/s10557-020-06986-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-06986-y

Keywords

Navigation