Skip to main content

Advertisement

Log in

Increased Plasma Concentrations of Soluble ST2 Independently Predict Mortality but not Cardiovascular Events in Stable Coronary Heart Disease Patients: 13-Year Follow-up of the KAROLA Study

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

sST2 (soluble suppression of tumorigenicity 2), a member of the interleukin-1 family, has been suggested to play a role in cardiac remodeling and inflammatory signaling. We assessed the association between sST2 in patients with stable coronary heart disease (CHD) with multiple cardiovascular outcomes and total mortality, simultaneously controlling for a large number of potential confounders.

Methods

Plasma concentrations of sST2 (ELISA, Critical Diagnostics) were measured at baseline in a cohort of 1081 patients. The Cox-proportional hazards model was used to determine the prognostic value of sST2 on a combined cardiovascular disease (CVD) endpoint, on cardiovascular death, and on total mortality after adjustment for covariates.

Results

The median sST2 level was 28.9 ng/mL (IQR 23.8, 35.1) (mean age at baseline 58.9 years, 84.6% male). sST2 concentration was positively correlated with inflammatory markers and emerging risk factors, e.g., cystatin C, N-terminal probrainnatriuretic peptide (NT-proBNP), high-sensitivity (hs)-Troponin T and I, mid-regional pro-atrial natriuretic peptide (MR-proANP), and growth differentiation factor 15 (GDF-15). Results after short- and long-term (4.5 and 12.3 years, respectively) follow-up (FU) displayed no statistically significant association with the combined endpoint of non-fatal and fatal CVD events when the top quartile (Q4) of sST2 concentration was compared to the bottom quartile (Q1). A relationship during long-term FU was seen with CVD mortality even after multivariable adjustments including clinical risk variables (HR 1.65; 95% CI 1.02–2.86), but not in a fully adjusted model whereas, in contrast, it was still highly significant after short-term FU (HR (5.97 (95%CI 1.32–27.06)). In addition, the sST2 concentration was still strongly associated with total mortality in the fully adjusted model including clinical variables and cystatin C based estimated glomerular filtration rate, NT-proBNP, hsCRP and hs-TnI comparing Q4 vs Q1 during long-term FU (HR of 1.48 (95% CI 1.03–2.13)) and short-term FU (HR 3.06 (95% CI 1.29–7.24)).

Conclusions

Elevated levels of sST2 concentration in stable CHD patients may independently predict short- and long-term risk for fatal CVD events and total mortality but not non-fatal CVD events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poredos P, Jezovnik MK. Markers of preclinical atherosclerosis and their clinical relevance. Vasa. 2015;44(4):247–56.

    Article  PubMed  Google Scholar 

  2. Dallmeier D, Brenner H, Mons U, Rottbauer W, Koenig W, Rothenbacher D. Growth differentiation factor 15, its 12-month relative change, and risk of cardiovascular events and total mortality in patients with stable coronary heart disease: 10-year follow-up of the KAROLA study. Clin Chem. 2016;62(7):982–92.

    Article  CAS  PubMed  Google Scholar 

  3. Huang DH, Sun H, Shi JP. Diagnostic value of soluble suppression of tumorigenicity-2 for heart failure. Chin Med J (Engl). 2016;129(5):570–7.

    Article  Google Scholar 

  4. Pascual-Figal DA, Januzzi JL. The biology of ST2: the international ST2 consensus panel. Am J Cardiol. 2015;115(7 Suppl):3B–7B.

    Article  CAS  PubMed  Google Scholar 

  5. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–90.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg EO. ST2 protein in heart disease: from discovery to mechanisms and prognostic value. Biomark Med. 2009;3(5):495–511.

    Article  CAS  PubMed  Google Scholar 

  7. Coglianese EE, Larson MG, Vasan RS, Ho JE, Ghorbani A, McCabe EL, et al. Distribution and clinical correlates of the interleukin receptor family member soluble ST2 in the Framingham Heart Study. Clin Chem. 2012;58(12):1673–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sanada S, Hakuno D, Higgins LJ, Schreiter ER, McKenzie AN, Lee RT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J Clin Invest. 2007;117(6):1538–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seki K, Sanada S, Kudinova AY, Steinhauser ML, Handa V, Gannon J, et al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ Heart Fail. 2009;2(6):684–91.

    Article  CAS  PubMed  Google Scholar 

  10. Willems S, Hoefer I, Pasterkamp G. The role of the interleukin 1 receptor-like 1 (ST2) and interleukin-33 pathway in cardiovascular disease and cardiovascular risk assessment. Minerva Med. 2012;103(6):513–24.

    CAS  PubMed  Google Scholar 

  11. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008;7(10):827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847.

    Article  PubMed  Google Scholar 

  14. Dieplinger B, Mueller T. Soluble ST2 in heart failure. Clin Chim Acta. 2015;443:57–70.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang R, Zhang Y, An T, Guo X, Yin S, Wang Y, et al. Prognostic value of sST2 and galectin-3 for death relative to renal function in patients hospitalized for heart failure. Biomark Med. 2015;9(5):433–41.

    Article  CAS  PubMed  Google Scholar 

  16. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi Jr JL. Soluble concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in chronic heart failure. Circ Heart Fail. 2013;6(6):1206–13.

    Article  CAS  PubMed  Google Scholar 

  17. Januzzi JL, Pascual-Figal D, Daniels LB. ST2 testing for chronic heart failure therapy monitoring: the International ST2 Consensus Panel. Am J Cardiol. 2015;115(7 Suppl):70B–5B.

    Article  PubMed  Google Scholar 

  18. Rothenbacher D, Koenig W, Brenner H. Comparison of N-terminal pro-B-natriuretic peptide, C-reactive protein, and creatinine clearance for prognosis in patients with known coronary heart disease. Arch Intern Med. 2006;166(22):2455–60.

    Article  CAS  PubMed  Google Scholar 

  19. Morgenthaler NG, Struck J, Thomas B, Bergmann A. Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clin Chem. 2004;50(1):234–6.

    Article  CAS  PubMed  Google Scholar 

  20. Inker LA, Eckfeldt J, Levey AS, Leiendecker-Foster C, Rynders G, Manzi J, et al. Expressing the CKD-EPI (chronic kidney disease epidemiology collaboration) cystatin C equations for estimating GFR with standardized serum cystatin C values. Am J Kidney Dis. 2011;58(4):682–4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andersson C, Enserro D, Sullivan L, Wang TJ, Januzzi Jr JL, Benjamin EJ, et al. Relations of circulating GDF-15, soluble ST2, and troponin-I concentrations with vascular function in the community: the Framingham Heart Study. Atherosclerosis. 2016;248:245–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dieplinger B, Gegenhuber A, Haltmayer M, Mueller T. Evaluation of novel biomarkers for the diagnosis of acute destabilised heart failure in patients with shortness of breath. Heart. 2009;95(18):1508–13.

    Article  CAS  PubMed  Google Scholar 

  23. Gaggin HK, Szymonifka J, Bhardwaj A, Belcher A, De Berardinis B, Motiwala S, et al. Head-to-head comparison of serial soluble ST2, growth differentiation factor-15, and highly-sensitive troponin T measurements in patients with chronic heart failure. JACC Heart Fail. 2014;2(1):65–72.

    Article  PubMed  Google Scholar 

  24. Tang WH, Wu Y, Grodin JL, Hsu AP, Hernandez AF, Butler J, et al. Prognostic value of baseline and changes in circulating soluble ST2 levels and the effects of nesiritide in acute decompensated heart failure. JACC Heart Fail. 2016;4(1):68–77.

    Article  PubMed  Google Scholar 

  25. Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016;106(2):145–52.

    PubMed  PubMed Central  Google Scholar 

  26. Zile MR, Jhund PS, Baicu CF, Claggett BL, Pieske B, Voors AA et al. Plasma Biomarkers Reflecting Profibrotic Processes in Heart Failure With a Preserved Ejection Fraction: Data From the Prospective Comparison of ARNI With ARB on Management of Heart Failure With Preserved Ejection Fraction Study. Circ Heart Fail. 2016;9(1).

  27. Sabatine MS, Morrow DA, Higgins LJ, MacGillivray C, Guo W, Bode C, et al. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008;117(15):1936–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shimpo M, Morrow DA, Weinberg EO, Sabatine MS, Murphy SA, Antman EM, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109(18):2186–90.

    Article  CAS  PubMed  Google Scholar 

  29. Eggers KM, Armstrong PW, Califf RM, Simoons ML, Venge P, Wallentin L, et al. ST2 and mortality in non-ST-segment elevation acute coronary syndrome. Am Heart J. 2010;159(5):788–94.

    Article  PubMed  Google Scholar 

  30. Kohli P, Bonaca MP, Kakkar R, Kudinova AY, Scirica BM, Sabatine MS, et al. Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. Clin Chem. 2012;58(1):257–66.

    Article  CAS  PubMed  Google Scholar 

  31. Aldous SJ, Richards AM, Troughton R, Than M. ST2 has diagnostic and prognostic utility for all-cause mortality and heart failure in patients presenting to the emergency department with chest pain. J Card Fail. 2012;18(4):304–10.

    Article  CAS  PubMed  Google Scholar 

  32. Januzzi Jr JL, Peacock WF, Maisel AS, Chae CU, Jesse RL, Baggish AL, et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J Am Coll Cardiol. 2007;50(7):607–13.

    Article  CAS  PubMed  Google Scholar 

  33. Shah KB, Kop WJ, Christenson RH, Diercks DB, Henderson S, Hanson K, et al. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Clin Chem. 2011;57(6):874–82.

    Article  CAS  PubMed  Google Scholar 

  34. Dieplinger B, Gegenhuber A, Kaar G, Poelz W, Haltmayer M, Mueller T. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin Biochem. 2010;43(9):714–9.

    Article  CAS  PubMed  Google Scholar 

  35. Socrates T, deFilippi C, Reichlin T, Twerenbold R, Breidhardt T, Noveanu M, et al. Interleukin family member ST2 and mortality in acute dyspnoea. J Intern Med. 2010;268(5):493–500.

    Article  CAS  PubMed  Google Scholar 

  36. Wang TJ, Wollert KC, Larson MG, Coglianese E, McCabe EL, Cheng S, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation. 2012;126(13):1596–604.

    Article  CAS  PubMed  Google Scholar 

  37. Dieplinger B, Egger M, Haltmayer M, Kleber ME, Scharnagl H, Silbernagel G, et al. Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin Chem. 2014;60(3):530–40.

    Article  CAS  PubMed  Google Scholar 

  38. Gopal DM, Larson MG, Januzzi JL, Cheng S, Ghorbani A, Wollert KC, et al. Biomarkers of cardiovascular stress and subclinical atherosclerosis in the community. Clin Chem. 2014;60(11):1402–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ciccone MM, Cortese F, Gesualdo M, Riccardi R, Di Nunzio D, Moncelli M, et al. A novel cardiac bio-marker: ST2: a review. Molecules. 2013;18(12):15314–28.

    Article  CAS  PubMed  Google Scholar 

  40. Januzzi JL, Mebazaa A, Di Somma S. ST2 and prognosis in acutely decompensated heart failure: the International ST2 Consensus Panel. Am J Cardiol. 2015;115(7 Suppl):26B–31B.

    Article  CAS  PubMed  Google Scholar 

  41. Maisel AS, Richards AM, Pascual-Figal D, Mueller C. Serial ST2 testing in hospitalized patients with acute heart failure. Am J Cardiol. 2015;115(7 Suppl):32B–7B.

    Article  PubMed  Google Scholar 

  42. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, et al. Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  43. Wu AH, Wians F, Jaffe A. Biological variation of galectin-3 and soluble ST2 for chronic heart failure: implication on interpretation of test results. Am Heart J. 2013;165(6):995–9.

    Article  CAS  PubMed  Google Scholar 

  44. Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, et al. IL-33 reduces the development of atherosclerosis. J Exp Med. 2008;205(2):339–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Willems S, Quax PH, de Borst GJ, de Vries JP, Moll FL, de Kleijn DP, et al. Soluble ST2 levels are not associated with secondary cardiovascular events and vulnerable plaque phenotype in patients with carotid artery stenosis. Atherosclerosis. 2013;231(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  46. Miller AM, Purves D, McConnachie A, Asquith DL, Batty GD, Burns H, et al. Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new inflammatory pathway of relevance to diabetes? PLoS One. 2012;7(10):e47830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller AM, Liew FY. The IL-33/ST2 pathway—a new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  48. Willems S, Sels JW, Flier S, Versteeg D, Buhre WF, de Kleijn DP, et al. Temporal changes of soluble ST2 after cardiovascular interventions. Eur J Clin Invest. 2013;43(2):113–20.

    Article  CAS  PubMed  Google Scholar 

  49. Dhillon OS, Narayan HK, Khan SQ, Kelly D, Quinn PA, Squire IB, et al. Pre-discharge risk stratification in unselected STEMI: is there a role for ST2 or its natural ligand IL-33 when compared with contemporary risk markers? Int J Cardiol. 2013;167(5):2182–8.

    Article  PubMed  Google Scholar 

  50. Zhang K, Zhang XC, Mi YH, Liu J. Predicting value of serum soluble ST2 and interleukin-33 for risk stratification and prognosis in patients with acute myocardial infarction. Chin Med J (Engl). 2013;126(19):3628–31.

    CAS  Google Scholar 

  51. Demyanets S, Speidl WS, Tentzeris I, Jarai R, Katsaros KM, Farhan S, et al. Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One. 2014;9(4):e95055.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dhillon OS, Narayan HK, Quinn PA, Squire IB, Davies JE, Ng LL. Interleukin 33 and ST2 in non-ST-elevation myocardial infarction: comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP. Am Heart J. 2011;161(6):1163–70.

    Article  CAS  PubMed  Google Scholar 

  53. Richards AM, Di Somma S, Mueller T. ST2 in stable and unstable ischemic heart diseases. Am J Cardiol. 2015;115(7 Suppl):48B–58B.

    Article  CAS  PubMed  Google Scholar 

  54. Morrow DA. Cardiovascular risk prediction in patients with stable and unstable coronary heart disease. Circulation. 2010;121(24):2681–91.

    Article  PubMed  Google Scholar 

  55. Daniels LB, Bayes-Genis A. Using ST2 in cardiovascular patients: a review. Future Cardiol. 2014;10(4):525–39.

    Article  CAS  PubMed  Google Scholar 

  56. Lu J, Snider JV, Grenache DG. Establishment of reference intervals for soluble ST2 from a United States population. Clin Chim Acta. 2010;411(21-22):1825–6.

    Article  CAS  PubMed  Google Scholar 

  57. Jansen H, Koenig W, Jaensch A, Mons U, Breitling LP, Scharnagl H, et al. Prognostic Utility of Galectin-3 for Recurrent Cardiovascular Events During Long-term Follow-up in Patients with Stable Coronary Heart Disease: Results of the KAROLA Study. Clin Chem. 2016;62(10):1372–9.

    Article  CAS  PubMed  Google Scholar 

  58. Januzzi Jr JL. ST2 as a cardiovascular risk biomarker: from the bench to the bedside. J Cardiovasc Transl Res. 2013;6(4):493–500.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from the KAROLA study was received from the German Federal Ministry of Education and Research (01GD9820/0 and 01ER0814), the Willy Robert Pitzer Foundation, Bad Nauheim, Germany, and by the Waldburg-Zeil Clinics Isny, Germany. Reagents for high-sensitivity troponin I was generously provided for free by Abbott, Wiesbaden, Germany. The funders played no role in design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Koenig.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

Informed consent was obtained from all individual participants included in the study (see also page 3).

Funding

This study was funded by the German Federal Ministry of Education and Research (01GD9820/0 and 01ER0814) the Willy Robert Pitzer Foundation, Bad Nauheim, Germany, and by the Pitzer Foundation, Bad Nauheim, Germany. Reagents for hs-TnI were provided for free by Abbott, Wiesbaden, Germany.

Ethical Approval

All procedures performed in this study, which involves human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments of comparable ethical standards (see also page 3).

Additional information

Wolfgang Koenig and Dietrich Rothenbacher contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfetsch, V., Sanin, V., Jaensch, A. et al. Increased Plasma Concentrations of Soluble ST2 Independently Predict Mortality but not Cardiovascular Events in Stable Coronary Heart Disease Patients: 13-Year Follow-up of the KAROLA Study. Cardiovasc Drugs Ther 31, 167–177 (2017). https://doi.org/10.1007/s10557-017-6718-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-017-6718-1

Keywords

Navigation