Skip to main content

HDL-Targeted Therapies During Myocardial Infarction

Abstract

It is now apparent that a variety of deleterious mechanisms intrinsic to myocardial infarction (MI) exists and underlies its high residual lethality. Indeed, despite effective coronary patency therapies, ischemia and reperfusion (I/R) injury accounts for about 50% of the infarcted mass. In this context, recent studies in animal models have demonstrated that coronary reperfusion with high-density lipoproteins (HDL) may reduce MI size in up to 30%. A spectrum of mechanisms mediated by either HDL-related apolipoproteins or phospholipids attenuates myocardial cell death. Hence, promising therapeutic approaches such as infusion of reconstituted HDL particles, new HDL by genomic therapy, or the infusion of apoA-I mimetic peptides have been sought as a way of ensuring protection against I/R injury. In this review, we will explore the limitations and potential therapeutic effects of HDL therapies during the acute phase of MI.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Macheboeuf M. Recherches sur les phosphoaminolipides du sérum sanguin. Nature des phospholipides liés aux albumines du sérum de Cheval à l’état de cenapses acido-précipitables. Bull Soc Chim Biol (Paris). 1929;11:485–503.

    CAS  Google Scholar 

  2. 2.

    Prosser HC, Ng MK, Bursill CA. The role of cholesterol efflux in mechanisms of endothelial protection by HDL. Curr Opin Lipidol. 2012;23:182–9.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, et al. HDL and endothelial protection. Br J Pharmacol. 2013;169:493–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Rao PK, Merath K, Drigalenko E, Jadhav AYL, Komorowski RA, Goldblatt MI, et al. Proteomic characterization of high-density lipoprotein particles in patients with non-alcoholic fatty liver disease. Clin Proteom 2018;15:10; 9pp.

  6. 6.

    Kontush A, Lhomme M, Chapman MJ. Unraveling the complexities of the HDL lipidome. J Lipid Res. 2013;54:2950–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Gordts SC, Muthuramu I, Nefyodova E, Jacobs F, Van Craeyveld E, De Geest B. Beneficial effects of selective HDL-raising gene transfer on survival, cardiac remodelling and cardiac function after myocardial infarction in mice. Gene Ther. 2013;20:1053–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Rossoni G, Gomaraschi M, Berti F, Sirtori CR, Franceschini G, Calabresi L. Synthetic high-density lipoproteins exert cardioprotective effects in myocardial ischemia/reperfusion injury. J Pharmacol Exp Ther. 2004;308:79–84.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Carvalho LS, Panzoldo N, Santos SN, Modolo R, Almeida B, Quinaglia e Silva JC, et al. HDL levels and oxidizability during myocardial infarction are associated with reduced endothelial-mediated vasodilation and nitric oxide bioavailability. Atherosclerosis. 2014;237:840–6.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Soares AAS, Tavoni TM, de Faria EC, Remalay AT, Maranhão RC, Sposito AC. HDL acceptor capacities for cholesterol efflux from macrophages and lipid transfer are both acutely reduced after myocardial infarction. Clin Chim Acta. 2018;478:51–6.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Carvalho LS, Virginio VW, Panzoldo NB, et al. Elevated CETP activity during acute phase of myocardial infarction is independently associated with endothelial dysfunction and adverse clinical outcome. Atherosclerosis. 2014;237:777–83.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Ritland S, Blomhoff JP, Enger SC, Skrede S, Gjone E. The esterification of cholesterol in plasma after acute myocardial infarction. Scand J Clin Lab Invest. 1975;35:181–7.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Clifton PM, Mackinnon AM, Barter PJ. Effects of serum amyloid A protein (SAA) on composition, size, and density of high density lipoproteins in subjects with myocardial infarction. J Lipid Res. 1985;26:1389–98.

    CAS  PubMed  Google Scholar 

  16. 16.

    Rached F, Lhomme M, Camont L, et al. Defective functionality of small, dense HDL3 subpopulations in ST segment elevation myocardial infarction: relevance of enrichment in lysophosphatidylcholine, phosphatidic acid and serum amyloid A. Biochim Biophys Acta. 1851;2015:1254–61.

    Google Scholar 

  17. 17.

    Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J Lipid Res. 2013;54:3227–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Alwaili K, Bailey D, Awan Z, et al. The HDL proteome in acute coronary syndromes shifts to an inflammatory profile. Biochim Biophys Acta. 1821;2012:405–15.

    Google Scholar 

  19. 19.

    Shah AS, Tan L, Long JL, Davidson WS. Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond. J Lipid Res. 2013;54:2575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med (Berl). 2006;84:276–94.

    Article  CAS  Google Scholar 

  21. 21.

    Chami B, Barrie N, Cai X, Wang X, Paul M, Morton-Chandra R, et al. Serum amyloid A receptor blockade and incorporation into high-density lipoprotein modulates its pro-inflammatory and pro-thrombotic activities on vascular endothelial cells. Int J Mol Sci. 2015;16:11101–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Riwanto M, Rohrer L, Roschitzki B, Besler C, Mocharla P, Mueller M, et al. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation. 2013;127:891–904.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Soares AAS, Carvalho LSF, Bonilha I, et al. Adverse interaction between HDL and the mass of myocardial infarction. Atherosclerosis. 2018;281:9–16.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: a novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther. 2017;35.

  25. 25.

    Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J Immunol. 2013;190:3670–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Nicholls SJ, Ray KK, Johansson JO, Gordon A, Sweeney M, Halliday C, et al. Selective BET protein inhibition with apabetalone and cardiovascular events: a pooled analysis of trials in patients with coronary artery disease. Am J Cardiovasc Drugs. 2018;18:109–15.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Ray KK, Nicholls SJ, Sweeney M, et al. Cardiovascular evaluation of the selective BET inhibitor, apabetalone, in ACS patients with diabetes: baseline characteristics of the BETonMACE CV outcomes study. Circulation. 2018;138:A13189.

    Article  CAS  Google Scholar 

  28. 28.

    Schwartz GG, Olsson AG, Ezekowitz MD, et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: the MIRACL study: a randomized controlled trial. JAMA. 2001;285:1711–8.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Olsson AG, Schwartz GG, Szarek M, Sasiela WJ, Ezekowitz MD, Ganz P, et al. High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial. Eur Heart J. 2005;26:890–6.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Annema W, Willemsen HM, de Boer JF, et al. HDL function is impaired in acute myocardial infarction independent of plasma HDL cholesterol levels. J Clin Lipidol. 2016;10:1318–28.

    Article  PubMed  Google Scholar 

  31. 31.

    Hafiane A, Jabor B, Ruel I, Ling J, Genest J. High-density lipoprotein mediated cellular cholesterol efflux in acute coronary syndromes. Am J Cardiol. 2014;113:249–55.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Schaefer JR, Schweer H, Ikewaki K, et al. Metabolic basis of high density lipoproteins and apolipoprotein A-I increase by HMG-CoA reductase inhibition in healthy subjects and a patient with coronary artery disease. Atherosclerosis. 1999;144:177–84.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Zanotti I, Favari E, Sposito AC, Rothblat GH, Bernini F. Pitavastatin increases ABCA1-mediated lipid efflux from Fu5AH rat hepatoma cells. Biochem Biophys Res Commun. 2004;321:670–4.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Shimizu T, Miura S, Tanigawa H, Kuwano T, Zhang B, Uehara Y, et al. Rosuvastatin activates ATP-binding cassette transporter A1-dependent efflux ex vivo and promotes reverse cholesterol transport in macrophage cells in mice fed a high-fat diet. Arterioscler Thromb Vasc Biol. 2014;34:2246–53.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Sposito AC, Santos SN, de Faria EC, Abdalla DSP, da Silva LP, Soares AAS, et al. Timing and dose of statin therapy define its impact on inflammatory and endothelial responses during myocardial infarction. Arterioscler Thromb Vasc Biol. 2011;31:1240–6.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Berwanger O, Santucci EV, de Barros ESPGM, et al. Effect of loading dose of atorvastatin prior to planned percutaneous coronary intervention on major adverse cardiovascular events in acute coronary syndrome: the SECURE-PCI randomized clinical trial. JAMA. 2018;319:1331–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Quinaglia e Silva JC, Coelho-Filho OR, Andrade JM, et al. Peri-infarct zone characterized by cardiac magnetic resonance imaging is directly associated with the inflammatory activity during acute phase myocardial infarction. Inflammation. 2014;37:678–85.

    CAS  PubMed  Google Scholar 

  38. 38.

    Marenzi G, Cosentino N, Cortinovis S, Milazzo V, Rubino M, Cabiati A, et al. Myocardial infarct size in patients on long-term statin therapy undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Am J Cardiol. 2015;116:1791–7.

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Deguchi H, Fernandez JA, Griffin JH. Plasma cholesteryl ester transfer protein and blood coagulability. Thromb Haemost. 2007;98:1160–4.

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Christison JK, Rye KA, Stocker R. Exchange of oxidized cholesteryl linoleate between LDL and HDL mediated by cholesteryl ester transfer protein. J Lipid Res. 1995;36:2017–26.

    CAS  PubMed  Google Scholar 

  41. 41.

    Matsunaga T, Hokari S, Koyama I, Harada T, Komoda T. NF-kappa B activation in endothelial cells treated with oxidized high-density lipoprotein. Biochem Biophys Res Commun. 2003;303:313–9.

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Ohmura H, Watanabe Y, Hatsumi C, Sato H, Daida H, Mokuno H, et al. Possible role of high susceptibility of high-density lipoprotein to lipid peroxidative modification and oxidized high-density lipoprotein in genesis of coronary artery spasm. Atherosclerosis. 1999;142:179–84.

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Grion CM, Cardoso LT, Perazolo TF, et al. Lipoproteins and CETP levels as risk factors for severe sepsis in hospitalized patients. Eur J Clin Investig. 2010;40:330–8.

    Article  CAS  Google Scholar 

  44. 44.

    Jahangiri A, de Beer MC, Noffsinger V, Tannock LR, Ramaiah C, Webb NR, et al. HDL remodeling during the acute phase response. Arterioscler Thromb Vasc Biol. 2009;29:261–7.

    Article  CAS  Google Scholar 

  45. 45.

    Cazita PM, Barbeiro DF, Moretti AI, Quintao EC, Soriano FG. Human cholesteryl ester transfer protein expression enhances the mouse survival rate in an experimental systemic inflammation model: a novel role for CETP. Shock. 2008;30:590–5.

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Carvalho LS, Cintra RM, Moura FA, et al. High plasma HDL-C attenuates stress hyperglycemia during acute phase of myocardial infarction. Atherosclerosis. 2012;220:231–6.

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Carvalho LS, Martins NV, Moura FA, et al. High-density lipoprotein levels are strongly associated with the recovery rate of insulin sensitivity during the acute phase of myocardial infarction: a study by euglycemic hyperinsulinemic clamp. J Clin Lipidol. 2013;7:24–8.

    Article  PubMed  Google Scholar 

  48. 48.

    Drew BG, Duffy SJ, Formosa MF, Natoli AK, Henstridge DC, Penfold SA, et al. High-density lipoprotein modulates glucose metabolism in patients with type 2 diabetes mellitus. Circulation. 2009;119:2103–11.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Han R, Lai R, Ding Q, Wang Z, Luo X, Zhang Y, et al. Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia. 2007;50:1960–8.

    Article  CAS  PubMed  Google Scholar 

  50. 50.

    Abderrahmani A, Niederhauser G, Favre D, Abdelli S, Ferdaoussi M, Yang JY, et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. Diabetologia. 2007;50:1304–14.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Barter PJ, Rye KA, Tardif JC, Waters DD, Boekholdt SM, Breazna A, et al. Effect of torcetrapib on glucose, insulin, and hemoglobin A1c in subjects in the investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. Circulation. 2011;124:555–62.

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Heywood SE, Richart AL, Henstridge DC, Alt K, Kiriazis H, Zammit C, et al. High-density lipoprotein delivered after myocardial infarction increases cardiac glucose uptake and function in mice. Sci Transl Med. 2017;9:eaam6084.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Drew BG, Carey AL, Natoli AK, Formosa MF, Vizi D, Reddy-Luthmoodoo M, et al. Reconstituted high-density lipoprotein infusion modulates fatty acid metabolism in patients with type 2 diabetes mellitus. J Lipid Res. 2011;52:572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Brodeur MR, Rhainds D, Charpentier D, Mihalache-Avram T, Mecteau M, Brand G, et al. Dalcetrapib and anacetrapib differently impact HDL structure and function in rabbits and monkeys. J Lipid Res. 2017;58:1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Ray KK, Ditmarsch M, Kallend D, Niesor EJ, Suchankova G, Upmanyu R, et al. The effect of cholesteryl ester transfer protein inhibition on lipids, lipoproteins, and markers of HDL function after an acute coronary syndrome: the dal-ACUTE randomized trial. Eur Heart J. 2014;35:1792–800.

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Tardif JC, Rhainds D, Brodeur M, Feroz Zada Y, Fouodjio R, Provost S, et al. Genotype-dependent effects of dalcetrapib on cholesterol efflux and inflammation: concordance with clinical outcomes. Circ Cardiovasc Genet. 2016;9:340–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Barter PJ, Caulfield M, Eriksson M, Grundy SM, Kastelein JJP, Komajda M, et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med. 2007;357:2109–22.

    Article  CAS  PubMed  Google Scholar 

  58. 58.

    Lincoff AM, Nicholls SJ, Riesmeyer JS, Barter PJ, Brewer HB, Fox KAA, et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med. 2017;376:1933–42.

    Article  PubMed  Google Scholar 

  59. 59.

    Group HTRC, Bowman L, Hopewell JC, et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–27.

    Article  Google Scholar 

  60. 60.

    Schwartz GG, Olsson AG, Abt M, Ballantyne CM, Barter PJ, Brumm J, et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Kontush A, Chapman MJ. High-density lipoproteins: structure, metabolism, function and therapeutics. New York: Wiley; 2012.

    Google Scholar 

  62. 62.

    Remaley AT, Amar M, Sviridov D. HDL-replacement therapy: mechanism of action, types of agents and potential clinical indications. Expert Rev Cardiovasc Ther. 2008;6:1203–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Nanjee MN, Doran JE, Lerch PG, Miller NE. Acute effects of intravenous infusion of ApoA1/phosphatidylcholine discs on plasma lipoproteins in humans. Arterioscler Thromb Vasc Biol. 1999;19:979–89.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487:325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  Google Scholar 

  66. 66.

    Cho KH, Kim JR. A reconstituted HDL containing V156K or R173C apoA-I exhibited anti-inflammatory activity in apo-E deficient mice and showed resistance to myeloperoxidase-mediated oxidation. Exp Mol Med. 2009;41:417–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Shaw JA, Bobik A, Murphy A, Kanellakis P, Blombery P, Mukhamedova N, et al. Infusion of reconstituted high-density lipoprotein leads to acute changes in human atherosclerotic plaque. Circ Res. 2008;103:1084–91.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Sirtori CR, Calabresi L, Franceschini G. Recombinant apolipoproteins for the treatment of vascular diseases. Atherosclerosis. 1999;142:29–40.

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290:2292–300.

    Article  CAS  PubMed  Google Scholar 

  70. 70.

    Tardif JC, Gregoire J, L'Allier PL, et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. JAMA. 2007;297:1675–82.

    Article  PubMed  Google Scholar 

  71. 71.

    Michael Gibson C, Korjian S, Tricoci P, Daaboul Y, Yee M, Jain P, et al. Safety and tolerability of CSL112, a reconstituted, infusible, plasma-derived apolipoprotein A-I, after acute myocardial infarction: the AEGIS-I trial (ApoA-I event reducing in ischemic syndromes I). Circulation. 2016;134:1918–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Nicholls SJ, Puri R, Ballantyne CM, Jukema JW, Kastelein JJP, Koenig W, et al. Effect of infusion of high-density lipoprotein mimetic containing recombinant apolipoprotein A-I Milano on coronary disease in patients with an acute coronary syndrome in the MILANO-PILOT trial: a randomized clinical trial. JAMA Cardiol. 2018;3:806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Andrews J, Janssan A, Nguyen T, Pisaniello AD, Scherer DJ, Kastelein JJP, et al. Effect of serial infusions of reconstituted high-density lipoprotein (CER-001) on coronary atherosclerosis: rationale and design of the CARAT study. Cardiovasc Diagn Ther. 2017;7:45–51.

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Nicholls SJ, Andrews J, Kastelein JJP, et al. Effect of serial infusions of CER-001, a pre-beta high-density lipoprotein mimetic, on coronary atherosclerosis in patients following acute coronary syndromes in the CER-001 atherosclerosis regression acute coronary syndrome trial: a randomized clinical trial. JAMA Cardiol. 2018;3:815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Ko DT, Alter DA, Guo H, Koh M, Lau G, Austin PC, et al. High-density lipoprotein cholesterol and cause-specific mortality in individuals without previous cardiovascular conditions: the CANHEART study. J Am Coll Cardiol. 2016;68:2073–83.

    Article  CAS  PubMed  Google Scholar 

  76. 76.

    Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur Heart J. 2017;38:2478–86.

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35.

    Article  CAS  Google Scholar 

  78. 78.

    Wang Y, Berbee JF, Stroes ES, et al. CETP expression reverses the reconstituted HDL-induced increase in VLDL. J Lipid Res. 2011;52:1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Krause BR, Remaley AT. Reconstituted HDL for the acute treatment of acute coronary syndrome. Curr Opin Lipidol. 2013;24:480–6.

    Article  CAS  PubMed  Google Scholar 

  80. 80.

    Kempen HJ, Gomaraschi M, Bellibas SE, Plassmann S, Zerler B, Collins HL, et al. Effect of repeated apoA-IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res. 2013;54:2341–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ. 2014;349:g4379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Gille A, Wright S, Tortorici M, et al. CSL112 restores cholesterol efflux in patients immediately after acute myocardial infarction. Circulation. 2018;136:A16500.

    Google Scholar 

  83. 83.

    Gibson CM, Korjian S, Tricoci P, et al. Rationale and design of Apo-I Event Reduction in Ischemic Syndromes I (AEGIS-I): a phase 2b, randomized, placebo-controlled, dose-ranging trial to investigate the safety and tolerability of CSL112, a reconstituted, infusible, human apoA-I, after acute myocardial infarction. Am Heart J. 2016;180:22–8.

    Article  CAS  PubMed  Google Scholar 

  84. 84.

    Shao B, Oda MN, Bergt C, Fu X, Green PS, Brot N, et al. Myeloperoxidase impairs ABCA1-dependent cholesterol efflux through methionine oxidation and site-specific tyrosine chlorination of apolipoprotein A-I. J Biol Chem. 2006;281:9001–4.

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Shao B, Pennathur S, Pagani I, Oda MN, Witztum JL, Oram JF, et al. Modifying apolipoprotein A-I by malondialdehyde, but not by an array of other reactive carbonyls, blocks cholesterol efflux by the ABCA1 pathway. J Biol Chem. 2010;285:18473–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Shao B, Tang C, Sinha A, Mayer PS, Davenport GD, Brot N, et al. Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase. Circ Res. 2014;114:1733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Smith JD, Hazen SL. In: USPTO, editor. Oxidant resistant apolipoprotein A-1 and mimetic peptides. Cleveland: Cleveland Clinic Foundation; 2007.

    Google Scholar 

  88. 88.

    Sethi AA, Amar M, Shamburek RD, Remaley AT. Apolipoprotein AI mimetic peptides: possible new agents for the treatment of atherosclerosis. Curr Opin Investig Drugs. 2007;8:201–12.

    CAS  PubMed  Google Scholar 

  89. 89.

    Mooberry LK, Sabnis NA, Panchoo M, Nagarajan B, Lacko AG. Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Front Pharmacol. 2016;7:466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Anantharamaiah GM, Jones JL, Brouillette CG, et al. Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. J Biol Chem. 1985;260:10248–55.

    CAS  PubMed  Google Scholar 

  91. 91.

    Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem. 1994;45:303–69.

    Article  CAS  PubMed  Google Scholar 

  92. 92.

    Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB, et al. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res. 2003;44:828–36.

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Sethi AA, Stonik JA, Thomas F et al. Asymmetry in the lipid affinity of bihelical amphipathic peptides. A structural determinant for the specificity of ABCA1-dependent cholesterol efflux by peptides. J Biol Chem 2008;283:32273–32282. n 5.

  94. 94.

    Anantharamaiah GM, Mishra VK, Garber DW, Datta G, Handattu SP, Palgunachari MN, et al. Structural requirements for antioxidative and anti-inflammatory properties of apolipoprotein A-I mimetic peptides. J Lipid Res. 2007;48:1915–23.

    Article  CAS  PubMed  Google Scholar 

  95. 95.

    Yao X, Gordon EM, Barochia AV, Remaley AT, Levine SJ. The A's have it: developing apolipoprotein A-I mimetic peptides into a novel treatment for asthma. Chest. 2016;150:283–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Souza AC, Bocharov AV, Baranova IN, et al. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation. Kidney Int. 2016;89:809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Handattu SP, Garber DW, Monroe CE, van Groen T, Kadish I, Nayyar G, et al. Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2009;34:525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Zhang Z, Datta G, Zhang Y, Miller AP, Mochon P, Chen YF, et al. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats. Am J Physiol Heart Circ Physiol. 2009;297:H866–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Gomaraschi M, Calabresi L, Rossoni G, et al. Anti-inflammatory and cardioprotective activities of synthetic high-density lipoprotein containing apolipoprotein A-I mimetic peptides. J Pharmacol Exp Ther. 2008;324:776–83.

    Article  CAS  PubMed  Google Scholar 

  100. 100.

    Bloedon LT, Dunbar R, Duffy D, et al. Safety, pharmacokinetics, and pharmacodynamics of oral apoA-I mimetic peptide D-4F in high-risk cardiovascular patients. J Lipid Res. 2008;49:1344–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Dunbar RL, Movva R, Bloedon LT, et al. Oral apolipoprotein A-I mimetic D-4F lowers HDL-inflammatory index in high-risk patients: a first-in-human multiple-dose, randomized controlled trial. Clin Transl Sci. 2017;10:455–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102.

    Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, Chang I, et al. Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res. 2011;52:361–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Remaley AT. Tomatoes, lysophosphatidic acid, and the small intestine: new pieces in the puzzle of apolipoprotein mimetic peptides? J Lipid Res. 2013;54:3223–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Kardassis D, Gafencu A, Zannis VI, Davalos A. Regulation of HDL genes: transcriptional, posttranscriptional, and posttranslational. Handb Exp Pharmacol. 2015;224:113–79.

    Article  CAS  PubMed  Google Scholar 

  105. 105.

    Kontush A. Functionally defective high-density lipoprotein: a new therapeutic target at the crossroads of dyslipidemia, inflammation, and atherosclerosis. Pharmacol Rev. 2006;58:342–74.

    Article  CAS  PubMed  Google Scholar 

  106. 106.

    Gordts SC, Van Craeyveld E, Muthuramu I, Singh N, Jacobs F, De Geest B. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function. PLoS One. 2012;7:e46849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Chandler RJ, Sands MS, Venditti CP. Recombinant adeno-associated viral integration and genotoxicity: insights from animal models. Hum Gene Ther. 2017;28:314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Qin P, Xu L, Zhong W, Yu AC. Ultrasound-microbubble mediated cavitation of plant cells: effects on morphology and viability. Ultrasound Med Biol. 2012;38:1085–96.

    Article  PubMed  Google Scholar 

  109. 109.

    Sirsi SR, Borden MA. Advances in ultrasound mediated gene therapy using microbubble contrast agents. Theranostics. 2012;2:1208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Castle JW, Kent KP, Fan Y, Wallace KD, Davis CEL, Roberts JC, et al. Therapeutic ultrasound: increased HDL-cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids. Atherosclerosis. 2015;241:92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111.

    Peng DQ, Brubaker G, Wu Z, Zheng L, Willard B, Kinter M, et al. Apolipoprotein A-I tryptophan substitution leads to resistance to myeloperoxidase-mediated loss of function. Arterioscler Thromb Vasc Biol. 2008;28:2063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Brazilian National Research Council (CNPq) grant number 301465/2017-7. Prof. Sposito, is a recipient of a Research Career Awards from the CNPq.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei C. Sposito.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sposito, A.C., Carmo, H.R., Barreto, J. et al. HDL-Targeted Therapies During Myocardial Infarction. Cardiovasc Drugs Ther 33, 371–381 (2019). https://doi.org/10.1007/s10557-019-06865-1

Download citation

Keywords

  • HDL
  • Myocardial infarction
  • Ischemia and reperfusion injury
  • Genomic therapy
  • apoA-I mimetics