Cardiovascular Drugs and Therapy

, Volume 32, Issue 5, pp 503–510 | Cite as

Remote Effects of Transplanted Perivascular Adipose Tissue on Endothelial Function and Atherosclerosis

  • Tetsuo Horimatsu
  • Aaron S. Patel
  • Rosaria Prasad
  • Lauren E. Reid
  • Tyler W. Benson
  • Abdalrahman Zarzour
  • Mourad Ogbi
  • Thiago Bruder do Nascimento
  • Eric Belin de Chantemele
  • Brian K. Stansfield
  • Xin-Yun Lu
  • Ha Won Kim
  • Neal L. WeintraubEmail author



Perivascular adipose tissue (PVAT) surrounds the arterial adventitia and plays an important role in vascular homeostasis. PVAT expands in obesity, and inflamed PVAT can locally promote endothelial dysfunction and atherosclerosis. Here, using adipose tissue transplantation, we tested the hypothesis that expansion of PVAT can also remotely exacerbate vascular disease.


Fifty milligrams of abdominal aortic PVAT was isolated from high-fat diet (HFD)-fed wild-type mice and transplanted onto the abdominal aorta of lean LDL receptor knockout mice. Subcutaneous and visceral adipose tissues were used as controls. After HFD feeding for 10 weeks, body weight, glucose/insulin sensitivity, and lipid levels were measured. Adipocytokine gene expression was assessed in the transplanted adipose tissues, and the thoracic aorta was harvested to quantify atherosclerotic lesions by Oil-Red O staining and to assess vasorelaxation by wire myography.


PVAT transplantation did not influence body weight, fat composition, lipid levels, or glucose/insulin sensitivity. However, as compared with controls, transplantation of PVAT onto the abdominal aorta increased thoracic aortic atherosclerosis. Furthermore, PVAT transplantation onto the abdominal aorta inhibited endothelium-dependent relaxation in the thoracic aorta. MCP-1 and TNF-α expression was elevated, while adiponectin expression was reduced, in the transplanted PVAT tissue, suggesting augmented inflammation as a potential mechanism for the remote vascular effects of transplanted PVAT.


These data suggest that PVAT expansion and inflammation in obesity can remotely induce endothelial dysfunction and augment atherosclerosis. Identifying the underlying mechanisms may lead to novel approaches for risk assessment and treatment of obesity-related vascular disease.


Perivascular adipose tissue Fat transplantation Endothelial dysfunction Atherosclerosis Inflammation 



This study was funded by grants HL124097, HL126949, HL134354, and AR070029 from the National Institutes of Health (N.L.W).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants.

Supplementary material

10557_2018_6821_MOESM1_ESM.docx (13 kb)
Supplemental Table 1 (DOCX 12 kb)


  1. 1.
    Verhagen SN, Visseren FL. Perivascular adipose tissue as a cause of atherosclerosis. Atherosclerosis. 2011;214(1):3–10.CrossRefGoogle Scholar
  2. 2.
    Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3(2):e000582.CrossRefGoogle Scholar
  3. 3.
    Cai XJ, Li CJ, Chen L, Rong YY, Zhang Y, Zhang M. A hypothesis: adiponectin mediates anti-atherosclerosis via adventitia-AMPK-iNOS pathway. Med Hypotheses. 2008;70(5):1044–7.CrossRefGoogle Scholar
  4. 4.
    Aghamohammadzadeh R, Unwin RD, Greenstein AS, Heagerty AM. Effects of obesity on perivascular adipose tissue vasorelaxant function: nitric oxide, inflammation and elevated systemic blood pressure. J Vasc Res. 2015;52(5):299–305.CrossRefGoogle Scholar
  5. 5.
    Takaoka M, Nagata D, Kihara S, Shimomura I, Kimura Y, Tabata Y, et al. Periadventitial adipose tissue plays a critical role in vascular remodeling. Circ Res. 2009;105(9):906–11.CrossRefGoogle Scholar
  6. 6.
    Tanaka K, Komuro I, Sata M. Vascular cells originating from perivascular adipose tissue contribute to vasa vasorum neovascularization in atherosclerosis. Circulation. 2015;132(Suppl_3):A14910.Google Scholar
  7. 7.
    Police SB, Thatcher SE, Charnigo R, Daugherty A, Cassis LA. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2009;29(10):1458–64.CrossRefGoogle Scholar
  8. 8.
    Li C, Wang Z, Wang C, Ma Q, Zhao Y. Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy. PLoS One. 2015;10(5):e0124031.CrossRefGoogle Scholar
  9. 9.
    Sakaue T, Suzuki J, Hamaguchi M, Suehiro C, Tanino A, Nagao T et al. Perivascular adipose tissue angiotensin II type 1 receptor promotes vascular inflammation and aneurysm formation. Hypertension. 2017;70(4):780–789.CrossRefGoogle Scholar
  10. 10.
    Fleenor BS, Eng JS, Sindler AL, Pham BT, Kloor JD, Seals DR. Superoxide signaling in perivascular adipose tissue promotes age-related artery stiffness. Aging Cell. 2014;13(3):576–8.CrossRefGoogle Scholar
  11. 11.
    Hollan I, Prayson R, Saatvedt K, Almdahl SM, Nossent HC, Mikkelsen K, et al. Inflammatory cell infiltrates in vessels with different susceptibility to atherosclerosis in rheumatic and non-rheumatic patients. Circ J. 2008;72(12):1986–92.CrossRefGoogle Scholar
  12. 12.
    Öhman M, Luo W, Wang H, Guo C, Abdallah W, Russo H, et al. Perivascular visceral adipose tissue induces atherosclerosis in apolipoprotein E deficient mice. Atherosclerosis. 2011;219(1):33–9.CrossRefGoogle Scholar
  13. 13.
    Xia N, Horke S, Habermeier A, Closs EI, Reifenberg G, Gericke A, et al. Uncoupling of endothelial nitric oxide synthase in perivascular adipose tissue of diet-induced obese mice. Arterioscler Thromb Vasc Biol. 2016;36(1):78–85.CrossRefGoogle Scholar
  14. 14.
    Xia N, Förstermann U, Li H. Effects of resveratrol on eNOS in the endothelium and the perivascular adipose tissue. Ann N Y Acad Sci. 2017;1403:132–41.CrossRefGoogle Scholar
  15. 15.
    Wang P, Xu T-Y, Guan Y-F, Su D-F, Fan G-R, Miao C-Y. Perivascular adipose tissue-derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc Res. 2009;81(2):370–80.CrossRefGoogle Scholar
  16. 16.
    Iacobellis G, Ribaudo MC, Assael F, Vecci E, Tiberti C, Zappaterreno A, et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J Clin Endocrinol Metab. 2003;88(11):5163–8.CrossRefGoogle Scholar
  17. 17.
    Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104(4):541–9.CrossRefGoogle Scholar
  18. 18.
    Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, et al. Role of adiponectin in preventing vascular stenosis: the missing link of adipo-vascular axis. J Biol Chem. 2002;277(40):37487–91.CrossRefGoogle Scholar
  19. 19.
    Tian Z, Miyata K, Tazume H, Sakaguchi H, Kadomatsu T, Horio E, et al. Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury. J Mol Cell Cardiol. 2013;57:1–12.CrossRefGoogle Scholar
  20. 20.
    Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 2014;34(8):1723–30.CrossRefGoogle Scholar
  21. 21.
    Benson TW, Weintraub DS, Crowe M, Yiew NKH, Popoola O, Pillai A, et al. Deletion of the Duffy antigen receptor for chemokines (DARC) promotes insulin resistance and adipose tissue inflammation during high fat feeding. Mol Cell Endocrinol. 2018;473:79–88.CrossRefGoogle Scholar
  22. 22.
    Qiang S, Nakatsu Y, Seno Y, Fujishiro M, Sakoda H, Kushiyama A, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr. 2015;7:104.CrossRefGoogle Scholar
  23. 23.
    Bruder-Nascimento T, Kennard S, Antonova G, Mintz JD, Bence KK, Belin de Chantemele EJ. Ptp1b deletion in pro-opiomelanocortin neurons increases energy expenditure and impairs endothelial function via TNF-alpha dependent mechanisms. Clin Sci (Lond). 2016;130(11):881–93.CrossRefGoogle Scholar
  24. 24.
    Lee MH, Chen SJ, Tsao CM, Wu CC. Perivascular adipose tissue inhibits endothelial function of rat aortas via caveolin-1. PLoS One. 2014;9(6):e99947.CrossRefGoogle Scholar
  25. 25.
    Payne GA, Bohlen HG, Dincer UD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC-beta-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297(1):H460–5.CrossRefGoogle Scholar
  26. 26.
    Ketonen J, Shi J, Martonen E, Mervaala E. Periadventitial adipose tissue promotes endothelial dysfunction via oxidative stress in diet-induced obese C57Bl/6 mice. Circ J. 2010;74(7):1479–87.CrossRefGoogle Scholar
  27. 27.
    Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94.CrossRefGoogle Scholar
  28. 28.
    Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol. 2014;34(8):1621–30.CrossRefGoogle Scholar
  29. 29.
    Chang L, Milton H, Eitzman DT, Chen YE. Paradoxical roles of perivascular adipose tissue in atherosclerosis and hypertension. Circ J. 2013;77(1):11–8.CrossRefGoogle Scholar
  30. 30.
    Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126(9):1067–78.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tetsuo Horimatsu
    • 1
  • Aaron S. Patel
    • 1
  • Rosaria Prasad
    • 1
  • Lauren E. Reid
    • 1
  • Tyler W. Benson
    • 1
  • Abdalrahman Zarzour
    • 1
  • Mourad Ogbi
    • 1
  • Thiago Bruder do Nascimento
    • 1
  • Eric Belin de Chantemele
    • 1
  • Brian K. Stansfield
    • 2
  • Xin-Yun Lu
    • 3
  • Ha Won Kim
    • 1
  • Neal L. Weintraub
    • 1
    Email author
  1. 1.Department of Medicine, Cardiology Division, Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaUSA
  2. 2.Pediatrics and Vascular Biology CenterMedical College of Georgia at Augusta UniversityAugustaUSA
  3. 3.Department of Neuroscience and Regenerative MedicineMedical College of Georgia at Augusta UniversityAugustaUSA

Personalised recommendations