Advertisement

Cardiovascular Drugs and Therapy

, Volume 32, Issue 2, pp 223–232 | Cite as

Old Drugs for New Indications in Cardiovascular Medicine

  • Yaron Arbel
  • Wael Abuzeid
  • Robert S Rosenson
  • Alanna Weisman
  • Michael E. Farkouh
REVIEW ARTICLE
  • 250 Downloads

Abstract

Inflammation participates in the initiation and progression of atherosclerotic cardiovascular disease, and it is a critical inciting factor leading to acute ischemic events. Evidence has shown that certain anti-inflammatory medications used to treat non-atherosclerotic inflammatory diseases reduce cardiovascular events. This article reviews evidence that commonly used anti-inflammatory therapies (colchicine, allopurinol, methotrexate), reduce cardiovascular events. We discuss potential mechanisms of action, efficacy, and safety of these therapies and propose a clinical trials design to investigate their efficacy.

Keywords

Colchicine Allopurinol Inflammation Methotrexate Atherosclerosis Cardiovascular disease 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with animals performed by any of the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Financial Disclosures

Robert S. Rosenson—Research Grant, Akcea, Amgen, Astra Zeneca, Medicines Company, Regeneron; Honoraria, Akcea, Kowa, Pfizer; Consultant/Advisory Board, Amgen, C5, CVS Caremark, Easy Vitals, Regeneron, Sanofi; Stock holdings, MediMergent; Royalties, UpToDate

Yaron Arbel—none to declare

Michael E. Farkouh—none to declare

Wael Abuzeid—none to declare

Alanna Weisman—none to declare

References

  1. 1.
    Koenig W, Rosenson RS. Acute-phase reactants and coronary heart disease. Semin Vasc Med. 2002;2:417–28.CrossRefPubMedGoogle Scholar
  2. 2.
    Kaptoge S, Di Angelantonio E, Pennells L, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.CrossRefPubMedGoogle Scholar
  3. 3.
    Ridker PM, Cannon CP, Morrow D, Rifai N, Rose LM, McCabe C, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Teague HL, Ahlman MA, Alavi A, Wagner DD, Lichtman AH, Nahrendorf M, et al. Unraveling vascular inflammation: from immunology to imaging. J Am Coll Cardiol. 2017;70:1403–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Ridker PM, Everett BM, Thuren T, MacFadyen J, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.CrossRefPubMedGoogle Scholar
  6. 6.
    Bertrand MJ, Tardif JC. Inflammation and beyond: new directions and emerging drugs for treating atherosclerosis. Expert Opin Emerg Drugs 2017; 22:1–26.Google Scholar
  7. 7.
    Imazio M, Brucato A, Cemin R, Ferrua S, Maggiolini S, Beqaraj F, et al. A randomized trial of colchicine for acute pericarditis. N Engl J Med. 2013;369:1522–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Imazio M, Brucato A, Ferrazzi P, Rovere ME, Gandino A, Cemin R, et al. Colchicine reduces postoperative atrial fibrillation: results of the Colchicine for the Prevention of the Postpericardiotomy Syndrome (COPPS) atrial fibrillation substudy. Circulation. 2011;124:2290–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Deftereos S, Giannopoulos G, Papoutsidakis N, Panagopoulou V, Kossyvakis C, Raisakis K, et al. Colchicine and the heart: pushing the envelope. J Am Coll Cardiol. 2013;62:1817–25.CrossRefPubMedGoogle Scholar
  10. 10.
    Martinez GJ, Celermajer DS, Patel S. The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis. 2017Google Scholar
  11. 11.
    Little A, Tung D, Truong C, Lapinsky S, Burry L. Colchicine overdose with coingestion of nonsteroidal antiinflammatory drugs. CJEM. 2014;16:252–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Cronstein BN, Molad Y, Reibman J, Balakhane E, Levin RI, Weissmann G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J Clin Invest. 1995;96:994–1002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL. Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol. 2013;61:404–10.CrossRefPubMedGoogle Scholar
  14. 14.
    Terkeltaub RA. Colchicine update: 2008. Semin Arthritis Rheum. 2009;38:411–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Crittenden DB, Lehmann RA, Schneck L, et al. Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. J Rheumatol. 2012;39:1458–64.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Raju NC, Yi Q, Nidorf M, Fagel ND, Hiralal R, Eikelboom JW. Effect of colchicine compared with placebo on high sensitivity C-reactive protein in patients with acute coronary syndrome or acute stroke: a pilot randomized controlled trial. J Thromb Thrombolysis. 2012;33:88–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Deftereos S, Giannopoulos G, Angelidis C, Alexopoulos N, Filippatos G, Papoutsidakis N, et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132:1395–403.CrossRefPubMedGoogle Scholar
  18. 18.
    Deftereos S, Giannopoulos G, Raisakis K, Kossyvakis C, Kaoukis A, Panagopoulou V, et al. Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. J Am Coll Cardiol. 2013;61:1679–85.CrossRefPubMedGoogle Scholar
  19. 19.
    Verma S, Eikelboom JW, Nidorf SM, al-Omran M, Gupta N, Teoh H, et al. Colchicine in cardiac disease: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc Disord. 2015;15:96.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Putterman C, Ben-Chetrit E, Caraco Y, Levy M. Colchicine intoxication: clinical pharmacology, risk factors, features, and management. Semin Arthritis Rheum. 1991;21:143–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Finkelstein Y, Aks SE, Hutson JR, et al. Colchicine poisoning: the dark side of an ancient drug. Clin Toxicol (Philadelphia, Pa). 2010;48:407–14.CrossRefGoogle Scholar
  22. 22.
    Indraratna PL, Virk S, Gurram D, Day RO. Use of colchicine in pregnancy: a systematic review and meta-analysis. Rheumatol (Oxford, England). 2017;Google Scholar
  23. 23.
    Neogi T, George J, Rekhraj S, Struthers AD, Choi H, Terkeltaub RA. Are either or both hyperuricemia and xanthine oxidase directly toxic to the vasculature? A critical appraisal. Arthritis Rheum. 2012;64:327–38.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E, et al. Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol. 2014;10:654–61.CrossRefPubMedGoogle Scholar
  25. 25.
    Jia G, Habibi J, Bostick BP, Ma L, DeMarco VG, Aroor AR, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65:531–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Baena CP, Lotufo PA, Mill JG, Cunha RS, Bensenor IJ. Serum uric acid and pulse wave velocity among healthy adults: baseline data from the Brazilian longitudinal study of adult health (ELSA-Brasil). Am J Hypertens. 2015;28:966–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol. 2012;59:235–42.CrossRefPubMedGoogle Scholar
  28. 28.
    Gotsman I, Keren A, Lotan C, Zwas DR. Changes in uric acid levels and allopurinol use in chronic heart failure: association with improved survival. J Card Fail. 2012;18:694–701.CrossRefPubMedGoogle Scholar
  29. 29.
    Miyaoka T, Mochizuki T, Takei T, Tsuchiya K, Nitta K. Serum uric acid levels and long-term outcomes in chronic kidney disease. Heart Vessel. 2014;29:504–12.CrossRefGoogle Scholar
  30. 30.
    Wu AH, Ghali JK, Neuberg GW, O'Connor CM, Carson PE, Levy WC. Uric acid level and allopurinol use as risk markers of mortality and morbidity in systolic heart failure. Am Heart J. 2010;160:928–33.CrossRefPubMedGoogle Scholar
  31. 31.
    Ito H, Abe M, Mifune M, Oshikiri K, Antoku S, Takeuchi Y, et al. Hyperuricemia is independently associated with coronary heart disease and renal dysfunction in patients with type 2 diabetes mellitus. PLoS One. 2011;6:e27817.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Takagi H, Umemoto T. Atorvastatin therapy reduces serum uric acid levels: a meta-analysis of randomized controlled trials. Int J Cardiol. 2012;157:255–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013;231:61–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Fan Y, Wei F, Lang Y, Wang S. Losartan treatment for hypertensive patients with hyperuricaemia in Chinese population: a meta-analysis. J Hypertens. 2015;33:681–8; discussion 689.CrossRefPubMedGoogle Scholar
  35. 35.
    El-Bassossy HM, Watson ML. Xanthine oxidase inhibition alleviates the cardiac complications of insulin resistance: effect on low grade inflammation and the angiotensin system. J Transl Med. 2015;13:82.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Erdogan D, Tayyar S, Uysal BA, Icli A, Karabacak M, Ozaydin M, et al. Effects of allopurinol on coronary microvascular and left ventricular function in patients with idiopathic dilated cardiomyopathy. Can J Cardiol. 2012;28:721–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Rekhraj S, Gandy SJ, Szwejkowski BR, Nadir MA, Noman A, Houston JG, et al. High-dose allopurinol reduces left ventricular mass in patients with ischemic heart disease. J Am Coll Cardiol. 2013;61:926–32.CrossRefPubMedGoogle Scholar
  38. 38.
    Thanassoulis G, Brophy JM, Richard H, Pilote L. Gout, allopurinol use, and heart failure outcomes. Arch Intern Med. 2010;170:1358–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Xin W, Mi S, Lin Z. Allopurinol therapy improves vascular endothelial function in subjects at risk for cardiovascular diseases: a meta-analysis of randomized controlled trials. Cardiovasc Ther. 2016;34:441–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR. Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther. 2012;30:217–26.CrossRefPubMedGoogle Scholar
  41. 41.
    de Abajo FJ, Gil MJ, Rodriguez A, et al. Allopurinol use and risk of non-fatal acute myocardial infarction. Heart. 2015;101:679–85.CrossRefPubMedGoogle Scholar
  42. 42.
    Grimaldi-Bensouda L, Alperovitch A, Aubrun E, et al. Impact of allopurinol on risk of myocardial infarction. Ann Rheum Dis. 2015;74:836–42.CrossRefPubMedGoogle Scholar
  43. 43.
    Struthers A, Shearer F. Allopurinol: novel indications in cardiovascular disease. Heart. 2012;98:1543–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Rentoukas E, Tsarouhas K, Tsitsimpikou C, Lazaros G, Deftereos S, Vavetsi S. The prognostic impact of allopurinol in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol. 2010;145:257–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Givertz MM, Anstrom KJ, Redfield MM, Deswal A, Haddad H, Butler J, et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for Hyperuricemic heart failure patients (EXACT-HF) study. Circulation. 2015;131:1763–71.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Higgins P, Walters MR, Murray HM, McArthur K, McConnachie A, Lees KR, et al. Allopurinol reduces brachial and central blood pressure, and carotid intima-media thickness progression after ischaemic stroke and transient ischaemic attack: a randomised controlled trial. Heart. 2014;100:1085–92.CrossRefPubMedGoogle Scholar
  47. 47.
    Kao MP, Ang DS, Gandy SJ, Nadir MA, Houston JG, Lang CC, et al. Allopurinol benefits left ventricular mass and endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol. 2011;22:1382–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Erol T, Tekin A, Katircibasi MT, et al. Efficacy of allopurinol pretreatment for prevention of contrast-induced nephropathy: a randomized controlled trial. Int J Cardiol. 2013;167:1396–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Goicoechea M, Garcia de Vinuesa S, Verdalles U, Verde E, Macias N, Santos A, et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am J Kidney Dis: Off J Nat Kidney Found. 2015;65:543–9.CrossRefGoogle Scholar
  50. 50.
    Noman A, Ang DS, Ogston S, Lang CC, Struthers AD. Effect of high-dose allopurinol on exercise in patients with chronic stable angina: a randomised, placebo controlled crossover trial. Lancet (London, England). 2010;375:2161–7.CrossRefGoogle Scholar
  51. 51.
    Guedes M, Esperanca A, Pereira AC, Rego C. What is the effect on cardiovascular events of reducing hyperuricemia with allopurinol? An evidence-based review. Revista portuguesa de cardiologia: orgao oficial da Sociedade Portuguesa de Cardiologia = Portuguese J Cardiol: Off J Portuguese Soc Cardiol. 2014;33:727–32.Google Scholar
  52. 52.
    Kanji T, Gandhi M, Clase CM, Yang R. Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol. 2015;16:58.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    White WB, Saag KG, Becker MA et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med. 2018.Google Scholar
  54. 54.
    Castrejon I, Toledano E, Rosario MP, Loza E, Perez-Ruiz F, Carmona L. Safety of allopurinol compared with other urate-lowering drugs in patients with gout: a systematic review and meta-analysis. Rheumatol Int. 2015;35:1127–37.CrossRefPubMedGoogle Scholar
  55. 55.
    Kydd AS, Seth R, Buchbinder R, Falzon L, Edwards CJ, van der Heijde DM, et al. Urate-lowering therapy for the management of gout: a summary of 2 Cochrane reviews. J Rheumatol Suppl. 2014;92:33–41.CrossRefPubMedGoogle Scholar
  56. 56.
    Seth R, Kydd AS, Buchbinder R, Bombardier C, Edwards CJ. Allopurinol for chronic gout. Cochrane Database System Rev. 2014;10:CD006077.Google Scholar
  57. 57.
    Spina M, Nagy Z, Ribera JM, Federico M, Aurer I, Jordan K, et al. FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients with hematologic malignancies at intermediate to high TLS risk. Ann Oncol: Off J Eur Soc Med Oncol/ESMO. 2015;26:2155–61.CrossRefGoogle Scholar
  58. 58.
    Horreau C, Pouplard C, Brenaut E, Barnetche T, Misery L, Cribier B, et al. Cardiovascular morbidity and mortality in psoriasis and psoriatic arthritis: a systematic literature review. J Eur Acad Dermatol Venereol: JEADV. 2013;27(Suppl 3):12–29.CrossRefPubMedGoogle Scholar
  59. 59.
    Symmons DP, Gabriel SE. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE. Nat Rev Rheumatol. 2011;7:399–408.CrossRefPubMedGoogle Scholar
  60. 60.
    Ajeganova S, de Faire U, Jogestrand T, Frostegard J, Hafstrom I. Carotid atherosclerosis, disease measures, oxidized low-density lipoproteins, and atheroprotective natural antibodies for cardiovascular disease in early rheumatoid arthritis—an inception cohort study. J Rheumatol. 2012;39:1146–54.CrossRefPubMedGoogle Scholar
  61. 61.
    Davis LA, Cannon GW, Pointer LF, Haverhals LM, Wolff RK, Mikuls TR, et al. Cardiovascular events are not associated with MTHFR polymorphisms, but are associated with methotrexate use and traditional risk factors in US veterans with rheumatoid arthritis. J Rheumatol. 2013;40:809–17.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cutolo M, Sulli A, Pizzorni C, Seriolo B, Straub RH. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001;60:729–35.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chan ES, Cronstein BN. Methotrexate—how does it really work? Nat Rev Rheumatol. 2010;6:175–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Bulgarelli A, Leite AC Jr, Dias AA, Maranhao RC. Anti-atherogenic effects of methotrexate carried by a lipid nanoemulsion that binds to LDL receptors in cholesterol-fed rabbits. Cardiovascular drugs and therapy/sponsored by the International Society of Cardiovascular. Pharmacotherapy. 2013;27:531–9.Google Scholar
  65. 65.
    Leite AC Jr, Solano TV, Tavares ER, Maranhao RC. Use of combined chemotherapy with etoposide and methotrexate, both associated to lipid nanoemulsions for atherosclerosis treatment in cholesterol-fed rabbits. Cardiovascular drugs and therapy/sponsored by the International Society of Cardiovascular. Pharmacotherapy. 2015;29:15–22.Google Scholar
  66. 66.
    Thornton CC, Al-Rashed F, Calay D, et al. Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis. 2015;Google Scholar
  67. 67.
    Ronda N, Greco D, Adorni MP, et al. Newly identified antiatherosclerotic activity of methotrexate and adalimumab: complementary effects on lipoprotein function and macrophage cholesterol metabolism. Arthr Rheumatol (Hoboken, NJ). 2015;67:1155–64.CrossRefGoogle Scholar
  68. 68.
    Solomon DH, Greenberg J, Curtis JR, et al. Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: a consortium of rheumatology researchers of North America registry study. Arthritis Rheumatol (Hoboken, NJ). 2015;67:1995–2003.CrossRefGoogle Scholar
  69. 69.
    McEntegart A, Capell HA, Creran D, Rumley A, Woodward M, Lowe GD. Cardiovascular risk factors, including thrombotic variables, in a population with rheumatoid arthritis. Rheumatol (Oxford, England). 2001;40:640–4.CrossRefGoogle Scholar
  70. 70.
    Edwards CJ, Syddall H, Goswami R, Goswami P, Dennison EM, Arden NK, et al. The autoantibody rheumatoid factor may be an independent risk factor for ischaemic heart disease in men. Heart. 2007;93:1263–7.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Choi HK, Hernan MA, Seeger JD, Robins JM, Wolfe F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet (London, England). 2002;359:1173–7.CrossRefGoogle Scholar
  72. 72.
    Nicola PJ, Maradit-Kremers H, Roger VL, et al. The risk of congestive heart failure in rheumatoid arthritis: a population-based study over 46 years. Arthritis Rheum. 2005;52:412–20.CrossRefPubMedGoogle Scholar
  73. 73.
    Bernatsky S, Hudson M, Suissa S. Anti-rheumatic drug use and risk of hospitalization for congestive heart failure in rheumatoid arthritis. Rheumatol (Oxford, England). 2005;44:677–80.CrossRefGoogle Scholar
  74. 74.
    Naranjo A, Sokka T, Descalzo MA, Calvo-Alén J, Hørslev-Petersen K, Luukkainen RK, et al. Cardiovascular disease in patients with rheumatoid arthritis: results from the QUEST-RA study. Arthritis Res Ther. 2008;10:R30.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Salliot C, van der Heijde D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann Rheum Dis. 2009;68:1100–4.CrossRefPubMedGoogle Scholar
  76. 76.
    Everett BM, Pradhan AD, Solomon DH, et al. Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am heart Journal. 2013;166:199–207 e15.CrossRefGoogle Scholar
  77. 77.
    Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Mascia Gottschall CA. Rationale and design of the TETHYS trial: the effects of methotrexate therapy on myocardial infarction with ST-segment elevation. Cardiology. 2013;126:167–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiology, Tel Aviv Medical Center, Tel Aviv, affiliated to the Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
  2. 2.Schulich Heart Centre, Division of CardiologySunnybrook Health Sciences Centre, Ontario, Canada, affiliated with the University of TorontoTorontoCanada
  3. 3.Mount Sinai Icahn School of MedicineMount Sinai HospitalNew YorkUSA
  4. 4.Division of Endocrinology & Metabolism, Department of MedicineUniversity of TorontoTorontoCanada
  5. 5.Peter Munk Centre, Heart & Stroke Richard Lewar Centre of ExcellenceUniversity of TorontoTorontoCanada

Personalised recommendations