Skip to main content

Advertisement

Log in

Anti-edematous Effects of Tolvaptan in Experimental Rodent Models

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to evaluate the therapeutic efficacy of tolvaptan, a vasopressin V2 receptor antagonist, on edema in two rat models: 1) histamine-induced vascular hyperpermeability of the dorsal skin and 2) carrageenan-induced paw edema.

Methods

In the skin vascular hyperpermeability model, 3 h after oral administration of tolvaptan or the natriuretic agent furosemide, rats were intravenously injected with Evans Blue (EB), followed by intradermal injection of 10 μg of histamine into the dorsal skin. One hour later, blood was collected to measure serum parameters. EB leakage area into the dorsal skin was also measured. Urine was collected for 4 h to determine urine parameters. In the paw edema model, edema was induced by injecting 1% w/v carrageenan into the right hind paw. Paw volume was measured hourly for 5 h. Tolvaptan or furosemide was orally administered 1 h before carrageenan injection.

Results

A single oral dose of tolvaptan (1–10 mg/kg) elicited marked and dose-dependent aquaresis, and improvements in edema. Similar effects were observed with furosemide (30 mg/kg). Tolvaptan tended to elevate the serum sodium level while furosemide caused a significant decrease.

Conclusion

Tolvaptan had anti-edematous effects in two different rat models. By increasing free water excretion, tolvaptan may be more advantageous for certain patients than loop diuretics because it does not cause electrolyte loss, and may prevent electrolyte abnormities, such as hyponatremia. These results suggest that tolvaptan has potential clinical benefits for the treatment of edema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Morrison JP. Edema and principles of diuretic use. Med Clin N Am. 1997;81:689–704.

    Article  PubMed  CAS  Google Scholar 

  2. Costello-Boerrigter LC, Smith WB, Boerrigter G, et al. Vasopressin-2-receptor antagonism augments water excretion without changes in renal hemodynamics or sodium and potassium excretion in human heart failure. Am J Physiol Renal Physiol. 2006;290:F273–8.

    Article  PubMed  CAS  Google Scholar 

  3. Palmer BF. Potassium disturbances associated with the use of diuretics. In: Seldin D, Giebisch G, editors. Diuretic agents—clinical physiology and pharmacology. San Diego: Academic; 1997. p. 571–83.

    Google Scholar 

  4. Rivera-Santos A, Star R. Sodium: Volume depletion and hyponatremia. In: Seldin D, Giebisch G, editors. Diuretic agents—clinical physiology and pharmacology. San Diego: Academic Pressl; 1997. p. 559–69.

    Google Scholar 

  5. Morel A, O’Carrol A, Brownstein MJ, Lolait SJ. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 1992;356:523–6.

    Article  PubMed  CAS  Google Scholar 

  6. Thibonnier M, Auzan C, Madhun Z, Wilkins P, Berti-Mattera L, Clauser E. Molecular cloning, sequencing, and functional expression of a cDNA encoding the human V1a vasopressin receptor. J Biol Chem. 1994;269:3304–10.

    PubMed  CAS  Google Scholar 

  7. De Keyzer Y, Auzan C, Lenne F, et al. Cloning and characterization of human V3 pituitary vasopressin receptor. FEBS Lett. 1994;356:215–20.

    Article  PubMed  Google Scholar 

  8. Sugimoto T, Saito M, Mochizuki S, Watanabe Y, Hashimoto S, Kawashima H. Molecular cloning and functional expression of a cDNA encoding the human V1b vasopressin receptor. J Biol Chem. 1994;269:27088–92.

    PubMed  CAS  Google Scholar 

  9. Birnbaumer M, Seibold A, Gilbert S, et al. Molecular cloning of the receptor for human antidiuretic hormone. Nature. 1992;357:333–5.

    Article  PubMed  CAS  Google Scholar 

  10. Lolait SJ, O’Carroll AM, McBride OW, Konig M, Morel A, Brownstein MJ. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992;357:336–9.

    Article  PubMed  CAS  Google Scholar 

  11. Verbalis JG. Vasopressin V2 receptor antagonists. J Mol Endocrinol. 2002;29:1–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kondo K, Ogawa H, Yamashita H, et al. 7-Chloro-5-hydroxy-1-[2-methyl-4-(2-metylbenzoyl-amino) benzoyl] -2,3,4,5-tetrahydro-1H-1-benzazepine (OPC-41061): a potent, orally active nonpeptide arginine vasopressin V2 receptor antagonist. Bioorg Med Chem. 1999;7:1743–54.

    Article  PubMed  CAS  Google Scholar 

  13. Yamamura Y, Nakamura S, Itoh S, et al. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats. J Pharmacol Exp Ther. 1998;287:860–7.

    PubMed  CAS  Google Scholar 

  14. Hirano T, Yamamura Y, Nakamura S, Onogawa T, Mori T. Effects of the V2-receptor antagonist OPC-41061 and the loop diuretic furosemide alone and in combination in rats. J Pharmacol Exp Ther. 2000;292:288–94.

    PubMed  CAS  Google Scholar 

  15. Inoue S, Kido H, Hayashi K, Kubo Y, Uchida T, Watanabe M. Effects of a novel loop diuretic, torasemide, on several kinds of edematous models of rats. KISO TO RINSHO. 1996;30:489–96.

    Google Scholar 

  16. Veeraveedu PT, Watanabe K, Ma M, et al. Effects of V2-receptor antagonist tolvaptan and the loop diuretic furosemide in rats with heart failure. Biochem Pharmacol. 2008;75:1322–30.

    Article  PubMed  CAS  Google Scholar 

  17. Tsuboi Y, Ishikawa S, Fujisawa G, Okada K, Saito T. Therapeutic efficacy of the non-peptide AVP antagonist OPC-31260 in cirrhotic rats. Kidney Int. 1994;46:237–44.

    Article  PubMed  CAS  Google Scholar 

  18. Fernández-Varo G, Ros J, Cejudo-Martín P, et al. Effect of the V1a/V2-AVP receptor antagonist, conivaptan, on renal water metabolism and systemic hemodynamics in rats with cirrhosis and ascites. J Hepatol. 2003;38:755–61.

    Article  PubMed  Google Scholar 

  19. Jiménez W, Gal CS, Ros J, et al. Long-term aquaretic efficacy of a selective nonpeptide V2-vasopressin receptor antagonist, SR121463, in cirrhotic rats. J Pharmacol Exp Ther. 2000;295:83–90.

    PubMed  Google Scholar 

  20. Ros J, Fernández-Varo G, Muñoz-Luque J, et al. Sustained aquaretic effect of the V2-AVP receptor antagonist, RWJ-351647, in cirrhotic rats with ascites and water retention. Br J Pharmacol. 2005;146:654–61.

    Article  PubMed  CAS  Google Scholar 

  21. Okada T, Sakaguchi T, Hatamura I, et al. Tolvaptan, a selective oral vasopressin V2 receptor antagonist, ameliorates podocyte injury in puromycin aminonucleoside nephrotic rats. Clin Exp Nephrol. 2009;13:438–46.

    Article  PubMed  CAS  Google Scholar 

  22. Chabardes D, Gagman-Brunette M, Imbert-Teboul M, et al. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J Clin Invest. 1980;65:439–48.

    Article  PubMed  CAS  Google Scholar 

  23. Chabardes D, Imbert-Teboul M, Gagnan-Brunette M, Morel F. Difference hormone target sites along the mouse and rabbit nephrons. Curr Probl Clin Biochem. 1977;8:447–54.

    PubMed  CAS  Google Scholar 

  24. Hall DA, Varney DM. Effect of vasopressin electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J Clin Invest. 1980;66:792–802.

    Article  PubMed  CAS  Google Scholar 

  25. Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981;240:F159–64.

    PubMed  CAS  Google Scholar 

  26. Ruggles BT, Murayama N, Werness JL, Gapstur SM, Bentley MD, Dousa TP. The vasopressin-sensitive adenylate cyclase in collecting tubules and in the thick ascending limbs of Henle’s loop of human and canine kidney. J Clin Endocrinol Metab. 1985;60:914–21.

    Article  PubMed  CAS  Google Scholar 

  27. Gheorghiade M, Gattis WA, O’Connor CM, et al. Effects of tolvaptan, a vasopressin antagonist, in patients hospitalized with worsening heart failure: a randomized controlled trial. JAMA. 2004;291:1963–71.

    Article  PubMed  CAS  Google Scholar 

  28. Konstam MA, Gheorghiade M, Burnett Jr JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The EVEREST Outcome Trial. JAMA. 2007;297:1319–31.

    Article  PubMed  CAS  Google Scholar 

  29. Gheorghiade M, Konstam MA, Burnett JC, et al. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: The EVEREST Clinical Status Trials. JAMA. 2007;297:1332–43.

    Article  PubMed  CAS  Google Scholar 

  30. De Bruyne LKM. Mechanisms and management of diuretic resistance in congestive heart failure. Postgrad Med J. 2003;79:268–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Dr Yongee Liu for critically reviewing this manuscript. The authors also thank Dr Masafumi Shibamori and Mr Takahiro Asakuni for their excellent technical assistance.

Disclosures

None of the authors have any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Fujiki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazaki, T., Sakamoto, Y., Yamashita, T. et al. Anti-edematous Effects of Tolvaptan in Experimental Rodent Models. Cardiovasc Drugs Ther 25 (Suppl 1), 77–82 (2011). https://doi.org/10.1007/s10557-011-6355-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6355-z

Key words

Navigation