Skip to main content

Advertisement

Log in

Regeneration of the Endothelium in Vascular Injury

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The endothelium mediates relaxations (dilatations) of the underlying vascular smooth muscle cells. The endothelium-dependent relaxations are due to the release of non-prostanoid vasodilator substances. The best characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO). The endothelial cells also release substances (endothelium-derived hyperpolarizing factor, EDHF) that cause hyperpolarization of the cell membrane of the underlying vascular smooth muscle. The release of EDRF from the endothelium can be mediated by both pertussis toxin-sensitive Gi (alpha2-adrenergic activation, serotonin, thrombin) and insensitive Gq (adenosine diphosphate, bradykinin) coupling proteins. The ability of the endothelial cell to release relaxing factors can be upregulated by impregnation with estrogens, exercise and antioxidants, and down-regulated by oxidative stress and increased presence of oxidized LDL. Following injury or apoptotic death, the endothelium regenerates. However, in regenerated endothelial cells, there is an early selective loss of the pertussis-toxin sensitive mechanisms of EDRF-release. Functional studies suggest that abnormal handling of LDL because of increased oxidative stress play a key role in this selective loss. Genomic analysis demonstrates the emergence of fatty acid binding protein-A (A-FBP) and metalloproteinase-7 (MMP7) in regenerated endothelial cells. The reduced release of NO resulting from the endothelial dysfunction in regenerated areas creates a locus minoris resistentiae which favors the occurrence of vasospasm and thrombosis as well as the initiation of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  2. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989;3:2007–17.

    CAS  PubMed  Google Scholar 

  3. Moncada S. Nitric oxide in the vasculature: physiology and pathophysiology. Ann NY Acad Sci. 1997;811:60–7.

    Article  CAS  PubMed  Google Scholar 

  4. Vanhoutte PM. How we learned to say NO. Arterioscler Thromb. 2009;29:1156–60.

    Article  CAS  Google Scholar 

  5. Busse R, Edwards G, Félétou M, Fleming I, Vanhoutte PM. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23:374–80.

    Article  CAS  PubMed  Google Scholar 

  6. Félétou M, Vanhoutte PM. EDHF: where are we now? Arteriosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol. 2006;26:1215–25.

    Article  PubMed  Google Scholar 

  7. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med. 2007;39:495–516.

    Article  PubMed  Google Scholar 

  8. Vanhoutte PM, Félétou M, Taddei S. Endothelium-dependent contractions in hypertension. B J Pharmacol. 2005;144:449–58.

    Article  CAS  Google Scholar 

  9. Vanhoutte PM, Tang EHC. Endothelium-dependent contractions: when a good guy turns bad! J Physiol. 2008;586:5295–304.

    Article  CAS  PubMed  Google Scholar 

  10. Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 1997;18:E19–29.

    Article  PubMed  Google Scholar 

  11. Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol. 2006;291:H985–H1002.

    Article  PubMed  Google Scholar 

  12. Vanhoutte PM. Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J. 2009;73:595–601.

    Article  CAS  PubMed  Google Scholar 

  13. Vanhoutte PM, Tang E, Félétou M, Shimokawa H. Endothelial dysfunction and vascular disease. Acta Physiol. 2009;196:193–222.

    Article  CAS  Google Scholar 

  14. Flavahan NA, Shimokawa H, Vanhoutte PM. Pertussis toxin inhibits endothelium-dependent relaxations to certain agonists in porcine coronary arteries. J Physiol. 1989;408:549–60.

    CAS  PubMed  Google Scholar 

  15. Shimokawa H, Lam JY, Chesebro T, Bowie JH, Walter EJ, Vanhoutte PM. Effects of dietary supplementation with cod-liver oil on endothelium-dependent responses in porcine coronary arteries. Circulation. 1987;76:898–905.

    CAS  PubMed  Google Scholar 

  16. Shimokawa H, Vanhoutte PM. Dietary omega-3 fatty acids and endothelium-dependent relaxations in porcine coronary arteries. Am J Physiol. 1989;256:H968–73.

    CAS  PubMed  Google Scholar 

  17. Shimokawa H, Kim P, Vanhoutte PM. Endothelium-dependent relaxation to aggregating platelets in isolated basilar arteries of control and hypercholesterolemic pigs. Circ Res. 1988;63:604–12.

    CAS  PubMed  Google Scholar 

  18. Shimokawa H, Vanhoutte PM. Dietary cod-liver oil improves endothelium-dependent responses in hypercholesterolemic and atherosclerotic porcine coronary arteries. Circulation. 1988;78:1421–30.

    CAS  PubMed  Google Scholar 

  19. Shimokawa H, Vanhoutte PM. Hypercholesterolemia causes generalized impairment of endothelium-dependent relaxation to aggregating platelets in porcine arteries. J Am Coll Cardiol. 1989;13:1402–8.

    Article  CAS  PubMed  Google Scholar 

  20. Shimokawa H, Aarhus AA, Vanhoutte PM. Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res. 1987;61:256–70.

    CAS  PubMed  Google Scholar 

  21. Shimokawa H, Vanhoutte PM. Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercholesterolemia and in atherosclerosis. Circ Res. 1989;64:900–14.

    CAS  PubMed  Google Scholar 

  22. Shimokawa H, Flavahan NA, Vanhoutte PM. Natural Course of the impairment of endothelium-dependent relaxations after balloon endothelium-removal in porcine coronary arteries. Circ Res. 1989;65:740–53.

    CAS  PubMed  Google Scholar 

  23. Shimokawa H, Flavahan NA, Shepherd JT, Vanhoutte PM. Endothelium-dependent inhibition of ergonovine-induced contraction is impaired in porcine coronary arteries with regenerated endothelium. Circulation. 1989;80:643–50.

    CAS  PubMed  Google Scholar 

  24. Shimokawa H, Flavahan NA, Vanhoutte PM. Loss of endothelial pertussis toxin-sensitive G-protein function in atherosclerotic porcine coronary arteries. Circulation. 1991;83:652–60.

    CAS  PubMed  Google Scholar 

  25. Park S-J, Lee JL, Vanhoutte PM. Endothelin-1 releases endothelium-derived endoperoxides and thromboxane A2 in porcine coronay arteries with regenerated endothelium. Acta Pharmacol Sin. 1999;20:872–8.

    CAS  Google Scholar 

  26. Thollon C, Fournet-Bourguignon MP, Saboureau D, Lesage L, Reure H, Vanhoutte PM, et al. Consequences of reduced production of NO on vascular reactivity of porcine coronary arteries after angioplasty: importance of EDHF. Br J Pharmacol. 2002;136:1153–61.

    Article  CAS  PubMed  Google Scholar 

  27. Perrault LP, Bidouard JP, Janiak P, Villeneuve N, Bruneval P, Vilaine JP, et al. Time course of coronary endothelial dysfunction in acute untreated rejection after heterotopic heart transplantation. J Heart Lung Transplant. 1997;16:643–57.

    CAS  PubMed  Google Scholar 

  28. Perrault LP, Bidouard JP, Janiak P, Villeneuve N, Bruneval P, Vilaine JP, et al. Impairment of G-protein-mediated signal transduction in the porcine coronary endothelium during rejection after heart transplantation. Cardiovasc Res. 1999;43:457–70.

    Article  CAS  PubMed  Google Scholar 

  29. El-Hamamsy I, Stevens LM, Vanhoutte PM, Perrault LP. Denudation of the coronary endothelium at implantation increases endothelial dysfunction and intimal hyperplasia after heart transplantation. J Heart Lung Transplant. 2005;24:251–8.

    Article  PubMed  Google Scholar 

  30. Borg-Capra C, Fournet-Bourguignon MP, Janiak P, Villeneuve N, Bidouard JP, Vilaine JP, et al. Morphological heterogeneity with normal expression but altered function of G proteins in cultured regenerated porcine coronary endothelial cells. Br J Pharmacol. 1997;122:999–1008.

    Article  CAS  PubMed  Google Scholar 

  31. Fournet-Bourguignon MP, Castedo-Delrieu M, Bidouard JP, Leonce S, Saboureau D, Delescluse I, et al. Phenotopic and functional changes in regenerated porcine coronary endothelial cells. Increased uptake of modified LDL and reduced production of NO. Circ Res. 2000;86:854–61.

    CAS  PubMed  Google Scholar 

  32. Vanhoutte PM, Fournet-Bourguignon MP, Vilaine JP. Dysfonction de la voie du monoxide d’azote au cours de la régénération de l’endothélium coronarien. Académie Nationale de Médecine. 2002;186:1525–41.

    CAS  Google Scholar 

  33. Kennedy S, Fournet-Bourguignon M-P, Breugnot C, Castedo-Delrieu M, Lesage L, Reure H, et al. Cells derived from regenerated endothelium of the porcine coronary artery contain more oxidized forms of Apolipoprotein-B-100 without a modification in the uptake of oxidized LDL. J Vasc Res. 2003;40:389–98.

    Article  CAS  PubMed  Google Scholar 

  34. Lee MYK, Tse HF, Siu CW, Zhu SG, Man RYK, Vanhoutte PM. Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscl Throm Vas. 2007;27:2443–9.

    Article  CAS  Google Scholar 

  35. Goswami S, Angkawekwinai P, Shan M, Greenlee KJ, Barranco WT, Polikepahad S, et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat Immunol. 2009;10:496–503.

    Article  CAS  PubMed  Google Scholar 

  36. Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, Vaillancourt E, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature. 2007;447:959–65.

    Article  CAS  PubMed  Google Scholar 

  37. Furuhashi M, Fucho R, Görgün CZ, Tuncman G, Cao H, Hotamisligil GS. Adipocyte/macrophage fatty acid-binding proteins contribute to metabolic deterioration through actions in both macrophages and adipocytes in mice. J Clin Invest. 2008;118:2640–50.

    CAS  PubMed  Google Scholar 

  38. Lee MYK, Wang Y, Vanhoutte P. Senescence of cultured porcine coronary arterial endothelial cells is associated with accelerated oxidative stress and activation of NFκB. J Vasc Res. 2010;47:287–98.

    Article  CAS  PubMed  Google Scholar 

  39. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  40. Aikawa M, Libby P. The vulnerable atherosclerotic plaque pathogenesis and therapeutic approach. Cardiovasc Path. 2004;13:125–38.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Vanhoutte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanhoutte, P.M. Regeneration of the Endothelium in Vascular Injury. Cardiovasc Drugs Ther 24, 299–303 (2010). https://doi.org/10.1007/s10557-010-6257-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6257-5

Key words

Navigation