Skip to main content

Advertisement

Log in

Loss of miR-146b-3p Inhibits Perivascular Adipocyte Browning with Cold Exposure During Aging

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Pathological changes of the perivascular adipose tissue (PVAT) are directly associated with increased risk of age-related vascular diseases. MicroRNAs regulate adipocyte biological functions including adipogenic differentiation and white adipocyte browning. The present study aims to determine whether miR-146b-3p is involved in the regulation of perivascular adipocyte browning during aging.

Methods

We utilized a cold-induced animal model to investigate the effect of aging on perivascular adipocyte browning. We also detected the miR-146b-3p expression in the PVAT of young or old mice after cold stimulus. We further investigated the role of miR-146b-3p in regulating perivascular adipocyte browning in vitro and in vivo via administrating miRNA mimics or inhibitors.

Results

Old mice showed decrease of perivascular adipocyte browning and downregulation of miR-146b-3p expression in the PVAT after cold stimulus. Oil red O staining and qPCR indicated that aging perturbed preadipocyte to brown adipocyte differentiation, and expression of miR-146b-3p gradually increased during differentiation. MiR-146b-3p inhibitors blocked brown adipocyte differentiation in young preadipocytes, whereas miR-146b-3p mimics rescued the differentiation of the old preadipocytes. Finally, miR-146b-3p knocks down inhibited perivascular adipocyte browning in young mice after cold stimulus.

Conclusion

Aging inhibits perivascular adipocyte browning, and loss of miR-146b-3p is a potential regulator for this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Camici GG, Savarese G, Akhmedov A, Luscher TF. Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur Heart J. 2015;36(48):3392–403.

    Article  CAS  Google Scholar 

  2. Paneni F, Diaz Canestro C, Libby P, Luscher TF, Camici GG. The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol. 2017;69(15):1952–67.

    Article  Google Scholar 

  3. Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J. 2008;29(24):2959–71.

    Article  CAS  Google Scholar 

  4. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.

    Article  CAS  Google Scholar 

  5. Villarroya F, Cereijo R, Villarroya J, Giralt M. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35.

    Article  CAS  Google Scholar 

  6. Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol. 2014;34(8):1621–30.

    Article  CAS  Google Scholar 

  7. Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation. 2013;128(1):9–18.

    Article  CAS  Google Scholar 

  8. Lee YC, Chang HH, Chiang CL, Liu CH, Yeh JI, Chen MF, et al. Role of perivascular adipose tissue-derived methyl palmitate in vascular tone regulation and pathogenesis of hypertension. Circulation. 2011;124(10):1160–71.

    Article  Google Scholar 

  9. Zhang ZB, Ruan CC, Lin JR, Xu L, Chen XH, Du YN, et al. Perivascular adipose tissue-derived PDGF-D contributes to aortic aneurysm formation during obesity. Diabetes. 2018.

  10. Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010;11(4):253–6.

    Article  CAS  Google Scholar 

  11. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76.

    Article  CAS  Google Scholar 

  12. Ohno H, Shinoda K, Spiegelman BM, Kajimura S. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15(3):395–404.

    Article  CAS  Google Scholar 

  13. Signer RA, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell. 2013;12(2):152–65.

    Article  CAS  Google Scholar 

  14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  Google Scholar 

  15. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009;58(5):1050–7.

    Article  CAS  Google Scholar 

  16. Kim YJ, Hwang SJ, Bae YC, Jung JS. MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 2009;27(12):3093–102.

    CAS  PubMed  Google Scholar 

  17. Hilton C, Neville MJ, Karpe F. MicroRNAs in adipose tissue: their role in adipogenesis and obesity. Int J Obes. 2013;37(3):325–32.

    Article  CAS  Google Scholar 

  18. Mori MA, Raghavan P, Thomou T, Boucher J, Robida-Stubbs S, Macotela Y, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab. 2012;16(3):336–47.

    Article  CAS  Google Scholar 

  19. Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab. 2009;20(3):107–14.

    Article  CAS  Google Scholar 

  20. Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217(2):326–30.

    Article  CAS  Google Scholar 

  21. Xu Q, Seeger FH, Castillo J, Iekushi K, Boon RA, Farcas R, et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol. 2012;59(23):2107–17.

    Article  CAS  Google Scholar 

  22. Cheng HS, Sivachandran N, Lau A, Boudreau E, Zhao JL, Baltimore D, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5(7):1017–34.

    Article  Google Scholar 

  23. Li K, Ching D, Luk FS, Raffai RL. Apolipoprotein E enhances microRNA-146a in monocytes and macrophages to suppress nuclear factor-kappaB-driven inflammation and atherosclerosis. Circ Res. 2015;117(1):e1–e11.

    Article  CAS  Google Scholar 

  24. Jin D, Guo H, Bu SY, Zhang Y, Hannaford J, Mashek DG, et al. Lipocalin 2 is a selective modulator of peroxisome proliferator-activated receptor-gamma activation and function in lipid homeostasis and energy expenditure. FASEB J. 2011;25(2):754–64.

    Article  CAS  Google Scholar 

  25. Trujillo ME, Scherer PE. Adipose tissue-derived factors: impact on health and disease. Endocr Rev. 2006;27(7):762–78.

    Article  CAS  Google Scholar 

  26. Gollasch M. Adipose-vascular coupling and potential therapeutics. Annu Rev Pharmacol Toxicol. 2017;57:417–36.

    Article  CAS  Google Scholar 

  27. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5(5):588–94.

    Article  CAS  Google Scholar 

  28. Ruan CC, Ge Q, Li Y, Li XD, Chen DR, Ji KD, et al. Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arterioscler Thromb Vasc Biol. 2015;35(3):598–606.

    Article  CAS  Google Scholar 

  29. Huang Cao ZF, Stoffel E, Cohen P. Role of perivascular adipose tissue in vascular physiology and pathology. Hypertension. 2017;69(5):770–7.

    Article  Google Scholar 

  30. Fitzgibbons TP, Kogan S, Aouadi M, Hendricks GM, Straubhaar J, Czech MP. Similarity of mouse perivascular and brown adipose tissues and their resistance to diet-induced inflammation. Am J Physiol Heart Circ Physiol. 2011;301(4):H1425–37.

    Article  CAS  Google Scholar 

  31. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36.

    Article  CAS  Google Scholar 

  32. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359.

    Article  CAS  Google Scholar 

  33. Morrison SF, Madden CJ, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 2014;19(5):741–56.

    Article  CAS  Google Scholar 

  34. Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126(9):1067–78.

    Article  CAS  Google Scholar 

  35. Chang L, Xiong W, Zhao X, Fan Y, Guo Y, Garcia-Barrio M, et al. Bmal1 in perivascular adipose tissue regulates resting phase blood pressure through transcriptional regulation of angiotensinogen. Circulation. 2018;138:67–79.

    Article  CAS  Google Scholar 

  36. Seeger T, Boon RA. MicroRNAs in cardiovascular ageing. J Physiol. 2016;594(8):2085–94.

    Article  CAS  Google Scholar 

  37. Ahn J, Lee H, Jung CH, Jeon TI, Ha TY. MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade. EMBO Mol Med. 2013;5(10):1602–12.

    Article  CAS  Google Scholar 

  38. Hulsmans M, Van Dooren E, Mathieu C, Holvoet P. Decrease of miR-146b-5p in monocytes during obesity is associated with loss of the anti-inflammatory but not insulin signaling action of adiponectin. PLoS One. 2012;7(2):e32794.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (91539202, 81570221, 81770495, and 91739303), the Shanghai Municipal Commission of Health and Family Planning (2017YQ076 and 201540222), and the Natural Science Foundation of Shanghai, China (16ZR1430900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Chao Ruan or Fang Wu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All animal procedures described in this study were approved in accordance with institutional guidelines established by the Committee of Ethics on Animal Experiments at the Shanghai Jiao Tong University School of Medicine. No human studies were carried out by the authors for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, XX., Cao, JM., Cai, F. et al. Loss of miR-146b-3p Inhibits Perivascular Adipocyte Browning with Cold Exposure During Aging. Cardiovasc Drugs Ther 32, 511–518 (2018). https://doi.org/10.1007/s10557-018-6814-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-018-6814-x

Keywords

Navigation