Skip to main content

Advertisement

Log in

Comprehensive Evaluation of the Effects of Enalapril on Matrix Metalloproteinases Levels in Hypertension

  • ORIGINAL ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

Angiotensin-converting enzyme inhibitors (ACEi) may downregulate matrix metalloproteinases (MMPs). We examined whether enalapril affects MMP-2, MMP-8, and MMP-9 levels and activity, and their endogenous inhibitors (tissue inhibitors of MMPs, TIMP-1 and TIMP-2) levels in hypertensive patients. Moreover, we assessed the effects of enalaprilat on MMP-9 and TIMP-1 secretion by human endothelial cells (HUVECs).

Methods

Thirty-eight hypertensive patients received enalapril for 8 weeks and were compared with thirty-eight normotensive controls. Blood samples were collected at baseline and after treatment. Plasma ACE activity was determined by a fluorimetric assay. Plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 were measured by ELISA and gelatin zymography. A fluorogenic peptide cleavage assay was used to measure MMP activity. HUVECs cells were stimulated by phorbol-12-myristate-13-acetate (PMA) and the effects of enalaprilat (10−10 to 10−6 M) on MMP-9 and TIMP-1 levels were determined.

Results

Enalapril decreased blood pressure and ACE activity in hypertensive patients (P < 0.05), but had no effects on plasma MMP-2, MMP-8, MMP-9, TIMP-1, and TIMP-2 levels, or MMP activity. Enalaprilat had no effects on PMA-induced increases in MMP-9 and TIMP-1 secretion by HUVECs or on MMP activity.

Conclusions

We show consistent evidence, both in vivo and in vitro, that enalapril does not affect MMPs and TIMPs levels in hypertensive patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hanif K, Bid HK, Konwar R. Reinventing the ace inhibitors: some old and new implications of ace inhibition. Hypertens Res. 2010;33:11–21.

    Article  PubMed  CAS  Google Scholar 

  2. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The heart outcomes prevention evaluation study investigators. N Engl J Med. 2000;342:145–53.

    Article  PubMed  CAS  Google Scholar 

  3. Ferrari R. Effects of angiotensin-converting enzyme inhibition with perindopril on left ventricular remodeling and clinical outcome: results of the randomized perindopril and remodeling in elderly with acute myocardial infarction (preami) study. Arch Intern Med. 2006;166:659–66.

    Article  PubMed  CAS  Google Scholar 

  4. Asmar RG, Pannier B, Santoni JP, et al. Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation. 1988;78:941–50.

    Article  PubMed  CAS  Google Scholar 

  5. Ghiadoni L, Magagna A, Versari D, et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension. 2003;41:1281–6.

    Article  PubMed  CAS  Google Scholar 

  6. Ong KT, Delerme S, Pannier B, et al. Aortic stiffness is reduced beyond blood pressure lowering by short-term and long-term antihypertensive treatment: a meta-analysis of individual data in 294 patients. J Hypertens. 2011;29:1034–42.

    Article  PubMed  CAS  Google Scholar 

  7. Castro MM, Tanus-Santos JE, Gerlach RF. Matrix metalloproteinases: targets for doxycycline to prevent the vascular alterations of hypertension. Pharmacol Res. 2011;64:567–72.

    Article  PubMed  CAS  Google Scholar 

  8. Guimaraes DA, Rizzi E, Ceron CS, et al. Doxycycline dose-dependently inhibits mmp-2-mediated vascular changes in 2k1c hypertension. Basic Clin Pharmacol Toxicol. 2011;108:318–25.

    Article  PubMed  CAS  Google Scholar 

  9. Rizzi E, Castro MM, Prado CM, et al. Matrix metalloproteinase inhibition improves cardiac dysfunction and remodeling in 2-kidney, 1-clip hypertension. J Card Fail. 2010;16:599–608.

    Article  PubMed  CAS  Google Scholar 

  10. Castro MM, Rizzi E, Prado CM, et al. Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol. 2010;29:194–201.

    Article  PubMed  CAS  Google Scholar 

  11. Fontana V, Silva PS, Belo VA, et al. Consistent alterations of circulating matrix metalloproteinases levels in untreated hypertensives and in spontaneously hypertensive rats: a relevant pharmacological target. Basic Clin Pharmacol Toxicol. 2011;109:130–7.

    Article  PubMed  CAS  Google Scholar 

  12. Fontana V, Silva PS, Gerlach RF, Tanus-Santos JE. Circulating matrix metalloproteinases and their inhibitors in hypertension. Clin Chim Acta. 2012;413:656–62.

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto D, Takai S, Miyazaki M. Inhibitory profiles of captopril on matrix metalloproteinase-9 activity. Eur J Pharmacol. 2008;588:277–9.

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto D, Takai S, Hirahara I, Kusano E. Captopril directly inhibits matrix metalloproteinase-2 activity in continuous ambulatory peritoneal dialysis therapy. Clin Chim Acta. 2010;411:762–4.

    Article  PubMed  CAS  Google Scholar 

  15. Yamamoto D, Takai S, Jin D, et al. Molecular mechanism of imidapril for cardiovascular protection via inhibition of mmp-9. J Mol Cell Cardiol. 2007;43:670–6.

    Article  PubMed  CAS  Google Scholar 

  16. Yamamoto D, Takai S, Miyazaki M. Prediction of interaction mode between a typical ace inhibitor and mmp-9 active site. Biochem Biophys Res Commun. 2007;354:981–4.

    Article  PubMed  CAS  Google Scholar 

  17. Sorbi D, Fadly M, Hicks R, Alexander S, Arbeit L. Captopril inhibits the 72 kda and 92 kda matrix metalloproteinases. Kidney Int. 1993;44:1266–72.

    Article  PubMed  CAS  Google Scholar 

  18. Reinhardt D, Sigusch HH, Hensse J, et al. Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (mmp) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ace inhibitors on mmp. Heart. 2002;88:525–30.

    Article  PubMed  CAS  Google Scholar 

  19. Kojima C, Ino J, Ishii H, Nitta K, Yoshida M. Mmp-9 inhibition by ace inhibitor reduces oxidized ldl-mediated foam-cell formation. J Atheroscler Thromb. 2010;17:97–105.

    Article  PubMed  CAS  Google Scholar 

  20. Ceron CS, Castro MM, Rizzi E, et al. Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension. Br J Pharmacol. 2010;160:77–87.

    Article  PubMed  CAS  Google Scholar 

  21. Marcal DM, Rizzi E, Martins-Oliveira A, et al. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:35–44.

    Article  PubMed  CAS  Google Scholar 

  22. Martinez ML, Castro MM, Rizzi E, et al. Lercanidipine reduces matrix metalloproteinase-2 activity and reverses vascular dysfunction in renovascular hypertensive rats. Eur J Pharmacol. 2008;591:224–30.

    Article  PubMed  CAS  Google Scholar 

  23. Izidoro-Toledo TC, Guimaraes DA, Belo VA, Gerlach RF, Tanus-Santos JE. Effects of statins on matrix metalloproteinases and their endogenous inhibitors in human endothelial cells. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:547–54.

    Article  PubMed  CAS  Google Scholar 

  24. Dias Jr CA, Neto-Neves EM, Montenegro MF, Tanus-Santos JE. Losartan exerts no protective effects against acute pulmonary embolism-induced hemodynamic changes. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:211–7.

    Article  PubMed  Google Scholar 

  25. Montenegro MF, Pessa LR, Tanus-Santos JE. Isoflavone genistein inhibits the angiotensin-converting enzyme and alters the vascular responses to angiotensin i and bradykinin. Eur J Pharmacol. 2009;607:173–7.

    Article  PubMed  CAS  Google Scholar 

  26. Gerlach RF, Demacq C, Jung K, Tanus-Santos JE. Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (mmp)-9 levels in serum versus plasma. Clin Biochem. 2007;40:119–23.

    Article  PubMed  CAS  Google Scholar 

  27. Gerlach RF, Meschiari CA, Marcaccini AM, et al. Positive correlations between serum and plasma matrix metalloproteinase (mmp)-2 or mmp-9 levels in disease conditions. Clin Chem Lab Med. 2009;47:888–91.

    Article  PubMed  CAS  Google Scholar 

  28. Fudala R, Ranjan AP, Mukerjee A, et al. Fluorescence detection of mmp-9. I. Mmp-9 selectively cleaves lys-gly-pro-arg-ser-leu-ser-gly-lys peptide. Curr Pharm Biotechnol. 2011;12:834–8.

    PubMed  CAS  Google Scholar 

  29. Wellings DA, Atherton E. Standard fmoc protocols. Methods Enzymol. 1997;289:44–67.

    Article  PubMed  CAS  Google Scholar 

  30. Onal IK, Altun B, Onal ED, et al. Serum levels of mmp-9 and timp-1 in primary hypertension and effect of antihypertensive treatment. Eur J Intern Med. 2009;20:369–72.

    Article  PubMed  CAS  Google Scholar 

  31. Schieffer B, Bunte C, Witte J, et al. Comparative effects of at1-antagonism and angiotensin-converting enzyme inhibition on markers of inflammation and platelet aggregation in patients with coronary artery disease. J Am Coll Cardiol. 2004;44:362–8.

    Article  PubMed  CAS  Google Scholar 

  32. Souza-Tarla CD, Uzuelli JA, Machado AA, Gerlach RF, Tanus-Santos JE. Methodological issues affecting the determination of plasma matrix metalloproteinase (mmp)-2 and mmp-9 activities. Clin Biochem. 2005;38:410–4.

    Article  PubMed  CAS  Google Scholar 

  33. Jung K, Gerlach RF, Tanus-Santos JE. Preanalytical pitfalls of blood sampling to measure true circulating matrix metalloproteinase 9 and tissue inhibitors of matrix metalloproteinases. Clin Chim Acta. 2006;373:180–1. author reply 2.

    Article  PubMed  CAS  Google Scholar 

  34. Souza-Costa DC, Sandrim VC, Lopes LF, et al. Anti-inflammatory effects of atorvastatin: modulation by the t-786c polymorphism in the endothelial nitric oxide synthase gene. Atherosclerosis. 2007;193:438–44.

    Article  PubMed  CAS  Google Scholar 

  35. Derosa G, Maffioli P, Ferrari I, et al. Different actions of losartan and ramipril on adipose tissue activity and vascular remodeling biomarkers in hypertensive patients. Hypertens Res. 2011;34:145–51.

    Article  PubMed  CAS  Google Scholar 

  36. Takai S, Yamamoto D, Jin D, et al. Inhibition of matrix metalloproteinase-9 activity by lisinopril after myocardial infarction in hamsters. Eur J Pharmacol. 2007;568:231–3.

    Article  PubMed  CAS  Google Scholar 

  37. Efsen E, Saermark T, Hansen A, Bruun E, Brynskov J. Ramiprilate inhibits functional matrix metalloproteinase activity in crohn’s disease fistulas. Basic Clin Pharmacol Toxicol. 2011;109:208–16.

    Article  PubMed  CAS  Google Scholar 

  38. Yamamoto D, Takai S. Pharmacological implications of mmp-9 inhibition by ace inhibitors. Curr Med Chem. 2009;16:1349–54.

    Article  PubMed  CAS  Google Scholar 

  39. Sakata Y, Yamamoto K, Mano T, et al. Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation. 2004;109:2143–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Aparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). We thank the staff from the Centro de Saúde de Araçatuba and Laboratório Exame (Araçatuba-Brazil) for technical support.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose E. Tanus-Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fontana, V., Silva, P.S., Izidoro-Toledo, T.C. et al. Comprehensive Evaluation of the Effects of Enalapril on Matrix Metalloproteinases Levels in Hypertension. Cardiovasc Drugs Ther 26, 511–519 (2012). https://doi.org/10.1007/s10557-012-6420-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-012-6420-2

Key words

Navigation