Skip to main content

Advertisement

Log in

Central and Peripheral Irisin Differentially Regulate Blood Pressure

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Irisin is a newly identified 112 amino acid hormone, derived as a product of fibronectin type III domain containing 5 (FNDC5), which is highly related to metabolic activity in skeletal muscle and brown fat. The effects of irisin on cardiovascular functions are unknown.

Purpose

To explore the effects of central and peripheral irisin on cardiovascular functions.

Methods

Irisin was either administrated into 3rd ventricle of rats or intravenously, and its effects on blood pressure and cardiac contractibility measured.

Results

Administration of recombinant human irisin into the 3rd brain ventricle of rats activated neurons in the paraventricular nuclei of the hypothalamus. Central administration of irisin increased blood pressure and cardiac contractibility. Exogenous irisin reversed atenolol-induced inhibition of cardiac contractibility. In contrast, peripheral administration of irisin reduced blood pressure in both control and spontaneously hypertensive rats. Irisin dilated mesenteric artery rings through ATP-sensitive potassium channels.

Conclusion

Our studies indicate that central and peripheral irisin may differentially regulate cardiovascular activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bostrom P, Wu J, Jedrychowski MP, et al. A pgc1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Brenmoehl J, Albrecht E, Komolka K, et al. Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int J Biol Sci. 2014;10:338–49.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Norheim F, Langleite TM, Hjorth M, et al. The effects of acute and chronic exercise on pgc-1alpha, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281:739–49.

    Article  CAS  PubMed  Google Scholar 

  4. Hecksteden A, Wegmann M, Steffen A, et al. Irisin and exercise training in humans - results from a randomized controlled training trial. BMC Med. 2013;11:235.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kraemer RR, Shockett P, Webb ND, Shah U, Castracane VD. A transient elevated irisin blood concentration in response to prolonged, moderate aerobic exercise in young men and women. Horm Metab Res. 2014;46:150–4.

    CAS  PubMed  Google Scholar 

  6. Lee P, Linderman JD, Smith S, et al. Irisin and fgf21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–9.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 map kinase and erk map kinase signaling. Diabetes. 2014;63:514–25.

    Article  CAS  PubMed  Google Scholar 

  8. Lopez-Legarrea P, de la Iglesia R, Crujeiras AB, et al. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr Diabetes. 2014;4:e110.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sesti G, Andreozzi F, Fiorentino TV, et al. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. 2014. doi:10.1007/s00592-014-0576-0.

    PubMed Central  Google Scholar 

  10. Teufel A, Malik N, Mukhopadhyay M, Westphal H. Frcp1 and frcp2, two novel fibronectin type iii repeat containing genes. Gene. 2002;297:79–83.

    Article  CAS  PubMed  Google Scholar 

  11. Ferrer-Martinez A, Ruiz-Lozano P, Chien KR. Mouse pep: a novel peroxisomal protein linked to myoblast differentiation and development. Dev Dyn. 2002;224:154–67.

    Article  CAS  PubMed  Google Scholar 

  12. Dun SL, Lyu RM, Chen YH, Chang JK, Luo JJ, Dun NJ. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience. 2013;240:155–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Aydin S, Kuloglu T, Aydin S, et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides. 2014;61C:130–6.

    Article  Google Scholar 

  14. Hashemi MS, Ghaedi K, Salamian A, et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience. 2013;231:296–304.

    Article  CAS  PubMed  Google Scholar 

  15. Moon HS, Dincer F, Mantzoros CS. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse h19-7 hippocampal cell lines. Metabolism. 2013;62:1131–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Piya MK, Harte AL, Sivakumar K, et al. The identification of irisin in human cerebrospinal fluid: Influence of adiposity, metabolic markers, and gestational diabetes. Am J Physiol Endocrinol Metab. 2014;306:E512–8.

    Article  CAS  PubMed  Google Scholar 

  17. Walls EK, Wishart TB. Reliable method for cannulation of the third ventricle of the rat. Physiol Behav. 1977;19:171–3.

    Article  CAS  PubMed  Google Scholar 

  18. Li JY, Chai BX, Zhang W, Wang H, Mulholland MW. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype. Endocrinology. 2010;151:134–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang J, Villacorta L, Chang L, et al. Nitro-oleic acid inhibits angiotensin ii-induced hypertension. Circ Res. 2010;107:540–8.20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Chang L, Villacorta L, Li R, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rahmouni K, Morgan DA. Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension. 2007;49:647–52.

    Article  CAS  PubMed  Google Scholar 

  22. Mark AL, Rahmouni K, Correia M, Haynes WG. A leptin-sympathetic-leptin feedback loop: potential implications for regulation of arterial pressure and body fat. Acta Physiol Scand. 2003;177:345–9.

    Article  CAS  PubMed  Google Scholar 

  23. Correia ML, Morgan DA, Mitchell JL, Sivitz WI, Mark AL, Haynes WG. Role of corticotrophin-releasing factor in effects of leptin on sympathetic nerve activity and arterial pressure. Hypertension. 2001;38:384–8.

    Article  CAS  PubMed  Google Scholar 

  24. Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol. 1992;71:3–10.25.

    Article  CAS  PubMed  Google Scholar 

  25. Timmons JA, Baar K, Davidsen PK, Atherton PJ. Is irisin a human exercise gene? Nature. 2012;488:E9–10. discussion E10-11.

    Article  CAS  PubMed  Google Scholar 

  26. Kurdiova T, Balaz M, Vician M, et al. Effects of obesity, diabetes and exercise on fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Physiol. 2014;592:1091–107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Erickson HP. Irisin and fndc5 in retrospect: an exercise hormone or a transmembrane receptor? Adipocyte. 2012;2:289–93.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81330010 and 81390354 to W.Z.), American Diabetes Association grant #1-13-BS-225 (to W.Z.), and the National Institute of Health grants 5R37DK043225 (to M. M.), HL105114 (to E. C.) and HL122664 (to L. C.).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weizhen Zhang or Lin Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

(DOCX 365 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chang, L., Zhang, C. et al. Central and Peripheral Irisin Differentially Regulate Blood Pressure. Cardiovasc Drugs Ther 29, 121–127 (2015). https://doi.org/10.1007/s10557-015-6580-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-015-6580-y

Keywords

Navigation