The Impact of Peripheral Nerve Stimulation on Coronary Blood Flow and Endothelial Function

Abstract

Purpose

The geko™ device is a small transcutaneous nerve stimulator that is applied non-invasively to the skin over the common peroneal nerve to stimulate peripheral blood flow. The purpose of this study was to investigate the effect of peripheral nerve stimulation on coronary flow dynamics and systemic endothelial function.

Methods

We enrolled 10 male patients, age 59 ± 11 years, with symptomatic obstructive coronary disease undergoing percutaneous coronary intervention (PCI). Coronary flow dynamics were assessed invasively using Doppler flow wire at baseline and with nerve stimulation for 4 min. Measurements were taken in the stenotic coronary artery and in a control vessel without obstructive disease. At a separate visit, peripheral blood flow at the popliteal artery (using duplex ultrasound assessment) and endothelial function assessed by peripheral artery tonometry (PAT) were measured at baseline and after one hour of nerve stimulation.

Results

Compared to baseline, there was a significant increase in coronary blood flow as measured by average peak velocity (APV) in the control vessel with nerve stimulation (20.3 ± 7.7 to 23.5 ± 10 cm/s; p = 0.03) and non-significant increase in the stenotic vessel (21.9 ± 12 to 23.9 ± 12.9 cm/s; p = 0.23). Coronary flow reserve did not change significantly. Reactive hyperemia-peripheral arterial tonometry (Rh-PAT) increased from 2.28 ± 0.39 to 2.67 ± 0.6, p = 0.045.

Conclusions

A few minutes of peripheral nerve stimulation may improve coronary blood flow. This effect is more prominent in non-stenotic vessels. Longer stimulation improved endothelial function.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Arora RR, Chou TM, Jain D, Fleishman B, Crawford L, McKiernan T, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and anginal episodes. J Am Coll Cardiol. 1999;33:1833–40.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Masuda D, Nohara R, Hirai T, Kataoka K, Chen L, Hosokawa R, et al. Enhanced external counterpulsation improved myocardial perfusion and coronary flow reserve in patients with chronic stable angina. Evaluation by13N-ammonia positron emission tomography. Eur Heart J. 2001;22:1451–8.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Akhtar M, Wu G-F, Du Z-M, Zheng Z-S, Michaels AD. Effect of external counterpulsation on plasma nitric oxide and endothelin-1 levels. Am J Cardiol. 2006;98:28–30.

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Bonetti PO, Barsness GW, Keelan PC, Schnell TI, Pumper GM, Kuvin JT, et al. Enhanced external counterpulsation improves endothelial function in patients with symptomatic coronary artery disease. J Am Coll Cardiol. 2003;41:1761–8.

    Article  PubMed  Google Scholar 

  5. 5.

    Yang DY, Wu GF. Vasculoprotective properties of enhanced external counterpulsation for coronary artery disease: beyond the hemodynamics. Int J Cardiol. 2013;166:38–43.

    Article  PubMed  Google Scholar 

  6. 6.

    Chauhan A, Mullins PA, Thuraisingham SI, Taylor G, Petch MC, Schofield PM. Effect of transcutaneous electrical nerve stimulation on coronary blood flow. Circulation. 1994;89:694–702.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    de Vries J, Anthonio RL, DeJongste MJ, Jessurun GA, Tan E-S, de Smet BJ, et al. The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion. BMC Cardiovasc Disord. 2007;7(1):18.

    PubMed Central  Article  PubMed  Google Scholar 

  8. 8.

    Jessurun GA, Tio RA, De Jongste MJ, Hautvast RW, Den Heijer P, Crijns HJ. Coronary blood flow dynamics during transcutaneous electrical nerve stimulation for stable angina pectoris associated with severe narrowing of one major coronary artery. Am J Cardiol. 1998;82:921–6.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Kaada B, Vik-Mo H, Rosland G, Woie L, Opstad P. Transcutaneous nerve stimulation in patients with coronary arterial disease: haemodynamic and biochemical effects. Eur Heart J. 1990;11:447–53.

    CAS  PubMed  Google Scholar 

  10. 10.

    Sanderson JE, Woo KS, Chung HK, Chan WW, Lawrence K, White HD. The effect of transcutaneous electrical nerve stimulation on coronary and systemic haemodynamics in syndrome X. Cor Art Dis. 1996;7:547–52.

    Article  CAS  Google Scholar 

  11. 11.

    Lavi S, Bae J-H, Rihal CS, Prasad A, Barsness GW, Lennon RJ, et al. Segmental coronary endothelial dysfunction in patients with minimal atherosclerosis is associated with necrotic core plaques. Heart. 2009;95:1525–30.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  12. 12.

    Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, et al. Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J. 2010;31:1142–8.

    Article  PubMed  Google Scholar 

  13. 13.

    Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Heitzer T, Schlinzig T, Krohn K, Meinertz T, Münzel T. Endothelial dysfunction, oxidative stress, and risk of cardiovascular events in patients with coronary artery disease. Circulation. 2001;104:2673–8.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function from research into clinical practice. Circulation. 2012;126:753–67.

    PubMed Central  Article  PubMed  Google Scholar 

  16. 16.

    Lavi S, McConnell JP, Rihal CS, Prasad A, Mathew V, Lerman LO, et al. Local production of lipoprotein-associated phospholipase A2 and lysophosphatidylcholine in the coronary circulation association with early coronary atherosclerosis and endothelial dysfunction in humans. Circulation. 2007;115:2715–21.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Lavi S, Prasad A, Yang EH, Mathew V, Simari RD, Rihal CS, et al. Smoking is associated with epicardial coronary endothelial dysfunction and elevated white blood cell count in patients with chest pain and early coronary artery disease. Circulation. 2007;115:2621–7.

    Article  PubMed  Google Scholar 

  18. 18.

    Chiu J-J, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev. 2011;91:327–87.

    Article  PubMed  Google Scholar 

  19. 19.

    Vita JA, Mitchell GF. Effects of shear stress and flow pulsatility on endothelial function: insights gleaned from external counterpulsation therapy. J Am Coll Cardiol. 2003;42:2096–8.

    Article  PubMed  Google Scholar 

  20. 20.

    Jawad H The effectiveness of a novel neuromuscular electrostimulation method versus intermittent pneumatic compression in enhancing lower limb blood flow. J Vasc Surg. 2012;2:160–5.

    Google Scholar 

  21. 21.

    Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48–55.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Hoffman J Maximal coronary flow and the concept of coronary vascular reserve. Circulation. 1984;70:153–9.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Collins P Coronary flow reserve. Brit Heart J. 1993;69:279.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  24. 24.

    De Bruyne B, Baudhuin T, Melin J, Pijls N, Sys S, Bol A, et al. Coronary flow reserve calculated from pressure measurements in humans. Validation with positron emission tomography. Circulation. 1994;89:1013–22.

    Article  PubMed  Google Scholar 

  25. 25.

    Radico F, Cicchitti V, Zimarino M, De Caterina R. Angina pectoris and myocardial ischemia in the absence of obstructive coronary artery disease: practical considerations for diagnostic tests. JACC Cardiovasc Interv. 2014;7:453–63.

    Article  PubMed  Google Scholar 

  26. 26.

    Kuvin JT, Mammen A, Mooney P, Alsheikh-Ali AA, Karas RH. Assessment of peripheral vascular endothelial function in the ambulatory setting. Vasc Med. 2007;12:13–6.

    Article  PubMed  Google Scholar 

  27. 27.

    Loh PH, Cleland JG, Louis AA, Kennard ED, Cook JF, Caplin JL, et al. Enhanced external counterpulsation in the treatment of chronic refractory angina: a long-term follow-up outcome from the international enhanced external counterpulsation patient registry. Clin Cardiol. 2008;31:159–64.

    Article  PubMed  Google Scholar 

  28. 28.

    Michaels AD, Accad M, Ports TA, Grossman W. Left ventricular systolic unloading and augmentation of intracoronary pressure and Doppler flow during enhanced external counterpulsation. Circulation. 2002;106:1237–42.

    Article  PubMed  Google Scholar 

  29. 29.

    Tucker A, Maass A, Bain D, Chen L, Azzam M, Dawson H, et al. Augmentation of venous, arterial and microvascular blood supply in the leg by isometric neuromuscular stimulation via the peroneal nerve. Intern J Angiol. 2010;19:e31.

    Article  Google Scholar 

  30. 30.

    Williams K, Moore H, Davies A. Haemodynamic changes with the use of neuromuscular electrical stimulation compared to intermittent pneumatic compression. Phlebol. 2015;30:365–72.

    Article  CAS  Google Scholar 

  31. 31.

    Werner G, Emig U, Bahrmann P, Ferrari M, Figulla H. Recovery of impaired microvascular function in collateral dependent myocardium after recanalisation of a chronic total coronary occlusion. Heart. 2004;90:1303–9.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shahar Lavi.

Ethics declarations

Conflict of Interest

The authors report no relationships that could be construed as a conflict of interest.

Funding Sources

The study was supported by an unrestricted grant from Firstkind Ltd. (United Kingdom).

Additional information

Clinical Trial Registration The study is registered at www.clinicaltrials.gov. Unique Identifier: NCT01853410, https://clinicaltrials.gov/ct2/show/NCT01853410.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camuglia, A.C., Alemayehu, M., McLellan, A. et al. The Impact of Peripheral Nerve Stimulation on Coronary Blood Flow and Endothelial Function. Cardiovasc Drugs Ther 29, 527–533 (2015). https://doi.org/10.1007/s10557-015-6628-z

Download citation

Keywords

  • Angina
  • Endothelium
  • Blood flow
  • Coronary artery disease
  • Electrical stimulation