Skip to main content
Log in

Cardioprotection in the Clinical Setting

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Reperfusion therapy is the primary treatment of acute myocardial infarction and must be applied as soon as possible to limit the ischemic insult. Unfortunately, reperfusion is responsible for additional myocardial damage likely involving opening of the mitochondrial permeability transition pore. Ischemic postconditioning is a powerful intervention that dramatically reduces lethal reperfusion injury. Several clinical studies using angioplasty postconditioning now support its protective effects in patients with an acute myocardial infarction. Alternatively, pharmacological postconditioning could afford comparable protection and be applied to a much larger number of patients. Indeed, the mitochondrial permeability transition pore inhibitor cyclosporine A has been shown to generate a similar protection in acute myocardial infarction patients. Future large-scale trials are needed to determine whether angioplasty or pharmacological postconditioning may improve clinical outcome in STEMI patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

CK:

Creatine kinase

ECG:

Electrocardiogram

IPC:

Ischemic preconditioning

IPost:

Ischemic postconditioning

LVEF:

Left ventricular ejection fraction

PTP:

Permeability transition pore

MRI:

Magnetic resonance imaging

PCI:

Percutaneous coronary intervention

ROS:

Reactive oxygen species

SPECT:

Single photon emission computed tomography

WMSI:

Wall motion score index

References

  1. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361:13–20.

    Article  PubMed  Google Scholar 

  2. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38:291–300.

    Article  CAS  PubMed  Google Scholar 

  3. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  4. Hearse DJ, Humphrey SM, Chain EB. Abrupt reoxygenation of the anoxic potassium-arrested perfused rat heart: a study of myocardial enzyme release. J Mol Cell Cardiol. 1973;5:395–407.

    Article  CAS  PubMed  Google Scholar 

  5. Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, et al. The pH paradox in ischemia-reperfusion injury to cardiac myocytes. EXS. 1996;76:99–114.

    CAS  PubMed  Google Scholar 

  6. Gomez L, Thibault H, Gharib A, Dumont JM, Vuagniaux G, Scalfaro P, et al. Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2007;293:H1654–61.

    Article  CAS  PubMed  Google Scholar 

  7. Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P. The paradigm of postconditioning to protect the heart. J Cell Mol Med. 2008;12:435–58.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res. 2006;70:200–11.

    Article  CAS  PubMed  Google Scholar 

  9. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    CAS  PubMed  Google Scholar 

  10. Otani H. Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008;10:207–47.

    Article  CAS  PubMed  Google Scholar 

  11. Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning: mechanisms and therapeutic potentials. J Am Coll Surg. 2006;202:797–812.

    Article  PubMed  Google Scholar 

  12. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    CAS  PubMed  Google Scholar 

  13. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M. Postconditioning inhibits mitochondrial permeability transition. Circulation. 2005;111:194–7.

    Article  CAS  PubMed  Google Scholar 

  14. Dosenko VE, Nagibin VS, Tumanovskaya LV, Zagoriy VY, Moibenko AA, Vaage J. Proteasomal proteolysis in anoxia-reoxygenation, preconditioning and postconditioning of isolated cardiomyocytes. Pathophysiology. 2006;13:119–25.

    Article  CAS  PubMed  Google Scholar 

  15. Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, et al. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res. 2004;62:74–85.

    Article  CAS  PubMed  Google Scholar 

  16. Lim SY, Davidson SM, Hausenloy DJ, Yellon DM. Preconditioning and postconditioning: the essential role of the mitochondrial permeability transition pore. Cardiovasc Res. 2007;75:530–5.

    Article  CAS  PubMed  Google Scholar 

  17. Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61:365–71.

    Article  CAS  PubMed  Google Scholar 

  18. Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L’Huillier I, et al. Postconditioning the human heart. Circulation. 2005;112:2143–8.

    Article  PubMed  Google Scholar 

  19. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest. 1979;40:633–44.

    CAS  PubMed  Google Scholar 

  20. Thibault H, Piot C, Staat P, Bontemps L, Sportouch C, Rioufol G, et al. Long-term benefit of postconditioning. Circulation. 2008;117:1037–44.

    Article  CAS  PubMed  Google Scholar 

  21. Laskey WK. Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: a pilot study. Catheter Cardiovasc Interv. 2005;65:361–7.

    Article  PubMed  Google Scholar 

  22. Laskey WK, Yoon S, Calzada N, Ricciardi MJ. Concordant improvements in coronary flow reserve and ST-segment resolution during percutaneous coronary intervention for acute myocardial infarction: a benefit of postconditioning. Catheter Cardiovasc Interv. 2008;72:212–20.

    Article  PubMed  Google Scholar 

  23. Ma X, Zhang X, Li C, Luo M. Effect of postconditioning on coronary blood flow velocity and endothelial function and LV recovery after myocardial infarction. J Interv Cardiol. 2006;19:367–75.

    Article  PubMed  Google Scholar 

  24. Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, et al. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol. 2005;288:H1900–8.

    Article  CAS  PubMed  Google Scholar 

  25. Hausenloy DJ, Ong SB, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009;104:189–202.

    Article  CAS  PubMed  Google Scholar 

  26. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434:658–62.

    Article  CAS  PubMed  Google Scholar 

  27. Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem. 2005;280:18558–61.

    Article  CAS  PubMed  Google Scholar 

  28. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434:652–8.

    Article  CAS  PubMed  Google Scholar 

  29. Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, et al. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol. 2005;38:367–74.

    Article  CAS  PubMed  Google Scholar 

  30. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988;255:357–60.

    CAS  PubMed  Google Scholar 

  31. Halestrap AP, Davidson AM. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990;268:153–60.

    CAS  PubMed  Google Scholar 

  32. Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ, Ward JM, et al. Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem. 1996;238:166–72.

    Article  CAS  PubMed  Google Scholar 

  33. Woodfield K, Ruck A, Brdiczka D, Halestrap AP. Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J. 1998;336(Pt 2):287–90.

    CAS  PubMed  Google Scholar 

  34. Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  CAS  PubMed  Google Scholar 

  35. Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010;55:1200–5.

    Article  CAS  PubMed  Google Scholar 

  36. Fiedler B, Wollert KC. Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes. Cardiovasc Res. 2004;63:450–7.

    Article  CAS  PubMed  Google Scholar 

  37. Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, et al. Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors Basic Res Cardiol. 2005;100:404–12.

    CAS  Google Scholar 

  38. Botker HE, Kharbanda R, Schmidt MR, Bottcher M, Kaltoft AK. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375:727–34.

    Article  PubMed  Google Scholar 

  39. Ovize M, Bonnefoy E. Giving the ischaemic heart a shot in the arm. Lancet. 2010;375:699–700.

    Article  PubMed  Google Scholar 

  40. Downey JM, Cohen MV. Why do we still not have cardioprotective drugs? Circ J. 2009;73:1171–7.

    Article  PubMed  Google Scholar 

  41. Aletras AH, Tilak GS, Natanzon A, Hsu LY, Gonzalez FM, Hoyt Jr RF, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–70.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Fabrice Ivanes is a recipient of a grant from the Fédération Française de Cardiologie (FFC). Nathan Mewton is a recipient from a grant of the Société Française de Cardiologie (SFC).

Author disclosure statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ovize.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanes, F., Mewton, N., Rioufol, G. et al. Cardioprotection in the Clinical Setting. Cardiovasc Drugs Ther 24, 281–287 (2010). https://doi.org/10.1007/s10557-010-6243-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6243-y

Key words

Navigation