Skip to main content
Log in

Metabolic (In)Flexibility of the Diabetic Heart

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Introduction

Metabolic inflexibility was first described as a failure of skeletal muscle of diabetic subjects to appropriately move between use of lipid in the fasting state and use of carbohydrate in the insulin-stimulated prandial state. Metabolically healthy hearts have a well developed capacity to switch between lipid and carbohydrate fuels, depending on hormone levels and substrate availability in the circulation, but it is assumed that this flexibility is lost in the maladapted diabetic heart.

Objectives

We show in this short review that chronic treatment with lipid-lowering drugs, as well as acute administration of insulin and glucose, modulate the substrate flux in the diabetic heart. We also show that such interventions have functional implications in terms of improved cardiac efficiency and tolerance to ischemic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes. 2000;49:677–83.

    Article  PubMed  CAS  Google Scholar 

  2. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K. Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 2003;107:3040–6.

    Article  PubMed  CAS  Google Scholar 

  3. Taegtmeyer H, Golfman L, Sharma S, Razeghi P, van Arsdall M. Linking gene expression to function: metabolic flexibility in the normal and diseased heart. Ann N Y Acad Sci. 2004;1015:202–13.

    Article  PubMed  CAS  Google Scholar 

  4. Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol. 2000;279:E1104–13.

    CAS  Google Scholar 

  5. Aasum E, Belke DD, Severson DL, Riemersma R, Cooper M, Andreassen M, Larsen TS. Cardiac function and metabolism in type 2 diabetic mice after treatment with BM 17.0744, a novel PPAR-a activator. Am J Physiol. 2002;283:H949–57.

    CAS  Google Scholar 

  6. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ. Effect of obesity and insulin resistance on myocardial sub-strate metabolism and efficiency in young women. Circulation. 2004;109:2191–6.

    Article  PubMed  Google Scholar 

  7. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14:263–83.

    Article  PubMed  CAS  Google Scholar 

  8. McGarry JD, Mannaerts GP, Foster DW. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis. J Clin Invest. 1977;60:265–70.

    Article  PubMed  CAS  Google Scholar 

  9. Djouadi F, Brandt JM, Weinheimer CJ, Leone TC, Gonzalez FJ, Kelly DP. The role of the peroxisome proliferator-activated receptor alpha (PPAR alpha) in the control of cardiac lipid metabolism. Prostaglandins Leukot Essent Fat Acids. 1999;60:339–43.

    Article  CAS  Google Scholar 

  10. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.

    Article  PubMed  CAS  Google Scholar 

  11. Gilde AJ, van der Lee KA, Willemsen PH, Chinetti G, van der Leij FR, van der Vusse GJ, Staels B, van Bilsen M. Peroxisome proliferator-activated receptor (PPAR) alpha and PPARbeta/delta, but not PPARgamma, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res. 2003;92:518–24.

    Article  PubMed  CAS  Google Scholar 

  12. Finck BN, Kelly DP. Peroxisome proliferator-activated receptor alpha (PPARalpha) signaling in the gene regulatory control of energy metabolism in the normal and diseased heart. J Mol Cell Cardiol. 2002;34:1249–57.

    Article  PubMed  CAS  Google Scholar 

  13. Finck BN, Lehman JJ, Leone TC, Welch MJ, Bennett MJ, Kovacs A, Han X, Gross RW, Kozak R, Lopaschuk GD, Kelly DP. The cardiac phenotype induced by PPARalpha overexpression mimics that caused by diabetes mellitus. J Clin Invest. 2002;109:121–30.

    PubMed  CAS  Google Scholar 

  14. Carley AN, Atkinson LL, Bonen A, Harper ME, Kunnathu S, Lopaschuk GD, Severson DL. Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch Physiol Biochem. 2007;113(2):65–75.

    Article  PubMed  CAS  Google Scholar 

  15. Neitzel AS, Carley AN, Severson DL. Chylomicron and palmitate metabolism by perfused hearts from diabetic mice. Am J Physiol Endocrinol Metab. 2003;284:E357–65.

    PubMed  CAS  Google Scholar 

  16. Aasum E, Hafstad AD, Severson DL, Larsen TS. Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes. 2003;52:434–41.

    Article  PubMed  CAS  Google Scholar 

  17. How OJ, Aasum E, Severson DL, Chan WY, Essop MF, Larsen TS. Increased myocardial oxygen consumption reduces cardiac efficiency in diabetic mice. Diabetes. 2006;55:466–73.

    Article  PubMed  CAS  Google Scholar 

  18. Hafstad AD, Khalid AM, How OJ, Larsen TS, Aasum E. Glucose and insulin improve cardiac efficiency and postischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2007;292:E1288–94.

    Article  PubMed  CAS  Google Scholar 

  19. Abel ED. Myocardial insulin resistance and cardiac complications of diabetes. Curr Drug Targets Immune Endocr Metabol Disord. 2005;5:219–26.

    Article  PubMed  CAS  Google Scholar 

  20. Berge RK, Tronstad KJ, Berge K, Rost TH, Wergedahl H, Gudbrandsen OA, Skorve J. The metabolic syndrome and the hepatic fatty acid drainage hypothesis. Biochimie. 2005;87:15–20.

    Article  PubMed  CAS  Google Scholar 

  21. Qu S, Su D, Altomonte J, Kamagate A, He J, Perdomo G, Tse T, Jiang Y, Dong HH. PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab. 2007;292:E421–34.

    Article  PubMed  CAS  Google Scholar 

  22. Aasum E, Cooper M, Severson DL, Larsen TS. Effect of BM 17.0744, a PPARalpha ligand, on the metabolism of perfused hearts from control and diabetic mice. Can J Physiol Pharmacol. 2005;83:183–90.

    Article  PubMed  CAS  Google Scholar 

  23. Carley AN, Semeniuk LM, Shimoni Y, Aasum E, Larsen TS, Berger JP, Severson DL. Treatment of type 2 diabetic db/db mice with a novel PPARgamma agonist improves cardiac metabolism but not contractile function. Am J Physiol Endocrinol Metab. 2004;286:E449–55.

    Article  PubMed  CAS  Google Scholar 

  24. Golfman L, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, Van Varsdall M, Adrogue J, Brown KK, Taegtmeyer H. Activation of PPAR enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am J Physiol Endocrinol Metab. 2005;289:E328–36.

    Article  PubMed  CAS  Google Scholar 

  25. How OJ, Larsen TS, Hafstad AD, Khalid AM, Myhre ES, Murray AJ, Boardmann B, Cole M, Clarke K, Severson D, Aasum E. Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch Biochem Biophys. 2007;113:211–20.

    Article  CAS  Google Scholar 

  26. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9.

    Article  PubMed  CAS  Google Scholar 

  27. Aasum E, Khalid AM, Gudbrandsen OA, How OJ, Berge RK, Larsen TS. Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. Arch Physiol Biochem. 2007;113:211–20.

    Article  PubMed  CAS  Google Scholar 

  28. Sidell RJ, Cole MA, Draper NJ, Desrois M, Buckingham RE, Clarke K. Thiazolidinedione treatment normalizes insulin resistance and ischemic injury in the zucker fatty rat heart. Diabetes. 2002;51:1110–7.

    Article  PubMed  CAS  Google Scholar 

  29. Utriainen T, Takala T, Luotolahti M, Ronnemaa T, Laine H, Ruotsalainen U, Haaparanta M, Nuutila P, Yki-Jarvinen H. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998;41:555–9.

    Article  PubMed  CAS  Google Scholar 

  30. vom Dahl J, Herman WH, Hicks RJ, Ortiz Alonso FJ, Lee KS, Allman KC, Wolfe ERJ, Kalff V, Schwaiger M. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography. Circulation. 1993;88:395–404.

    PubMed  CAS  Google Scholar 

  31. Ohtake T, Yokoyama I, Watanabe T, Momose T, Serezawa T, Nishikawa J, Sasaki Y. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med. 1995;36:456–63.

    PubMed  CAS  Google Scholar 

  32. Yokoyama I, Yonekura K, Ohtake T, Kawamura H, Matsumoto A, Inoue Y, Aoyagi T, Sugiura S, Omata M, Ohtomo K, Nagai R. Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2000;7:242–8.

    Article  PubMed  CAS  Google Scholar 

  33. Voipio Pulkki LM, Nuutila P, Knuuti MJ, Ruotsalainen U, Haaparanta M, Teras M, Wegelius U, Koivisto VA. Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography. J Nucl Med. 1993;34:2064–7.

    PubMed  CAS  Google Scholar 

  34. Iozzo P, Chareonthaitawee P, Dutka D, Betteridge DJ, Ferrannini E, Camici PG. Independent association of type 2 diabetes and coronary artery disease with myocardial insulin resistance. Diabetes. 2002;51:3020–4.

    Article  PubMed  CAS  Google Scholar 

  35. Belke DD, Betuing S, Tuttle MJ, Graveleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severson D, Kahn CR, Abel ED. Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest. 2002;109:629–39.

    PubMed  CAS  Google Scholar 

  36. Kolter T, Uphues I, Eckel J. Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am J Physiol. 1997;273:E59–67.

    PubMed  CAS  Google Scholar 

  37. Carroll R, Carley AN, Dyck JR, Severson DL. Metabolic effects of insulin on cardiomyocytes from control and diabetic db/db mouse hearts. Am J Physiol Endocrinol Metab. 2005;288:E900–6.

    Article  PubMed  CAS  Google Scholar 

  38. Huisamen B. Protein kinase B in the diabetic heart. Mol Cell Biochem. 2003;249:31–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hafstad AD, Solevag GH, Severson DL, Larsen TS, Aasum E. Perfused hearts from type 2 diabetic (db/db) mice show metabolic responsiveness to insulin. Am J Physiol Heart Circ Physiol. 2006;290:H1763–9.

    Article  PubMed  CAS  Google Scholar 

  40. Liu B, Clanachan AS, Schulz R, Lopaschuk GD. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res. 1996;79:940–8.

    PubMed  CAS  Google Scholar 

  41. Lloyd S, Brocks C, Chatham JC. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart. Am J Physiol Heart Circ Physiol. 2003;285:H163–72.

    PubMed  CAS  Google Scholar 

  42. Jeffrey FM, Diczku V, Sherry AD, Malloy CR. Substrate selection in the isolated working rat heart: effects of reperfusion, afterload, and concentration. Basic Res Cardiol. 1995;90:388–96.

    Article  PubMed  CAS  Google Scholar 

  43. Oakes ND, Thalen P, Aasum E, Edgley A, Larsen T, Furler SM, Ljung B, Severson D. Cardiac metabolism in mice: tracer method developments and in vivo application revealing profound metabolic inflexibility in diabetes. Am J Physiol Endocrinol Metab. 2006;290:E870–81.

    Article  PubMed  CAS  Google Scholar 

  44. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146:5341–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by operating grants from the Norwegian Heart Foundation, the Norwegian Diabetes Association, the Novo Nordisk Foundation and the Northern Norway Regional Health Authority (HelseNord RHF). We are grateful to the PhD students Ole-Jakob How, Anne D. Hafstad and Ahmed Khalid for providing a large part of the ex vivo mouse heart data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terje S. Larsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, T.S., Aasum, E. Metabolic (In)Flexibility of the Diabetic Heart. Cardiovasc Drugs Ther 22, 91–95 (2008). https://doi.org/10.1007/s10557-008-6083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-008-6083-1

Key words

Navigation