Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis



Pathological cardiac remodeling, characterized by cardiac hypertrophy and fibrosis, is a pathological feature of many cardiac disorders that leads to heart failure and cardiac arrest. Vinpocetine, a derivative of the alkaloid vincamine, has been used for enhancing cerebral blood flow to treat cognitive impairment. However, its role in pathological cardiac remodeling remains unknown. The aim of this study is to examine the effect of vinpocetine on pathological cardiac remodeling induced by chronic stimulation with angiotensin II (Ang II).


Mice received Ang II infusion via osmotic pumps in the presence of vehicle or vinpocetine. Cardiac hypertrophy and fibrosis were assessed by morphological, histological, and biochemical analyses. Mechanistic studies were carried out in vitro with isolated mouse adult cardiac myocytes and fibroblasts.


We showed that chronic Ang II infusion caused cardiac hypertrophy and fibrosis, which were all significantly attenuated by systemic administration of vinpocetine. In isolated adult mouse cardiomyocytes, vinpocetine suppressed Ang II-stimulated myocyte hypertrophic growth. In cultured cardiac fibroblasts, vinpocetine suppressed TGFβ-induced fibroblast activation and matrix gene expression, consistent with its effect in attenuating cardiac fibrosis. The effects of vinpocetine on cardiac myocyte hypertrophy and fibroblast activation are likely mediated by targeting cyclic nucleotide phosphodiesterase 1 (PDE1).


Our results reveal a novel protective effect of vinpocetine in attenuating pathological cardiac remodeling through suppressing cardiac myocyte hypertrophic growth and fibroblast activation and fibrotic gene expression. These studies may also shed light on developing novel therapeutic agents for antagonizing pathological cardiac remodeling.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Leri A, Liu Y, Li B, Fiordaliso F, Malhotra A, Latini R, et al. Up-regulation of AT(1) and AT(2) receptors in postinfarcted hypertrophied myocytes and stretch-mediated apoptotic cell death. Am J Pathol. 2000;156(5):1663–72.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Klein L, O’Connor CM, Gattis WA, Zampino M, de Luca L, Vitarelli A, et al. Pharmacologic therapy for patients with chronic heart failure and reduced systolic function: review of trials and practical considerations. Am J Cardiol. 2003;91(9A):18F–40F.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117(3):568–75.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Bonoczk P, Gulyas B, Adam-Vizi V, Nemes A, Karpati E, Kiss B, et al. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull. 2000;53(3):245–54.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Szobor A, Klein M. Ethyl apovincaminate therapy in neurovascular diseases. Arzneimittelforschung. 1976;26(10a):1984–9.

    CAS  PubMed  Google Scholar 

  6. 6.

    Patyar S, Prakash A, Modi M, Medhi B. Role of vinpocetine in cerebrovascular diseases. Pharmacol Rep. 2011;63(3):618–28.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zhang L, Yang L. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature. Molecules. 2015;20(1):335–47.

    Article  Google Scholar 

  8. 8.

    Jeon K-I, Xu X, Aizawa T, Lim JH, Jono H, Kwon D-S, et al. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A. 2010;107(21):9795–800.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, et al. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation. 2001;104(19):2338–43.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Cai Y, Knight WE, Guo S, Li JD, Knight PA, Yan C. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration. J Pharmacol Exp Ther. 2012;343(2):479–88.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Cai Y, Li JD, Yan C. Vinpocetine attenuates lipid accumulation and atherosclerosis formation. Biochem Biophys Res Commun. 2013;434(3):439–43.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Miller CL, Oikawa M, Cai Y, Wojtovich AP, Nagel DJ, Xu X, et al. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res. 2009;105(10):956–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Miller CL, Cai Y, Oikawa M, Thomas T, Dostmann WR, Zaccolo M, et al. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res Cardiol. 2011;106(6):1023–39.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Wu MP, Zhang YS, Zhou QM, Xiong J, Dong YR, Yan C. Higenamine protects ischemia/reperfusion induced cardiac injury and myocyte apoptosis through activation of beta2-AR/PI3K/AKT signaling pathway. Pharmacol Res. 2016;104:115–23.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Kabaeva Z, Zhao M, Michele DE. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol. 2008;294(4):H1667–1674.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yan C, Zhao AZ, Bentley JK, Beavo JA. The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J Biol Chem. 1996;271(41):25699–706.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Knight WE, Chen S, Zhnag Y, Oikawa M, Wu M, Zhou Q, Miller CL, Cai Y, Mickelsen DM, Moravec C, Small EM, Abe J, Yan C. PDE1C deficiency antagonizes pathological cardiac remodeling and dysfunction. Proc Natl Acad Sci U S A. 2016;pii: 201607728:E7116-7125.

  18. 18.

    Balestreri R, Fontana L, Astengo F. A double-blind placebo controlled evaluation of the safety and efficacy of vinpocetine in the treatment of patients with chronic vascular senile cerebral dysfunction. J Am Geriatr Soc. 1987;35(5):425–30.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Crawford DC, Chobanian AV, Brecher P. Angiotensin II induces fibronectin expression associated with cardiac fibrosis in the rat. Circ Res. 1994;74(4):727–39.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Kim S, Ohta K, Hamaguchi A, Yukimura T, Miura K, Iwao H. Angiotensin II induces cardiac phenotypic modulation and remodeling in vivo in rats. Hypertension. 1995;25(6):1252–9.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Mazzolai L, Nussberger J, Aubert JF, Brunner DB, Gabbiani G, Brunner HR, et al. Blood pressure-independent cardiac hypertrophy induced by locally activated renin-angiotensin system. Hypertension. 1998;31(6):1324–30.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A. 2000;97(2):931–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Frieler RA, Mortensen RM. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 2015;131(11):1019–30.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Purcell NH, Tang G, Yu C, Mercurio F, DiDonato JA, Lin A. Activation of NF-kappa B is required for hypertrophic growth of primary rat neonatal ventricular cardiomyocytes. Proc Natl Acad Sci U S A. 2001;98(12):6668–73.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Li Y, Ha T, Gao X, Kelley J, Williams DL, Browder IW, et al. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am J Physiol Heart Circ Physiol. 2004;287(4):H1712–1720.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Onai Y, Suzuki J, Maejima Y, Haraguchi G, Muto S, Itai A, et al. Inhibition of NF-{kappa}B improves left ventricular remodeling and cardiac dysfunction after myocardial infarction. Am J Physiol Heart Circ Physiol. 2007;292(1):H530–538.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Jian-Dong Li or Chen Yan.

Ethics declarations


This study was supported by grants from National Natural Science Foundation of China No.81473379 and No.81673915 (to M. Wu), No. 81570248 (to C. Y.), Shanghai Municipal Bureau of Health Science and Technology Project No. 2011L032B (to M. Wu), the National Institutes of Health National Heart, Lung, and Blood Institute [Grants HL111291; HL088400 (to C.Y.) and DC005843, DC004562, and DC013833 (to J.D. Li)].

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Approval

All procedures performed in studies involving animals were in accordance with ethical standards of the institution or practice at which the studies were conducted.

Informed Consent

No human subjects are involved.

Additional information

Mei-ping Wu and Yi-shuai Zhang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


(PDF 605 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, Y., Xu, X. et al. Vinpocetine Attenuates Pathological Cardiac Remodeling by Inhibiting Cardiac Hypertrophy and Fibrosis. Cardiovasc Drugs Ther 31, 157–166 (2017).

Download citation


  • Vinpocetine
  • Cardiac remodeling
  • Cardiac hypertrophy
  • Cardiac fibrosis
  • PDE1