Skip to main content

Advertisement

Log in

An Introduction to Small Non-coding RNAs: miRNA and snoRNA

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Research into small non-coding RNAs (ncRNA) has fundamentally transformed our understanding of gene regulatory networks, especially at the post-transcriptional level. Although much is now known about the basic biology of small ncRNAs, our ability to recognize the impact of small ncRNA in disease states is preliminary, and the ability to effectively target them in vivo is very limited. However, given the larger and growing focus on targeting RNAs for disease therapeutics, what we do know about the intrinsic biology of these small RNAs makes them potentially attractive targets for pharmacologic manipulation. With that in mind, this review provides an introduction to the biology of small ncRNA, using microRNA (miRNA) and small nucleolar RNA (snoRNA) as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  PubMed  CAS  Google Scholar 

  2. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129:303–17.

    Article  PubMed  CAS  Google Scholar 

  3. Xiao C, Calado DP, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146–59.

    Article  PubMed  CAS  Google Scholar 

  4. van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.

    Article  PubMed  Google Scholar 

  5. Calin GA, Ferracin M, Cimmino A, et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353:1793–801.

    Article  PubMed  CAS  Google Scholar 

  6. Matkovich SJ, Van Booven DJ, Youker KA, et al. Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation. 2009;119:1263–71.

    Article  PubMed  CAS  Google Scholar 

  7. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–10.

    Article  PubMed  CAS  Google Scholar 

  8. Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005;11:241–7.

    Article  PubMed  CAS  Google Scholar 

  9. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10:1957–66.

    Article  PubMed  CAS  Google Scholar 

  10. Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17:3011–16.

    Article  PubMed  CAS  Google Scholar 

  11. Hutvagner G, McLachlan J, Pasquinelli AE, Balint E, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293:834–8.

    Article  PubMed  CAS  Google Scholar 

  12. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003;115:209–16.

    Article  PubMed  CAS  Google Scholar 

  13. Krol J, Krzyzosiak WJ. Structural aspects of microRNA biogenesis. IUBMB Life. 2004;56:95–100.

    Article  PubMed  CAS  Google Scholar 

  14. Lin SL, Chang D, Ying SY. Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene. 2005;356:32–8.

    Article  PubMed  CAS  Google Scholar 

  15. Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC. The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol. 2008;15:354–63.

    Article  PubMed  CAS  Google Scholar 

  16. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305:1437–41.

    Article  PubMed  CAS  Google Scholar 

  17. Liu J, Rivas FV, Wohlschlegel J, Yates III JR, Parker R, Hannon GJ. A role for the P-body component GW182 in microRNA function. Nat Cell Biol. 2005;7:1261–6.

    PubMed  Google Scholar 

  18. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  PubMed  CAS  Google Scholar 

  19. Kim DH, Saetrom P, Snove Jr O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A. 2008;105:16230–5.

    Article  PubMed  CAS  Google Scholar 

  20. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

    Article  PubMed  CAS  Google Scholar 

  21. Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol. 1999;216:671–80.

    Article  PubMed  CAS  Google Scholar 

  22. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  PubMed  CAS  Google Scholar 

  23. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318:1931–4.

    Article  PubMed  CAS  Google Scholar 

  24. Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 2008;30:460–71.

    Article  PubMed  Google Scholar 

  25. Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.

    Article  PubMed  CAS  Google Scholar 

  26. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  PubMed  CAS  Google Scholar 

  27. Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev. 2004;18:504–11.

    Article  PubMed  CAS  Google Scholar 

  28. Lai EC, Tam B, Rubin GM. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 2005;19:1067–80.

    Article  PubMed  CAS  Google Scholar 

  29. Brennecke J, Stark A, Russell RB, Cohen SM. Principles of microRNA-target recognition. PLoS Biol. 2005;3:e85.

    Article  PubMed  Google Scholar 

  30. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–98.

    Article  PubMed  CAS  Google Scholar 

  31. Griffiths-Jones S, Grocock RJ, van DS, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–44

  32. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  PubMed  CAS  Google Scholar 

  33. Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18:1165–78.

    Article  PubMed  CAS  Google Scholar 

  34. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126:1203–17.

    Article  PubMed  CAS  Google Scholar 

  35. Karginov FV, Conaco C, Xuan Z, et al. A biochemical approach to identifying microRNA targets. Proc Natl Acad Sci U S A. 2007;104:19291–6.

    Article  PubMed  CAS  Google Scholar 

  36. Matkovich SJ, Van Booven DJ, Eschenbacher WH, Dorn GW. RISC RNA Sequencing for Context-Specific Identification of In Vivo MicroRNA Targets. Circ Res. 2010.

  37. Filipowicz W, Pelczar P, Pogacic V, Dragon F. Structure and biogenesis of small nucleolar RNAs acting as guides for ribosomal RNA modification. Acta Biochim Pol. 1999;46:377–89.

    PubMed  CAS  Google Scholar 

  38. Liang XH, Liu Q, Fournier MJ. Loss of rRNA modifications in the decoding center of the ribosome impairs translation and strongly delays pre-rRNA processing. RNA. 2009;15:1716–28.

    Article  PubMed  CAS  Google Scholar 

  39. Matera AG, Terns RM, Terns MP. Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs. Nat Rev Mol Cell Biol. 2007;8:209–20.

    Article  PubMed  CAS  Google Scholar 

  40. Narayanan A, Lukowiak A, Jady BE, et al. Nucleolar localization signals of box H/ACA small nucleolar RNAs. EMBO J. 1999;18:5120–30.

    Article  PubMed  CAS  Google Scholar 

  41. Samarsky DA, Fournier MJ, Singer RH, Bertrand E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J. 1998;17:3747–57.

    Article  PubMed  CAS  Google Scholar 

  42. Aftab MN, He H, Skogerbo G, Chen R. Microarray analysis of ncRNA expression patterns in Caenorhabditis elegans after RNAi against snoRNA associated proteins. BMC Genomics. 2008;9:278.

    Article  PubMed  Google Scholar 

  43. Reichow SL, Hamma T, Ferre-D'Amare AR, Varani G. The structure and function of small nucleolar ribonucleoproteins. Nucleic Acids Res. 2007;35:1452–64.

    Article  PubMed  CAS  Google Scholar 

  44. Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2 C. Science. 2006;311:230–2.

    Article  PubMed  CAS  Google Scholar 

  45. Sahoo T, del GD, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40:719–21.

  46. Kiss T, Fayet-Lebaron E, Jady BE. Box H/ACA small ribonucleoproteins. Mol Cell. 2010;37:597–606.

    Article  PubMed  Google Scholar 

  47. Kishore S, Khanna A, Zhang Z, et al. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet. 2010;19:1153–64.

    Article  PubMed  CAS  Google Scholar 

  48. Ender C, Krek A, Friedlander MR, et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008;32:519–28.

    Article  PubMed  CAS  Google Scholar 

  49. Taft RJ, Glazov EA, Lassmann T, Hayashizaki Y, Carninci P, Mattick JS. Small RNAs derived from snoRNAs. RNA. 2009;15:1233–40.

    Article  PubMed  CAS  Google Scholar 

  50. Scott MS, Avolio F, Ono M, Lamond AI, Barton GJ. Human miRNA precursors with box H/ACA snoRNA features. PLoS Comput Biol. 2009;5:e1000507.

    Article  PubMed  Google Scholar 

  51. Brameier M, Herwig A, Reinhardt R, Walter L, Gruber J. Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs. Nucleic Acids Res. 2010

  52. Ge J, Liu H, Yu YT. Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2′-O-methylation. RNA. 2010;16:1078–85.

    Article  PubMed  CAS  Google Scholar 

  53. Krutzfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  54. Care A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13:613–18.

    Article  PubMed  CAS  Google Scholar 

  55. Elmen J, Lindow M, Schutz S, et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–9.

    Article  PubMed  CAS  Google Scholar 

  56. Ma L, Reinhardt F, Pan E, et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol. 2010;28:341–7.

    Article  PubMed  CAS  Google Scholar 

  57. Ideue T, Hino K, Kitao S, Yokoi T, Hirose T. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA. 2009;15:1578–87.

    Article  PubMed  CAS  Google Scholar 

  58. Liang XH, Vickers TA, Guo S, Crooke ST. Efficient and specific knockdown of small non-coding RNAs in mammalian cells and in mice. Nucleic Acids Res 2010.

  59. van Rooij E, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest. 2007;117:2369–76.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funds from National Institutes of Health (T32-HL007081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Holley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holley, C.L., Topkara, V.K. An Introduction to Small Non-coding RNAs: miRNA and snoRNA. Cardiovasc Drugs Ther 25, 151–159 (2011). https://doi.org/10.1007/s10557-011-6290-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-011-6290-z

Key words

Navigation