Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications

Abstract

Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Lobatto ME et al. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov. 2011;10(11):835–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Godin B et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci. 2010;31(5):199–205.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Mulder WJ. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med. 2014;6(239):239sr1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol. 2005;46(7):1225–8.

    Article  PubMed  Google Scholar 

  5. 5.

    Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hansson GK et al. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002;91(4):281–91.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zhang Y et al. Immunohistochemical study of intimal microvessels in coronary atherosclerosis. Am J Pathol. 1993;143(1):164–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Drechsler M, Duchene J, Soehnlein O. Chemokines control mobilization, recruitment, and fate of monocytes in atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35(5):1050–5.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Libby P, Nahrendorf M, Swirski FK. Monocyte heterogeneity in cardiovascular disease. Semin Immunopathol. 2013;35(5):553–62.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Yan ZQ, Hansson GK. Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev. 2007;219:187–203.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Koga J, Aikawa M. Crosstalk between macrophages and smooth muscle cells in atherosclerotic vascular diseases. Vascul Pharmacol. 2012;57(1):24–8.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Myoishi M et al. Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation. 2007;116(11):1226–33.

    Article  PubMed  Google Scholar 

  14. 14.

    Tomey MI, Narula J, Kovacic JC. Advances in the understanding of plaque composition and treatment options: year in review. J Am Coll Cardiol. 2014;63(16):1604–16.

    Article  PubMed  Google Scholar 

  15. 15.

    Panizzi P et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55(15):1629–38.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ntziachristos V et al. Fluorescence molecular tomography resolves protease activity in vivo. Nat Med. 2002;8(7):757–60.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ale A et al. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods. 2012;9(6):615–20.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Nahrendorf M et al. Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol. 2009;29(10):1444–51.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Duivenvoorden R et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5:3065.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol. 2004;287(2):H450–7.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lanza GM, Wickline SA. Targeted ultrasonic contrast agents for molecular imaging and therapy. Curr Probl Cardiol. 2003;28(12):625–53.

    Article  PubMed  Google Scholar 

  22. 22.

    Alkan-Onyuksel H et al. Development of inherently echogenic liposomes as an ultrasonic contrast agent. J Pharm Sci. 1996;85(5):486–90.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Demos SM et al. In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. J Am Coll Cardiol. 1999;33(3):867–75.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bloemen PG et al. Adhesion molecules: a new target for immunoliposome-mediated drug delivery. FEBS Lett. 1995;357(2):140–4.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Alkan-Onyuksel H et al. A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res. 1994;11(2):206–12.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Kaufmann BA et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation. 2007;116(3):276–84.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Khanicheh E et al. Noninvasive ultrasound molecular imaging of the effect of statins on endothelial inflammatory phenotype in early atherosclerosis. PLoS One. 2013;8(3):e58761.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Staub D et al. Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. JACC Cardiovasc Imag. 2010;3(7):761–71.

    Article  Google Scholar 

  29. 29.

    Rudd JH et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105(23):2708–11.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Tawakol A et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 2006;48(9):1818–24.

    Article  PubMed  Google Scholar 

  31. 31.

    Camici PG et al. Non-invasive anatomic and functional imaging of vascular inflammation and unstable plaque. Eur Heart J. 2012;33(11):1309–17.

    Article  PubMed  Google Scholar 

  32. 32.

    Pugliese F et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J Am Coll Cardiol. 2010;56(8):653–61.

    Article  PubMed  Google Scholar 

  33. 33.

    Gaemperli O et al. Imaging intraplaque inflammation in carotid atherosclerosis with 11C-PK11195 positron emission tomography/computed tomography. Eur Heart J. 2012;33(15):1902–10.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Rudd JH et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55(23):2527–35.

    Article  PubMed  Google Scholar 

  35. 35.

    Fleg JL et al. Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc Imag. 2012;5(9):941–55.

    Article  Google Scholar 

  36. 36.

    Kerwin WS et al. MRI of carotid atherosclerosis. AJR Am J Roentgenol. 2013;200(3):W304–13.

    Article  PubMed  Google Scholar 

  37. 37.

    Trivedi RA et al. Identifying inflamed carotid plaques using in vivo USPIO-enhanced MR imaging to label plaque macrophages. Arterioscler Thromb Vasc Biol. 2006;26(7):1601–6.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Tang TY et al. The ATHEROMA (Atorvastatin therapy: effects on reduction of macrophage activity) study. evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol. 2009;53(22):2039–50.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Degnan AJ et al. Evaluation of ultrasmall superparamagnetic iron oxide-enhanced MRI of carotid atherosclerosis to assess risk of cerebrovascular and cardiovascular events: follow-up of the ATHEROMA trial. Cerebrovasc Dis. 2012;34(2):169–73.

    Article  PubMed  Google Scholar 

  40. 40.

    Nahrendorf M et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation. 2006;114(14):1504–11.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Amirbekian V et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A. 2007;104(3):961–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Ronald JA et al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation. 2009;120(7):592–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Winter PM et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation. 2003;108(18):2270–4.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Winter PM et al. Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26(9):2103–9.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Heidt T, Nahrendorf M. Multimodal iron oxide nanoparticles for hybrid biomedical imaging. NMR Biomed. 2013;26(7):756–65.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Voros S et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imag. 2011;4(5):537–48.

    Article  Google Scholar 

  47. 47.

    Pundziute G et al. Head-to-head comparison of coronary plaque evaluation between multislice computed tomography and intravascular ultrasound radiofrequency data analysis. JACC Cardiovasc Interv. 2008;1(2):176–82.

    Article  PubMed  Google Scholar 

  48. 48.

    Roessl E, Proksa R. K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys Med Biol. 2007;52(15):4679–96.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Maurovich-Horvat P et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imag. 2012;5(12):1243–52.

    Article  Google Scholar 

  50. 50.

    Hyafil F et al. Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med. 2007;13(5):636–41.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Hyafil F et al. Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med. 2009;50(6):959–65.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Cormode DP et al. Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles. Radiology. 2010;256(3):774–82.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13(2):125–38.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Nahrendorf M et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117(3):379–87.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Majmudar MD et al. Polymeric nanoparticle PET/MR imaging allows macrophage detection in atherosclerotic plaques. Circ Res. 2013;112(5):755–61.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med. 2012;63:185–98.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol. 2010;7(11):653–64.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Reis M, Liebner S. Wnt signaling in the vasculature. Exp Cell Res. 2013;319(9):1317–23.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Fredman G. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med. 2015;7(275):275ra20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Lanza GM et al. Nanomedicine opportunities for cardiovascular disease with perfluorocarbon nanoparticles. Nanomedicine (Lond). 2006;1(3):321–9.

    CAS  Article  Google Scholar 

  61. 61.

    Goonewardena SN, Emery AAS, Liao H, Pinsky DJ. The hypoxic microenvironment alters macrophage lipid metabolism and reprograms inflammatory responses through STAT3 and HIF1α signaling. Circulation. 2012; 126: A18584.

  62. 62.

    Lobatto ME et al. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis. Mol Pharm. 2010;7(6):2020–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Leuschner F et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Choi MR et al. A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors. Nano Lett. 2007;7(12):3759–65.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Getts DR. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci Transl Med. 2014;6(219):219ra7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Feig JE et al. Statins promote the regression of atherosclerosis via activation of the CCR7-dependent emigration pathway in macrophages. PLoS One. 2011;6(12):e28534.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Katsuki S et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129(8):896–906.

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Tang J. Inhibiting macrophage proliferation suppresses atherosclerotic plaque inflammation. Sci Adv. 2015;1(3).

Download references

Acknowledgments

The authors thank D. L. Porter (Cleveland Institute of Art) for illustration support. S .N. G. was supported by a Samuel and Jean Frankel Cardiovascular Center Inaugural Grant and by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award number K08HL123621.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sascha N. Goonewardena.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kratz, J.D., Chaddha, A., Bhattacharjee, S. et al. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications. Cardiovasc Drugs Ther 30, 33–39 (2016). https://doi.org/10.1007/s10557-016-6649-2

Download citation

Keywords

  • Atherosclerosis
  • Molecular imaging
  • Inflammation
  • Nanotechnology
  • Macrophage
  • Endothelial cell