Skip to main content

Advertisement

Log in

The Role of Non-coding RNAs in Ischemic Myocardial Reperfusion Injury

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNA) are non-coding RNAs that regulate gene expression in up to 90% of the human genome through interactions with messenger RNA (mRNA). The expression of miRNAs varies and changes in diseased and healthy states, including all stages of myocardial ischemia-reperfusion and subsequent ischemia-reperfusion injury (IRI). These changes in expression make miRNAs an attractive potential therapeutic target. Herein, we review the differences in miRNA expression prior to ischemia (including remote ischemic conditioning and ischemic pre-conditioning), the changes during ischemia-reperfusion, and the changes in miRNA expression after IRI, with an emphasis on inflammatory and fibrotic pathways. Additionally, we review the effects of manipulating the levels of certain miRNAs on changes in infarct size, inflammation, remodeling, angiogenesis, and cardiac function after either ischemia-reperfusion or permanent coronary ligation. Levels of target miRNA can be increased using molecular mimics (“agomirs”), or can be decreased by using “antagomirs” which are antisense molecules that act to bind and thus inactivate the target miRNA sequence. Other non-coding RNAs, including long non-coding RNAs and circular RNAs, also regulate gene expression and have a role in the regulation of IRI pathways. We review the mechanisms and downstream effects of the miRNAs that have been studied as therapy in both permanent coronary ligation and ischemia-reperfusion models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altesha M-A, Ni T, Khan A, Liu K, Zheng X. Circular RNA in cardiovascular disease. J Cell Physiol. 2019;234:5588–600.

    Article  CAS  PubMed  Google Scholar 

  2. Bayoumi AS, Teoh J-P, Aonuma T, Yuan Z, Ruan X, Tang Y, et al. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc Res. 2017;113:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellera N, Barba I, Rodriguez-Sinovas A, Ferret E, Asín MA, Gonzalez-Alujas M, et al. Single intracoronary injection of encapsulated Antagomir-92a promotes angiogenesis and prevents adverse infarct remodeling. J Am Heart Assoc. 2014;3:e000946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, et al. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science (80- ). 2009;324:1710–3.

    Article  CAS  Google Scholar 

  5. Boon RA, Jaé N, Holdt L, Dimmeler S. Long noncoding RNAs. J Am Coll Cardiol. 2016;67:1214–26.

    Article  CAS  PubMed  Google Scholar 

  6. Briceno N, Schuster A, Lumley M, Perera D. Ischaemic cardiomyopathy: pathophysiology, assessment and the role of revascularisation. Heart. 2016;102:397–406.

    Article  CAS  PubMed  Google Scholar 

  7. Bromage DI, Pickard JMJ, Rossello X, Ziff OJ, Burke N, Yellon DM, et al. Remote ischaemic conditioning reduces infarct size in animal in vivo models of ischaemia-reperfusion injury: a systematic review and meta-analysis. Cardiovasc Res. 2016;113:cvw219.

    Article  CAS  Google Scholar 

  8. Campani V, De Rosa G, Misso G, Zarone MR, Grimaldi A. Lipid nanoparticles to deliver miRNA in cancer. Curr Pharm Biotechnol. 2016;17:741–9.

    Article  CAS  PubMed  Google Scholar 

  9. Chen Z, Qi Y, Gao C. Cardiac myocyte-protective effect of microRNA-22 during ischemia and reperfusion through disrupting the caveolin-3/eNOS signaling. Int J Clin Exp Pathol. 2015;8:4614–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P. MicroRNA as a therapeutic target in cardiac remodeling. Biomed Res Int. 2017;2017:1–25.

    Google Scholar 

  11. Cheng Y, Zhu P, Yang J, Liu X, Dong S, Wang X, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4. Cardiovasc Res. 2010;87:431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cochain C, Channon KM, Silvestre J-S. Angiogenesis in the infarcted myocardium. Antioxid Redox Signal. 2013;18:1100–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cong B-H, Zhu X-Y, Ni X. The roles of microRNA-22 in myocardial infarction. Sheng Li Xue Bao. 2017;69:571–8.

    PubMed  Google Scholar 

  14. Dong S, Cheng Y, Yang J, Li J, Liu X, Wang X, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem. 2009;284:29514–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dutka M, Bobiński R, Korbecki J. The relevance of microRNA in post-infarction left ventricular remodelling and heart failure. Heart Fail Rev. 2019;24:575–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fan Z-X, Yang J. The role of microRNAs in regulating myocardial ischemia reperfusion injury. Saudi Med J. 2015;36:787–93.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fan X, Weng X, Zhao Y, Chen W, Gan T, Xu D. Circular RNAs in cardiovascular disease: An overview. Biomed Res Int. 2017;2017:1–9.

    Google Scholar 

  18. Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One. 2014;9:e88685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124:720–30.

    Article  CAS  PubMed  Google Scholar 

  20. Frangogiannis NG. The inflammatory response in myocardial injury, repair and remodelling. Nat Rev Cardiol. 2014;11:255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Garikipati VNS, Verma SK, Jolardarashi D, Cheng Z, Ibetti J, Cimini M, et al. Therapeutic inhibition of miR-375 attenuates post-myocardial infarction inflammatory response and left ventricular dysfunction via PDK-1-AKT signalling axis. Cardiovasc Res. 2017;113:938–49.

    Article  CAS  PubMed  Google Scholar 

  22. Ge Z-W, Zhu X-L, Wang B-C, Hu J-L, Sun J-J, Wang S, et al. MicroRNA-26b relieves inflammatory response and myocardial remodeling of mice with myocardial infarction by suppression of MAPK pathway through binding to PTGS2. Int J Cardiol. 2019;280:152–9.

    Article  PubMed  Google Scholar 

  23. Geng H-H, Li R, Su Y-M, Xiao J, Pan M, Cai X-X, et al. The circular RNA Cdr1as promotes myocardial infarction by mediating the regulation of miR-7a on its target genes expression. PLoS One. 2016;11:e0151753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gottlieb RA, Pourpirali S. Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury. J Mol Cell Cardiol. 2016;95:70–7.

    Article  CAS  PubMed  Google Scholar 

  25. Guo Y, Luo F, Liu Q, Xu D. Regulatory non-coding RNAs in acute myocardial infarction. J Cell Mol Med. 2017;21:1013–23.

    Article  CAS  PubMed  Google Scholar 

  26. Gurha P. Noncoding RNAs in cardiovascular diseases. Curr Opin Cardiol. 2019;34:241–5.

    Article  PubMed  PubMed Central  Google Scholar 

  27. He B, Xiao J, Ren A, Zhang Y, Zhang H, Chen M, et al. Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci. 2011;18:1–10.

    Article  CAS  Google Scholar 

  28. He Q, Wang F, Honda T, James J, Li J, Redington A. Loss of miR-144 signaling interrupts extracellular matrix remodeling after myocardial infarction leading to worsened cardiac function. Sci Rep. 2018;8:16886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hinkel R, Penzkofer D, Zühlke S, Fischer A, Husada W, Xu Q-F, et al. Inhibition of MicroRNA-92a protects against ischemia/reperfusion injury in a large-animal model. Circulation. 2013;128:1066–75.

    Article  CAS  PubMed  Google Scholar 

  30. Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, et al. MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation. 2010;122:S124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu J, Huang C-X, Rao P-P, Zhou J-P, Wang X, Tang L, et al. Inhibition of microRNA-155 attenuates sympathetic neural remodeling following myocardial infarction via reducing M1 macrophage polarization and inflammatory responses in mice. Eur J Pharmacol. 2019;851:122–32.

    Article  CAS  PubMed  Google Scholar 

  32. Huang Y, Qi Y, Du J-Q, Zhang D. MicroRNA-34a regulates cardiac fibrosis after myocardial infarction by targeting Smad4. Expert Opin Ther Targets. 2014;12:1355–65.

    Google Scholar 

  33. Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110:71–81.

    Article  CAS  PubMed  Google Scholar 

  34. Icli B, Wara AKM, Moslehi J, Sun X, Plovie E, Cahill M, et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res. 2013;113:1231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamps JA, Krenning G. Micromanaging cardiac regeneration: targeted delivery of microRNAs for cardiac repair and regeneration. World J Cardiol. 2016;8:163.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, et al. MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol. 2014;109:423.

    Article  CAS  PubMed  Google Scholar 

  37. Li K, Lin T, Chen L, Wang N. MicroRNA-93 elevation after myocardial infarction is cardiac protective. Med Hypotheses. 2017;106:23–5.

    Article  CAS  PubMed  Google Scholar 

  38. Li X, Dai Y, Yan S, Shi Y, Han B, Li J, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun. 2017;491:1026–33.

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Cai SX, He Q, Zhang H, Friedberg D, Wang F, et al. Intravenous miR-144 reduces left ventricular remodeling after myocardial infarction. Basic Res Cardiol. 2018;113:36.

    Article  CAS  PubMed  Google Scholar 

  40. Liu X, Dong Y, Chen S, Zhang G, Zhang M, Gong Y, et al. Circulating MicroRNA-146a and MicroRNA-21 predict left ventricular remodeling after ST-elevation myocardial infarction. Cardiology. 2015;132:233–41.

    Article  CAS  PubMed  Google Scholar 

  41. Lorenzen JM, Batkai S, Thum T. Regulation of cardiac and renal ischemia–reperfusion injury by microRNAs. Free Radic Biol Med. 2013;64:78–84.

    Article  CAS  PubMed  Google Scholar 

  42. Lu C, Wang X, Ha T, Hu Y, Liu L, Zhang X, et al. Attenuation of cardiac dysfunction and remodeling of myocardial infarction by microRNA-130a are mediated by suppression of PTEN and activation of PI3K dependent signaling. J Mol Cell Cardiol. 2015;89:87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martinez EC, Lilyanna S, Wang P, Vardy LA, Jiang X, Armugam A, et al. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. J Mol Cell Cardiol. 2017;112:27–39.

    Article  CAS  PubMed  Google Scholar 

  44. Mathiyalagan P, Sahoo S. Exosomes-based gene therapy for MicroRNA delivery. In: Ishikawa K, editor. Cardiac gene therapy: methods and protocols. New York: Springer; 2017. p. 139–52.

    Chapter  Google Scholar 

  45. Meloni M, Marchetti M, Garner K, Littlejohns B, Sala-Newby G, Xenophontos N, et al. Local inhibition of MicroRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol Ther. 2013;21:1390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menees DS, Peterson ED, Wang Y, Curtis JP, Messenger JC, Rumsfeld JS, et al. Door-to-balloon time and mortality among patients undergoing primary PCI. N Engl J Med. 2013;369:901–9.

    Article  CAS  PubMed  Google Scholar 

  47. Ong S-B, Katwadi K, Kwek X-Y, Ismail NI, Chinda K, Ong S-G, et al. Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets. 2018;22:247–61.

    Article  CAS  PubMed  Google Scholar 

  48. Pan Z, Sun X, Shan H, Wang N, Wang J, Ren J, et al. MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-β1 pathway. Circulation. 2012;126:840–50.

    Article  CAS  PubMed  Google Scholar 

  49. Przyklenk K. microRNA-144: the ‘what’ and ‘how’ of remote ischemic conditioning? Basic Res Cardiol. 2014;109:429.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Qiu G, Zheng G, Ge M, Wang J, Huang R, Shu Q, et al. Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther. 2018;9:320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Salgado-Somoza A, Zhang L, Vausort M, Devaux Y. The circular RNA MICRA for risk stratification after myocardial infarction. IJC Heart Vasc. 2017;17:33–6.

    Article  Google Scholar 

  52. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics. 2017;7:664–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Simonson B, Das S. MicroRNA therapeutics: the next magic bullet? Mini-Rev Med Chem. 2015;15:467–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sivaraman V, Pickard JMJ, Hausenloy DJ. Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia. 2015;70:732–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stokfisz K, Ledakowicz-Polak A, Zagorski M, Zielinska M. Ischaemic preconditioning – current knowledge and potential future applications after 30 years of experience. Adv Med Sci. 2017;62:307–16.

    Article  PubMed  Google Scholar 

  56. van Rooij E. The art of MicroRNA research. Circ Res. 2011;108:219–34.

    Article  CAS  PubMed  Google Scholar 

  57. van Rooij E, Marshall WS, Olson EN. Toward microRNA–based therapeutics for heart disease. Circ Res. 2008;103:919–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci. 2008;105:13027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  59. van Rooij E, Purcell AL, Levin AA. Developing microRNA therapeutics. Circ Res. 2012;110:496–507.

    Article  CAS  PubMed  Google Scholar 

  60. Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115:668–77.

    Article  CAS  PubMed  Google Scholar 

  61. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, et al. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008;15:261–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang X, Zhang X, Ren X-P, Chen J, Liu H, Yang J, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation. 2010;122:1308–18.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang J, Huang W, Xu R, Nie Y, Cao X, Meng J, et al. MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. J Cell Mol Med. 2012;16:2150–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, et al. Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res. 2012;94:379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014;5:3596.

    Article  CAS  PubMed  Google Scholar 

  66. Wang K, Sun T, Li N, Wang Y, Wang J-X, Zhou L-Y, et al. MDRL lncRNA regulates the processing of miR-484 primary transcript by targeting miR-361. PLoS Genet. 2014;10:e1004467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, et al. MicroRNA-103/107 regulate programmed necrosis and myocardial ischemia/reperfusion injury through targeting FADD. Circ Res. 2015;117:352–63.

    Article  CAS  PubMed  Google Scholar 

  68. Wang K, Liu C-Y, Zhou L-Y, Wang J-X, Wang M, Zhao B, et al. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 2015;6:6779.

    Article  CAS  PubMed  Google Scholar 

  69. Wang K, Liu F, Liu C-Y, An T, Zhang J, Zhou L-Y, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23:1394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang K, Gan T-Y, Li N, Liu C-Y, Zhou L-Y, Gao J-N, et al. Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ. 2017;24:1111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu H-Y, Wu J-L, Ni Z-L. Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6. Cell Cycle. 2019;18:621–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiao Y, Zhang Y, Chen Y, Li J, Zhang Z, Sun Y, et al. Inhibition of microRNA-9-5p protects against cardiac remodeling following myocardial infarction in mice. Hum Gene Ther. 2018;30:286–301.

    Article  CAS  PubMed  Google Scholar 

  73. Xu H, Cao H, Zhu G, Liu S, Li H. Overexpression of microRNA-145 protects against rat myocardial infarction through targeting PDCD4. Am J Transl Res. 2017;9:5003–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamamura S, Sumida MI, Tanaka Y. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75:467–84.

    Article  CAS  PubMed  Google Scholar 

  75. Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian X, et al. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. Biomed Res Int. 2016;2016:1–7.

    CAS  Google Scholar 

  76. Yang L, Wang B, Zhou Q, Wang Y, Liu X, Liu Z, et al. MicroRNA-21 prevents excessive inflammation and cardiac dysfunction after myocardial infarction through targeting KBTBD7. Cell Death Dis. 2018;9:769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-γ agonist protects against myocardial ischaemia–reperfusion injury. Cardiovasc Res. 2010;87:535–44.

    Article  CAS  PubMed  Google Scholar 

  78. Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics. 2011;43:534–42.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release. 2013;172:962–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou L-Y, Zhai M, Huang Y, Xu S, An T, Wang Y-H, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ. 2018;26:1299–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu H, Fan G-C. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res. 2012;94:284–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vince Siebert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebert, V., Allencherril, J., Ye, Y. et al. The Role of Non-coding RNAs in Ischemic Myocardial Reperfusion Injury. Cardiovasc Drugs Ther 33, 489–498 (2019). https://doi.org/10.1007/s10557-019-06893-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-019-06893-x

Keywords

Navigation