Skip to main content

Advertisement

Log in

Vasodilatory Effect of a Novel Rho-Kinase Inhibitor, DL0805-2, on the rat Mesenteric Artery and its Potential Mechanisms

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

In the present study, we investigated the vasodilatory effect of a novel scaffold Rho-kinase inhibitor, DL0805-2, on isolated rat arterial rings including mesenteric, ventral tail, and renal arteries. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings.

Methods

A DMT multiwire myograph system was used to test the tension of isolated small arteries. Several drugs were employed to verify the underlying mechanisms.

Results

DL0805-2 (10−7–10−4 M) inhibited KCl (60 mM)-induced vasoconstriction in three types of small artery rings (pEC50: 5.84 ± 0.03, 5.39 ± 0.03, and 5.67 ± 0.02 for mesenteric, renal, and ventral tail artery rings, respectively). Pre-incubation with DL0805-2 (1, 3, or 10 μM) attenuated KCl (10–60 mM) and angiotensin II (AngII; 10−6 M)-induced vasoconstriction in mesenteric artery rings. The relaxant effect on the rat mesenteric artery was partially endothelium-dependent (pEC50: 6.02 ± 0.05 for endothelium-intact and 5.72 ± 0.06 for endothelium-denuded). The influx and release of Ca2+ were inhibited by DL0805-2. In addition, the increased phosphorylation levels of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by AngII were blocked by DL0805-2. However, DL0805-2 had little effect on K+ channels.

Conclusions

The present results demonstrate that DL0805-2 has a vasorelaxant effect on isolated rat small arteries and may exert its action through the endothelium, Ca2+ channels, and the Rho/ROCK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ohanian J, Cunliffe P, Ceppi E, Alder A, Heerkens E, Ohanian V. Activation of p38 mitogen-activated protein kinases by endothelin and noradrenaline in small arteries, regulation by calcium influx and tyrosine kinases, and their role in contraction. Arterioscler Thromb Vasc Biol. 2001;21(12):1921–7.

    Article  PubMed  CAS  Google Scholar 

  2. Touyz RM, He G, Wu XH, Park JB, Mabrouk ME, Schiffrin EL. Src is an important mediator of extracellular signal-regulated kinase 1/2-dependent growth signaling by angiotensin II in smooth muscle cells from resistance arteries of hypertensive patients. Hypertension. 2001;38(1):56–64.

    Article  PubMed  CAS  Google Scholar 

  3. Staiculescu MC, Galinanes EL, Zhao G, Ulloa U, Jin M, Beig MI, et al. Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. Cardiovasc Res. 2013;98(3):428–36.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996;76(4):967–1003.

    PubMed  CAS  Google Scholar 

  5. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003;4(6):446–56.

    Article  PubMed  CAS  Google Scholar 

  6. Budzyn K, Marley PD, Sobey CG. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci. 2006;27(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  7. Shimokawa H, Rashid M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol Sci. 2007;28(6):296–302.

    Article  PubMed  CAS  Google Scholar 

  8. Gong LL, Fang LH, Peng JH, Liu AL, Du GH. Integration of virtual screening with high-throughput screening for the identification of novel Rho-kinase I inhibitors. J Biotechnol. 2010;145(3):295–303.

    Article  PubMed  CAS  Google Scholar 

  9. Gong L, Peng J, Fang L, Xie P, Si K, Jiao X, et al. The vasorelaxant mechanisms of a Rho kinase inhibitor DL0805 in rat thoracic aorta. Molecules. 2012;17(5):5935–44.

    Article  PubMed  CAS  Google Scholar 

  10. Xu WQ, Xiong ZZ, Chen TT, Gao XY, Yu H, Zhang SQ, et al. Vasodilation effect of 2-benzyl-5-hydroxy-6-methoxy-3, 4-dihydroisoquinolin-1-one. Arch Pharm Res. 2012;35(8):1471–7.

    Article  PubMed  CAS  Google Scholar 

  11. Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol. 2003;23(1):45–51.

    Article  PubMed  CAS  Google Scholar 

  12. Lubomirov L, Gagov H, Petkova-Kirova P, Duridanova D, Kalentchuk VU, Schubert R. Urocortin relaxes rat tail arteries by a PKA-mediated reduction of the sensitivity of the contractile apparatus for calcium. Br J Pharmacol. 2001;134(7):1564–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Falloon BJ, Heagerty AM. In vitro perfusion studies of human resistance artery function in essential hypertension. Hypertension. 1994;24(1):16–23.

    Article  PubMed  CAS  Google Scholar 

  14. Loufrani L, Matrougui K, Li Z, Levy BI, Lacolley P, Paulin D, et al. Selective microvascular dysfunction in mice lacking the gene encoding for desmin. FASEB J. 2002;16(1):117–9.

    PubMed  CAS  Google Scholar 

  15. Vessieres E, de Chantemele EJ B, Guihot AL, Jardel A, Toutain B, Loufrani L. Cyclooxygenase-2-derived prostanoids reduce inward arterial remodeling induced by blood flow reduction in old obese Zucker rat mesenteric arteries. Vascul Pharmaco. 2013;58(5–6):356–62.

    Article  CAS  Google Scholar 

  16. Dong J, Wong SL, Lau CW, Lee HK, Ng CF, Zhang L, et al. Calcitriol protects renovascular function in hypertension by down-regulating angiotensin II type 1 receptors and reducing oxidative stress. Eur Heart J. 2012;33(23):2980–90.

    Article  PubMed  CAS  Google Scholar 

  17. Iozzi D, Schubert R, Kalenchuk VU, Neri A, Sgaragli G, Fusi F, et al. Quercetin relaxes rat tail main artery partly via a PKG-mediated stimulation of KCa 1.1 channels. Acta Physiol (Oxf). 2013;208(4):329–39.

    Article  CAS  Google Scholar 

  18. Deng CY, Kuang SJ, Rao F, Yang H, Fang XH, Shan ZX, et al. Effect of ranolazine on rat intrarenal arteries in vitro. Eur J Pharmacol. 2012;683(1–3):211–6.

    Article  PubMed  CAS  Google Scholar 

  19. Fonseca-Magalhaes PA, Sousa DF, de Siqueira RJ, Jorge RJ, Meneses GC, Alves RS, et al. Inhibitory effects of sertraline in rat isolated perfused kidneys and in isolated ring preparations of rat arteries. J Pharm Pharmacol. 2011;63(9):1186–94.

    Article  PubMed  Google Scholar 

  20. Rodriguez-Rodriguez R, Yarova P, Winter P, Dora KA. Desensitization of endothelial P2Y1 receptors by PKC-dependent mechanisms in pressurized rat small mesenteric arteries. Br J Pharmacol. 2009;158(6):1609–20.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. White BJ, Smith PA, Dunn WR. Hydrogen sulphide-mediated vasodilatation involves the release of neurotransmitters from sensory nerves in pressurized mesenteric small arteries isolated from rats. Br J Pharmacol. 2013;168(4):785–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Perez T, Lopez RM, Lopez P, Castillo C, Castillo EF. Lack of heterologous receptor desensitization induced by angiotensin II type 1 receptor activation in isolated normal rat thoracic aorta. Vasc Pharmacol. 2011;54(1–2):29–35.

    Article  CAS  Google Scholar 

  23. de Oliveira LM, Rodrigues AG, da Silva EF, Cerqueira LB, Castro CH, Pedrino GR, et al. Endothelium-dependent vasorelaxant effect of butanolic fraction from caryocar brasiliense camb. Leaves in Rat thoracic aorta. Evid Based Complement Alternat Med. 2012;2012:934142.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhu XM, Fang LH, Li YJ, Du GH. Endothelium-dependent and -independent relaxation induced by pinocembrin in rat aortic rings. Vasc Pharmacol. 2007;46(3):160–5.

    Article  CAS  Google Scholar 

  25. Seok YM, Kim HY, Garmaa O, Cha BY, Woo JT, Kim IK. Effects of magnolol on vascular contraction in rat aortic rings. Clin Exp Pharmacol Physiol. 2012;39(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  26. Li L, Pang XB, Chen BN, Gao L, Wang L, Wang SB, et al. Pinocembrin inhibits angiotensin II-induced vasoconstriction via suppression of the increase of [Ca2+] i and ERK1/2 activation through blocking AT (1) R in the rat aorta. Biochem Biophys Res Commun. 2013;435(1):69–75.

    Article  PubMed  CAS  Google Scholar 

  27. Wirth A. Rho kinase and hypertension. Biochim Biophys Acta. 2010;1802(12):1276–84.

    Article  PubMed  CAS  Google Scholar 

  28. Goodman KB, Cui H, Dowdell SE, Gaitanopoulos DE, Ivy RL, Sehon CA, et al. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors. J Med Chem. 2007;50(1):6–9.

    Article  PubMed  CAS  Google Scholar 

  29. Oh KS, Oh BK, Park CH, Seo HW, Kang NS, Lee JH, et al. Cardiovascular effects of a novel selective Rho kinase inhibitor, 2-(1H-indazole-5-yl) amino-4-methoxy-6-piperazino triazine (DW1865). Eur J Pharmacol. 2013;702(1–3):218–26.

    Article  PubMed  CAS  Google Scholar 

  30. Tamura M, Nakao H, Yoshizaki H, Shiratsuchi M, Shigyo H, Yamada H, et al. Development of specific Rho-kinase inhibitors and their clinical application. Biochim Biophys Acta. 2005;1754(1–2):245–52.

    Article  PubMed  CAS  Google Scholar 

  31. Peach MJ, Loeb AL, Singer HA, Saye J. Endothelium-derived vascular relaxing factor. Hypertension. 1985;7(3 Pt 2):I94–100.

    Article  PubMed  CAS  Google Scholar 

  32. Nava E, Luscher TF. Endothelium-derived vasoactive factors in hypertension: nitric oxide and endothelin. J Hypertens Suppl. 1995;13(2):S39–48.

    Article  PubMed  CAS  Google Scholar 

  33. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Ko EA, Han J, Jung ID, Park WS. Physiological roles of K + channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44(2):65–81.

    Article  PubMed  Google Scholar 

  35. Jackson WF. Potassium channels in the peripheral microcirculation. Microcirculation. 2005;12(1):113–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Eichhorn B, Dobrev D. Vascular large conductance calcium-activated potassium channels: functional role and therapeutic potential. Naunyn Schmiedeberg’s Arch Pharmacol. 2007;376(3):145–55.

    Article  CAS  Google Scholar 

  37. Adelstein RS, Sellers JR. Effects of calcium on vascular smooth muscle contraction. Am J Cardiol. 1987;59(3):4b–10b.

    Article  PubMed  CAS  Google Scholar 

  38. Silswal N, Parelkar NK, Wacker MJ, Brotto M, Andresen J. Phosphatidylinositol 3,5-bisphosphate increases intracellular free Ca2+ in arterial smooth muscle cells and elicits vasocontraction. Am J Physiol Heart Circ Physiol. 2011;300(6):H2016–26.

    Article  PubMed  CAS  Google Scholar 

  39. Fukata Y, Amano M, Kaibuchi K. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 2001;22(1):32–9.

    Article  PubMed  CAS  Google Scholar 

  40. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.

    Article  PubMed  CAS  Google Scholar 

  41. Freitas MR, Eto M, Kirkbride JA, Schott C, Sassard J, Stoclet JC. Y27632, a Rho-activated kinase inhibitor, normalizes dysregulation in alpha1-adrenergic receptor-induced contraction of Lyon hypertensive rat artery smooth muscle. Fundam Clin Pharmacol. 2009;23(2):169–78.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39(3):319–27.

    Article  PubMed  CAS  Google Scholar 

  43. Satoh K, Fukumoto Y, Shimokawa H. Rho-kinase: important new therapeutic target in cardiovascular diseases. Am J Physiol Heart Circ Physiol. 2011;301(2):H287–96.

    Article  PubMed  CAS  Google Scholar 

  44. Tawara S, Fukumoto Y, Shimokawa H. Effects of combined therapy with a Rho-kinase inhibitor and prostacyclin on monocrotaline-induced pulmonary hypertension in rats. J Cardiovasc Pharmacol. 2007;50(2):195–200.

    Article  PubMed  CAS  Google Scholar 

  45. Shibata I, Yoshitomi O, Use T, Ureshino H, Cho S, Maekawa T, et al. Administration of the Rho-kinase inhibitor fasudil before ischemia or just after reperfusion, but not 30 min after reperfusion, protects the stunned myocardium in swine. Cardiovasc Drugs Ther. 2008;22(4):293–8.

    Article  PubMed  CAS  Google Scholar 

  46. Chen M, Liu A, Ouyang Y, Huang Y, Chao X, Pi R. Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert Opin Investig Drugs. 2013;22(4):537–50.

    Article  PubMed  CAS  Google Scholar 

  47. Tsounapi P, Saito M, Kitatani K, Dimitriadis F, Ohmasa F, Shimizu S, et al. Fasudil improves the endothelial dysfunction in the aorta of spontaneously hypertensive rats. Eur J Pharmacol. 2012;691(1–3):182–9.

    Article  PubMed  CAS  Google Scholar 

  48. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389(6654):990–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Scientific and Technological Major Special Project “Significant Creation of New Drugs” (Nos. 2013ZX09103001-008 and 2012ZX09103101-078) and the National Natural Science Foundation of China (Nos. 81102444 and 81202538).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-Hua Fang or Guan-Hua Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, TY., Yan, Y., Wu, YJ. et al. Vasodilatory Effect of a Novel Rho-Kinase Inhibitor, DL0805-2, on the rat Mesenteric Artery and its Potential Mechanisms. Cardiovasc Drugs Ther 28, 415–424 (2014). https://doi.org/10.1007/s10557-014-6544-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-014-6544-7

Keywords

Navigation