Skip to main content

Advertisement

Log in

Transitory Activation of AMPK at Reperfusion Protects the Ischaemic-Reperfused Rat Myocardium Against Infarction

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

AMPK plays a crucial role in the regulation of the energy metabolism of the heart. During ischaemia, AMPK activation is a known adaptative prosurvival mechanism that helps to maintain the energy levels of the myocardium. However, it still remains unclear if activation of AMPK during reperfusion is beneficial for the heart. Two known AMPK activators (metformin and AICAR) were used to verify the hypothesis that a transitory activation of AMPK at reperfusion may exert cardioprotection, as reflected in a reduction in myocardial infarct size.

Methods

Perfused rat hearts were subjected to 35 min ischaemia and 120 min reperfusion. Metformin (50 μM) or AICAR (0.5 mM) were added for 15 min at the onset of reperfusion alone or with Compound C (CC, 10 μM), an AMPK inhibitor. Infarct size and α-AMPK phosphorylation were measured.

Results

Metformin significantly reduced infarct size from 47.8 ± 1.7% in control to 31.4 ± 2.9%, an effect abolished by CC when the drugs were given concomitantly. Similarly, AICAR also induced a significant reduction in infarct size to 32.3 ± 4.8%, an effect also abrogated by CC. However, metformin’s protection was not abolished if CC was administered later in reperfusion. In addition, α-AMPK phosphorylation was significantly increased in the metformin treated group during the initial 30 min of reperfusion.

Conclusions

Our data demonstrated that, in our ex vivo model of myocardial ischaemia-reperfusion injury, AMPK activation in early reperfusion is associated with a reduction in infarct size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett. 2008;582:81–9.

    Article  PubMed  CAS  Google Scholar 

  2. Wong KA, Lodish HF. A revised model for AMP-activated protein kinase structure: the alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits. J Biol Chem. 2006;281:36434–42.

    Article  PubMed  CAS  Google Scholar 

  3. Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev. 2009;89:1025–78.

    Article  PubMed  CAS  Google Scholar 

  4. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Geloen A, Flamez D, et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest. 2003;111:91–8.

    PubMed  CAS  Google Scholar 

  5. Lopaschuk GD. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes (Lond). 2008;32:S29–35.

    Article  CAS  Google Scholar 

  6. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. 1995;229:558–65.

    Article  PubMed  CAS  Google Scholar 

  7. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–9.

    Article  PubMed  CAS  Google Scholar 

  8. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    PubMed  CAS  Google Scholar 

  9. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348:607–14.

    Article  PubMed  CAS  Google Scholar 

  10. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352: 854–65.

    Google Scholar 

  11. Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, et al. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008;103:274–84.

    Article  PubMed  CAS  Google Scholar 

  12. Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008;57:696–705.

    Article  PubMed  CAS  Google Scholar 

  13. Paiva M, Riksen NP, Davidson SM, Hausenloy DJ, Monteiro P, Goncalves L, et al. Metformin prevents myocardial reperfusion injury by activating the adenosine receptor. J Cardiovasc Pharmacol. 2009;53:373–8.

    Article  PubMed  CAS  Google Scholar 

  14. Tsuchida A, Yang XM, Burckhartt B, Mullane KM, Cohen MV, Downey JM. Acadesine extends the window of protection afforded by ischaemic preconditioning. Cardiovasc Res. 1994;28:379–83.

    Article  PubMed  CAS  Google Scholar 

  15. Wynne AM, Mocanu MM, Yellon DM. Pioglitazone mimics preconditioning in the isolated perfused rat heart: a role for the prosurvival kinases PI3K and P42/44MAPK. J Cardiovasc Pharmacol. 2005;46:817–22.

    Article  PubMed  CAS  Google Scholar 

  16. Legtenberg RJ, Houston RJ, Oeseburg B, Smits P. Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res. 2002;34:182–5.

    Article  PubMed  CAS  Google Scholar 

  17. Leon H, Atkinson LL, Sawicka J, Strynadka K, Lopaschuk GD, Schulz R. Pyruvate prevents cardiac dysfunction and AMP-activated protein kinase activation by hydrogen peroxide in isolated rat hearts. Can J Physiol Pharmacol. 2004;82:409–16.

    Article  PubMed  CAS  Google Scholar 

  18. Mocanu MM, Bell RM, Yellon DM. PI3 kinase and not p42/p44 appears to be implicated in the protection conferred by ischemic preconditioning. J Mol Cell Cardiol. 2002;34:661–8.

    Article  PubMed  CAS  Google Scholar 

  19. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, et al. Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 2009;119:2568–77.

    Article  PubMed  CAS  Google Scholar 

  20. Russell 3rd RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114:495–503.

    PubMed  CAS  Google Scholar 

  21. Folmes CD, Wagg CS, Shen M, Clanachan AS, Tian R, Lopaschuk GD. Suppression of 5′-AMP-activated protein kinase activity does not impair recovery of contractile function during reperfusion of ischemic hearts. Am J Physiol Heart Circ Physiol. 2009;297:H313–21.

    Article  PubMed  CAS  Google Scholar 

  22. Shibata R, Sato K, Pimentel DR, Takemura Y, Kihara S, Ohashi K, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK-and COX-2-dependent mechanisms. Nat Med. 2005;11:1096–103.

    Article  PubMed  CAS  Google Scholar 

  23. Kawabata H, Ishikawa K. Cardioprotection by metformin is abolished by a nitric oxide synthase inhibitor in ischemic rabbit hearts. Hypertens Res. 2003;26:107–10.

    Article  PubMed  CAS  Google Scholar 

  24. Shin EJ, Schram K, Zheng XL, Sweeney G. Leptin attenuates hypoxia/reoxygenation-induced activation of the intrinsic pathway of apoptosis in rat H9c2 cells. J Cell Physiol. 2009;221:490–7.

    Article  PubMed  CAS  Google Scholar 

  25. Huisamen B, Genade S, Lochner A. Signalling pathways activated by glucagon-like peptide-1 (7–36) amide in the rat heart and their role in protection against ischaemia. Cardiovasc J Afr. 2008;19:77–83.

    PubMed  CAS  Google Scholar 

  26. Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol. 2007;293:H457–66.

    Article  PubMed  CAS  Google Scholar 

  27. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG 4th, Schlattner U, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. Role of mitochondrial reactive nitrogen species. J Biol Chem. 2004;279:43940–51.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang L, Frederich M, He H, Balschi JA. Relationship between 5-aminoimidazole-4-carboxamide-ribotide and AMP-activated protein kinase activity in the perfused mouse heart. Am J Physiol Heart Circ Physiol. 2006;290:H1235–43.

    Article  PubMed  CAS  Google Scholar 

  29. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation 2007;115:1895–903.

    Article  PubMed  Google Scholar 

  30. Dyck JR, Lopaschuk GD. AMPK alterations in cardiac physiology and pathology: enemy or ally? J Physiol. 2006;574:95–112.

    Article  PubMed  CAS  Google Scholar 

  31. Moopanar TR, Xiao XH, Jiang L, Chen ZP, Kemp BE, Allen DG. AICAR inhibits the Na+/H+ exchanger in rat hearts-possible contribution to cardioprotection. Pflugers Arch. 2006;453:147–56.

    Article  PubMed  CAS  Google Scholar 

  32. King TD, Song L, Jope RS. AMP-activated protein kinase (AMPK) activating agents cause dephosphorylation of Akt and glycogen synthase kinase-3. Biochem Pharmacol. 2006;28:1637–47.

    Article  CAS  Google Scholar 

  33. Chen HC, Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert M, Farese Jr RV, et al. Activation of the ERK pathway and atypical protein kinase C isoforms in exercise- and aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR)-stimulated glucose transport. J Biol Chem. 2002;28:23554–62.

    Article  CAS  Google Scholar 

  34. Saeedi R, Parsons HL, Wambolt RB, Paulson K, Sharma V, Dyck JR, et al. Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms. Am J Physiol Heart Circ Physiol. 2008;294:H2497–506.

    Article  PubMed  CAS  Google Scholar 

  35. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta. 1994;1213:263–76.

    PubMed  CAS  Google Scholar 

  36. Liu Q, Docherty JC, Rendell JC, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.

    Article  PubMed  CAS  Google Scholar 

  37. Clark H, Carling D, Saggerson D. Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids. Eur J Biochem. 2004;271:2215–24.

    Article  PubMed  CAS  Google Scholar 

  38. Solskov L, Lofgren B, Kristiansen SB, Jessen N, Pold R, Nielsen TT, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 h after administration. Basic Clin Pharmacol Toxicol. 2008;103:82–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MA Paiva is a recipient of a fellowship by Fundação para a Ciência e Tecnologia (SFRH/BD/23671/2005). We thank British Heart Foundation for continuous support.

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek M. Yellon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, M.A., Gonçalves, L.M., Providência, L.A. et al. Transitory Activation of AMPK at Reperfusion Protects the Ischaemic-Reperfused Rat Myocardium Against Infarction. Cardiovasc Drugs Ther 24, 25–32 (2010). https://doi.org/10.1007/s10557-010-6222-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6222-3

Key words

Navigation