Skip to main content
Log in

How to Mediate Cardioprotection in Ischemic Hearts—Accumulated Evidence of Basic Research Should Translate to Clinical Medicine

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Ischemic heart failure is one of the leading causes of death in the western countries and it is a critical issue to overcome ischemic heart diseases for the human health care worldwide. There are several aspects of ischemic heart failure that we need to seriously consider for the conquest of cardiovascular death. First of all, we need to know either causes or pathophysiology of the onset of coronary artery disease, the ischemia/reperfusion injury and post-infarction cardiac remodeling. Secondly, we need to find the potential seeds for the molecular, pharmacological, biomedical or engineering treatment to prevent or attenuate ischemic heart diseases. Thirdly, we need to accelerate translational research and to create the network of clinical trials to grow the novel seeds to the fruitful big trees. Finally, we need to justify these strategies to overcome the ischemic heart diseases and to contribute the world welfare systems after we propose the novel therapy for the prevention and attenuation of ischemic heart diseases. The most strong and essential hypotheses to attenuate the cardiovascular injury in ischemic heart disease for last three decades are ischemic preconditioning/postconditioning. Many investigators have involved in the clarification of the characteristics of ischemic preconditioning/postconditioning and their cellular mechanisms, and the clinical applications of their basic results. Here, 8 potential basic and clinical researchers includeing us discuss these issues that they have devotedly studies for many years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001;33:1897–918.

    Article  CAS  PubMed  Google Scholar 

  2. Kloner RA, Jennings RB. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 2. Circulation. 2001;104:3158–67.

    Article  CAS  PubMed  Google Scholar 

  3. Mubagwa K, Mullane K. Flameng Role of adenosine in the heart and circulation. Cardiovasc Res. 1996;32:797–813.

    CAS  PubMed  Google Scholar 

  4. Kitakaze M, Minamino T, Node K, et al. Adenosine and cardioprotection in the diseased heart. Jpn Circ J. 1999;63:231–43.

    Article  CAS  PubMed  Google Scholar 

  5. Chulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001;52:181–98.

    Article  Google Scholar 

  6. Kitakaze M. It is the time to ask what adenosine can do for cardioprotection in ischemic heart disease. Internal Medicine. 1999;38:305–6.

    Article  CAS  PubMed  Google Scholar 

  7. Allen DG, Orchard CH. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987;60:153–68.

    CAS  PubMed  Google Scholar 

  8. Mauser M, Hoffmeister HM, Nienaber C, Schaper W. Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res. 1985;56:220–30.

    CAS  PubMed  Google Scholar 

  9. Pike MM, Luo CS, Clark D, et al. NMR measurements of Na+ and cellular energy in the ischemic rat heart: role of Na+/H+ exchange. Am J Physiol. 1993;265:H2017–26.

    CAS  PubMed  Google Scholar 

  10. Marban E, Kitakaze M, Kusuoka H, Porterfield JP, Yue DT, Chacko VP. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts containing the Ca2+-indicator 5,5′-F2-BAPTA. Proceeding National Academy Science (U.S.A) 1987;84:6005-9.

    Google Scholar 

  11. Sato H, Hori M, Kitakaze M, et al. Reperfusion after brief ischemia disrupts the microtuble structure in the canine hearts. Circ Res. 1993;72:361–75.

    CAS  PubMed  Google Scholar 

  12. Kitakaze M, Weisman HF, Marban E. Contractile dysfunction and ATP depletion following transient calcium overload in perfused ferret hearts. Circulation. 1988;77:685–95.

    CAS  PubMed  Google Scholar 

  13. Kitakaze M, Weisfeldt ML, Marban E. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest. 1988;82:920–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kitakaze M, Takashima S, Minamino T, et al. Transient acidosis during early reperfusion following myocardial ischemia limits infarct size in the dogs. Am J Physiol. 1997;272:H2071–8.

    CAS  PubMed  Google Scholar 

  15. Taga R, Okabe E. Hydroxyl radical participation in the in vitro effects of gram-negative endotoxin on cardiac sarcolemmal Na, K-ATPase activity. Jpn J Pharmacol. 1991;55:339–49.

    Article  CAS  PubMed  Google Scholar 

  16. Kitakaze M, Hori M, Takashima S, et al. Superoxide dismutase enhances ischemia-induced reactive hyperemic flow and adenosine release in dogs: a role of 5′-nucleotidase activity. Circ Res. 1992;71:558–66.

    CAS  PubMed  Google Scholar 

  17. Gross GJ, Farber NE, Hardman HF, Warltier DC. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol. 1986;250:H372–7.

    CAS  PubMed  Google Scholar 

  18. Sekili S, McCay PB, Li XY, et al. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res. 1993;73:705–23.

    CAS  PubMed  Google Scholar 

  19. Flaherty JT, Pitt B, Gruber JW, et al. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation. 1994;89:1982–91.

    CAS  PubMed  Google Scholar 

  20. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W. Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: locally mediated release. Circ Res. 1984;55:689–701.

    PubMed  Google Scholar 

  21. Kitakaze M, Hori M, Tamai J, et al. α1-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res. 1987;60:631–9.

    CAS  PubMed  Google Scholar 

  22. Kitakaze M, Hori M, Gotoh K, et al. Beneficial effects of α2-activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res. 1989;65:1632–45.

    CAS  PubMed  Google Scholar 

  23. Huang AH, Feigl EO. Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res. 1988;62:286–98.

    CAS  PubMed  Google Scholar 

  24. Kloner RA, Ganote CE, Jennings RB. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest. 1987;54:1496–508.

    Article  Google Scholar 

  25. Ito H, Maruyama A, Iwakura K, Takiuchi S, et al. Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 1996;223–8.

  26. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995;91:1872–85.

    CAS  PubMed  Google Scholar 

  27. Watanabe T, Suzuki N, Shimamoto N, Fujino M, Imada A. Contribution of endogenous endothelin to the extension of myocardial infarct size in rats. Circ Res. 1991;69:370–7.

    CAS  PubMed  Google Scholar 

  28. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94:1621–8.

    Article  CAS  PubMed  Google Scholar 

  29. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    CAS  PubMed  Google Scholar 

  30. Kuzuya T, Hoshida S, Yamashita N, et al. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res. 1993;72:1293–9.

    CAS  PubMed  Google Scholar 

  31. Marbar MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress associated with resistance to myocardial infarction. Circulation. 1993;83:13–25.

    Google Scholar 

  32. Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 2010;24: this issue.

  33. Mura T, Tanno M. Mitochondria and GSK-3β in cardioprotection against ischemia/reperfusion injury. Cardiovasc Drugs Ther 2010;24: this issue.

  34. Hausenloy DJ, Yellon DM. The second window of preconditioning (SWOP). Where are we now? Cardiovasc Drugs Ther 2010;24: this issue.

  35. Hausenloy DJ, Yellon DM. Remote ischaemic preconditioning: underlying mechanisms and clinical application. Cardiovasc Res. 2008;79:377–86.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    CAS  PubMed  Google Scholar 

  37. Kin H, Zhao ZQ, Sun HY, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62:74–85.

    Article  CAS  PubMed  Google Scholar 

  38. Sun HY, Wang NP, Kerendi F, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–8.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Z-Q. Postconditioning in reperfusion: a status report. Cardiovasc Drugs Ther 2010;24:this issue.

  40. Ishihara M, Sato H, Tateishi H, et al. Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol. 1997;30:970–5.

    Article  CAS  PubMed  Google Scholar 

  41. Ross AM, Gibbons RJ, Stone GW, Kloner RA. Alexander RW; AMISTAD-II Investigators. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005;45:1775–80.

    Article  CAS  PubMed  Google Scholar 

  42. Kitakaze M, Asakura M, Kim J, et al. On behalf of the J-WIND investigators. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007;370:1483–93.

    Article  CAS  PubMed  Google Scholar 

  43. Asakura M. Cardioprotection in the clinical setting—Lesson from J-WIND. Cardiovasc Drugs Ther 2010;24: this issue.

  44. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  CAS  PubMed  Google Scholar 

  45. Ivanes F, Mewton N, Rioufol G, Piot C, Elbaz M, Revel D, et al. Cardioprotection in the clinical setting. Cardiovasc Drugs Ther 2010;24: this issue.

Download references

Acknowledgements

This work is supported by Grants-in-aid from the Ministry of Health, Labor, and Welfare, Japan and Grants-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan and Grants from the Japan Cardiovascular Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Kitakaze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitakaze, M. How to Mediate Cardioprotection in Ischemic Hearts—Accumulated Evidence of Basic Research Should Translate to Clinical Medicine. Cardiovasc Drugs Ther 24, 217–223 (2010). https://doi.org/10.1007/s10557-010-6248-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6248-6

Key words

Navigation