Skip to main content
Log in

Preconditioning by Levosimendan is Mediated by Activation of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Activation of mitochondrial large-conductance Ca2+-sensitive potassium (mBKCa)-channels is a crucial step for cardioprotection by preconditioning. Whether activation of these channels is involved in levosimendan-induced preconditioning is unknown. We investigated if cardioprotection by levosimendan requires activation of mBKCa-channels in the rat heart in vitro.

Methods

In a prospective blinded experimental laboratory investigation, hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs-Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with different concentrations of levosimendan (0.03–1 μM) for determination of a dose-effect curve. In a second set of experiments, 0.3 μM levosimendan was administered in combination with the mBKCa-channel inhibitor paxilline (1 μM). Infarct size was determined by TTC staining.

Results

In control, animal’s infarct size was 58 ± 7%. Levosimendan at a concentration of 0.3 μM reduced infarct size to 30 ± 7% (P < 0.05 vs. control). Higher concentrations with 1 μM levosimendan did not confer stronger protection. Paxilline completely blocked levosimendan-induced cardioprotection while paxilline alone had no effect on infarct size.

Conclusions

This study shows that activation of mBKCa-channels plays a pivotal role in levosimendan-induced preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74(5):1124–36.

    Article  CAS  Google Scholar 

  2. Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. Lancet. 1993;342(8866):276–7.

    Article  CAS  Google Scholar 

  3. Santillo E, Migale M, Postacchini D, Balestrini F, Incalzi RA. Cardioprotection by conditioning mimetic drugs. Antiinflamm Antiallergy Agents Med Chem. 2016;15(1):15–30.

    Article  CAS  Google Scholar 

  4. Cao CM, Xia Q, Gao Q, Chen M, Wong TM. Calcium-activated Potassium Channel triggers Cardioprotection of ischemic preconditioning. J Pharmacol Exp Ther. 2005;312(2):644–50.

    Article  CAS  Google Scholar 

  5. Kinoshita M, Tsutsumi YM, Fukuta K, Kasai A, Tanaka K. Isoflurane-induced postconditioning via mitochondrial calcium-activated potassium channels. J Med Investig. 2016;63(1–2):80–4.

    Article  Google Scholar 

  6. Caimmi PP, Molinari C, Uberti F, Micalizzi E, Valente G, Mary DA, et al. Intracoronary levosimendan prevents myocardial ischemic damages and activates survival signaling through ATP-sensitive potassium channel and nitric oxide. Eur J Cardiothorac Surg. 2011;39(4):59–67.

    Article  Google Scholar 

  7. Papp Z, Edes I, Fruhwald S, De Hert SG, Salmenpera M, Leppikangas H, et al. Levosimendan: molecular mechanisms and clinical implications: consensus of experts on the mechanisms of action of levosimendan. Int J Cardiol. 2012;159(2):82–7.

    Article  Google Scholar 

  8. Huhn R, Heinen A, Weber NC, Schlack W, Preckel B, Hollmann MW. Ischaemic and morphine-induced post-conditioning: impact of mK(ca) channels. Brit J Anaesth. 2010;105(5):589–95.

    Article  CAS  Google Scholar 

  9. Behmenburg F, Dorsch M, Huhn R, Mally D, Heinen A, Hollmann MW, et al. Impact of mitochondrial Ca2+-sensitive potassium (mBKCa) channels in sildenafil-induced Cardioprotection in rats. PLoS One. 2015;10(12):e0144737.

    Article  Google Scholar 

  10. Sanchez M, McManus OB. Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel. Neuropharmacology. 1996;35(7):963–8.

    Article  CAS  Google Scholar 

  11. Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2+−activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol. 2008;44(1):105–13.

    Article  Google Scholar 

  12. Zhou Y, Lingle CJ. Paxilline inhibits BK channels by an almost exclusively closed-channel block mechanism. J Gen Physiol. 2014;144(5):415–40.

    Article  CAS  Google Scholar 

  13. Frassdorf J, Huhn R, Niersmann C, Weber NC, Schlack W, Preckel B, et al. Morphine induces preconditioning via activation of mitochondrial K(ca) channels. Can J Anaesth. 2010;57(8):767–73.

    Article  Google Scholar 

  14. Brixius K, Reicke S, Schwinger RH. Beneficial effects of the ca(2+) sensitizer levosimendan in human myocardium. Am J Physiol Heart Circ Physiol. 2002;282(1):H131–7.

    Article  CAS  Google Scholar 

  15. Virag L, Hala O, Marton A, Varro A, Papp JG. Cardiac electrophysiological effects of levosimendan, a new calcium sensitizer. Gen Pharmacol. 1996;27(3):551–6.

    Article  CAS  Google Scholar 

  16. Levin R, Degrange M, Del Mazo C, Tanus E, Porcile R. Preoperative levosimendan decreases mortality and the development of low cardiac output in high-risk patients with severe left ventricular dysfunction undergoing coronary artery bypass grafting with cardiopulmonary bypass. Exp Clin Cardiol. 2012;17(3):125–30.

    PubMed  PubMed Central  Google Scholar 

  17. Papp JG, Pollesello P, Varro AF, Vegh AS. Effect of levosimendan and milrinone on regional myocardial ischemia/reperfusion-induced arrhythmias in dogs. J Cardiovasc Pharmacol Ther. 2006;11(2):129–35.

    Article  CAS  Google Scholar 

  18. Lepran I, Pollesello P, Vajda S, Varro A, Papp JG. Preconditioning effects of levosimendan in a rabbit cardiac ischemia-reperfusion model. J Cardiovasc Pharmacol. 2006;48(4):148–52.

    Article  CAS  Google Scholar 

  19. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, et al. Cytoprotective role of Ca2+− activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298(5595):1029–33.

    Article  CAS  Google Scholar 

  20. Kukreja RC, Salloum FN, Das A, Koka S, Ockaili RA, Xi L. Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Exp Clin Cardiol. 2011;16(4):30–5.

    Google Scholar 

  21. Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev. 2000;52(4):557–94.

    CAS  Google Scholar 

  22. Hu H, Shao LR, Chavoshy S, Gu N, Trieb M, Behrens R, et al. Presynaptic Ca2+−activated K+ channels in glutamatergic hippocampal terminals and their role in spike repolarization and regulation of transmitter release. J Neurosci. 2001;21(24):9585–97.

    Article  CAS  Google Scholar 

  23. Aggarwal S, Randhawa PK, Singh N, Jaggi AS. Role of ATP-sensitive potassium channels in remote ischemic preconditioning induced tissue protection. J Cardiovasc Pharmacol Ther. 2017;22(5):467–75.

    Article  CAS  Google Scholar 

  24. Yokoshiki H, Katsube Y, Sunagawa M, Sperelakis N. The novel calcium sensitizer levosimendan activates the ATP-sensitive K+ channel in rat ventricular cells. J Pharmacol Exp Ther. 1997;283(1):375–83.

    CAS  PubMed  Google Scholar 

  25. Kaheinen P, Pollesello P, Levijoki J, Haikala H. Levosimendan increases diastolic coronary flow in isolated Guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol. 2001;37(4):367–74.

    Article  CAS  Google Scholar 

  26. Lange M, Redel A, Smul TM, Lotz C, Nefzger T, Stumpner J, et al. Desflurane-induced preconditioning has a threshold that is lowered by repetitive application and is mediated by beta 2-adrenergic receptors. J Cardiothorac Vasc Anesth. 2009;23(5):607–13.

    Article  CAS  Google Scholar 

  27. Smul TM, Stumpner J, Blomeyer C, Lotz C, Redel A, Lange M, et al. Propofol inhibits desflurane-induced preconditioning in rabbits. J Cardiothorac Vasc Anesth. 2011;25(2):276–81.

    Article  CAS  Google Scholar 

  28. Thornton JD, Thornton CS, Sterling DL, Downey JM. Blockade of ATP-sensitive potassium channels increases infarct size but does not prevent preconditioning in rabbit hearts. Circ Res. 1993;72(1):44–9.

    Article  CAS  Google Scholar 

  29. Schulman D, Latchman DS, Yellon DM. Effect of aging on the ability of preconditioning to protect rat hearts from ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2001;281:H1630–H6.

    Article  CAS  Google Scholar 

  30. Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007;59(4):418–58.

    Article  CAS  Google Scholar 

  31. Heinen A, Strothoff M, Schmidt A, Stracke N, Behmenburg F, Bauer I, et al. Pharmacological options to protect the aged heart from ischemia and reperfusion injury by targeting the PKA-BK(ca) signaling pathway. Exp Gerontol. 2014;56:99–105.

    Article  CAS  Google Scholar 

  32. Mio Y, Bienengraeber MW, Marinovic J, Gutterman DD, Rakic M, Bosnjak ZJ, et al. Age-related attenuation of isoflurane preconditioning in human atrial cardiomyocytes: roles for mitochondrial respiration and sarcolemmal adenosine triphosphate-sensitive potassium channel activity. Anesthesiology. 2008;108(4):612–20.

    Article  CAS  Google Scholar 

  33. Huhn R, Weber NC, Preckel B, Schlack W, Bauer I, Hollmann MW, et al. Age-related loss of cardiac preconditioning: impact of protein kinase a. Exp Gerontol. 2012;47(1):116–21.

    Article  CAS  Google Scholar 

  34. Galagudza MM, Nekrasova MK, Syrenskii AV, Nifontov EM. Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus. Neurosci Behav Physiol. 2007;37(5):489–93.

    Article  CAS  Google Scholar 

  35. Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, et al. Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia. 2004;47(10):1716–21.

    Article  CAS  Google Scholar 

  36. Matsumoto S, Cho S, Tosaka S, Higashijima U, Maekawa T, Hara T, et al. Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts. Cardiovasc Diabetol. 2012;11:4.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by institutional and departmental sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnar Huhn.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunte, S., Behmenburg, F., Bongartz, A. et al. Preconditioning by Levosimendan is Mediated by Activation of Mitochondrial Ca2+-Sensitive Potassium (mBKCa) Channels. Cardiovasc Drugs Ther 32, 427–434 (2018). https://doi.org/10.1007/s10557-018-6819-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-018-6819-5

Keywords

Navigation