Skip to main content
Log in

Repeated Low-dose of Erythropoietin is Associated with Improved Left Ventricular Function in Rat Acute Myocardial Infarction Model

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Objective

To evaluate the potential protective affects of Epo on left ventricular (LV) function and remodeling after acute myocardial infarction (MI).

Methods

Epo was injected into the peritoneum of male Wistar rats (250 g) during 6 weeks post induction of MI. Rats were divided into five groups: MI treated with single high dose (MT1, 5,000 U/kg, n = 10), single high dose (5,000 U/kg) and repeated high doses (MTHi, 1,000 U/kg twice a week; n = 8), or single high dose (5,000 U/kg) and repeated low doses (MTLo, 750 U/kg once a week, n = 10), MI non-treated (MNT, n = 10), sham (S, n = 5). Echocardiography was performed 3.6 ± 1.5 days and 43.7 ± 2.3 days post MI. Collagen deposition and infarct size were measured on histological sections using computerized image analysis. Apoptosis was assessed by ApopTag staining.

Results

Baseline fractional shortening (FS) was similar between groups. Six weeks after MI the FS of MTLo (26.9%) was significantly higher compared to MNT (17.8%), MT1 (19.5%) and MTH (22.3%) (p = 0.01). However, remodeling indices (end diastolic and end systolic areas, LV circumference) did not improve in the Epo groups, and even worsened in the MTHi group. There was significantly less collagen staining in non-infarct areas in MT1 and MTHi groups compared to MNT and MTLo (0.38 ± 0.3%, 0.49 ± 0.34%, vs 0.89 ± 0.41%, 0.95 ± 0.33%, respectively, p < 0.001). The number of ApopTag positive nucleus was significantly higher in the MNT group compared to the MT1, MTHi, MTLo groups (14.4 ± 8, 7.6 ± 4, 5.8 ± 7, 4.8 ± 5, respectively, p = 0.01 for trend).

Conclusion

Repeated low doses of Epo after MI improved LV function, but the role of Epo on remodeling is not clear. It did not reduce left ventricular indices, but reduces fibrosis and apoptosis. High Epo doses reduced LV function and aggravated remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sutton MGSJ, Sharpe N. Left ventricular remodeling after myocardial infarction. Phathophysiology and therapy. Circulation 2000;101:2981–8.

    PubMed  CAS  Google Scholar 

  2. Pfeffer MA. Left ventricular remodeling after myocardial infarction. Annu Rev Med 1995;46:455–66.

    Article  PubMed  CAS  Google Scholar 

  3. Greenberg B, Quinones MA, Koilpillai C, Limacher M, Shindler D, Benedict C, et al. Effects of long-term enalapril therapy on cardiac structure and function in patients with left ventricular dysfunction. Results of the SOLVD echocardiography substudy. Circulation 1995;91:2573–81.

    PubMed  CAS  Google Scholar 

  4. Di Pasquale P, Bucca V, Scalzo S, Cannizzaro S, Giubilato A, Paterna S. Does the addition of losartan improve the beneficial effects of ACE inhibitors in patients with anterior myocardial infarction? A pilot study. Heart 1999;81:606–11.

    PubMed  Google Scholar 

  5. Cittadini A, Monti MG, Isgaard J, Casaburi C, Stromer H, Di Gianni A, et al. Aldosteron receptor blockade improves left ventricular remodeling and increase ventricular fibrillation threshold in experimental heart faliure. Cardiovasc Res 2003;58:555–64.

    Article  PubMed  CAS  Google Scholar 

  6. Hall SA, Cigarroa CG, Marcoux L, Risser RC, Grayburn PA, Eichhorn EJ. Time course of improvement in left ventricular function, mass and geometry in patients with congestive heart failure treated with beta-adrenergic blockade. J Am Coll Cardiol 1995;25:1154–61.

    Article  PubMed  CAS  Google Scholar 

  7. van der Meer P, Voors AA, Lipsic E, van Gilst WH, van Veldhuisen DJ. Erythropoietin in cardiovascular diseases. Eur Heart J 2004;25:285–91.

    Article  PubMed  Google Scholar 

  8. Siren AL, Fratelli M, Brines M. Erythropoietin prevents neural apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001;98:4044–9.

    Article  PubMed  CAS  Google Scholar 

  9. Van der Meer P, Lipsic E, Boer RA. A functional erythropoietin receptor in a rat heart is linked to anti-apoptotic effects. J Am Coll Cardiol 2003;41:330A.

    Google Scholar 

  10. Wright GL, Hanlon P, Amin K, Steenbergen C, Murphy E, Areasoy M. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia–reperfusion injury. FASEB J 2004;18:1031–3.

    PubMed  CAS  Google Scholar 

  11. Calvillo L, Latini R, Kajstura J, Leri A, Anversa P, Ghezzi P, et al. Recombinant human erythropoietin protects the myocardium from ischemia–reperfusion injury and promotes beneficial remodeling. Proc Natl Acad Sci USA 2003;100:4802–6.

    Article  PubMed  CAS  Google Scholar 

  12. Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, et al. Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia–reperfusion injury. Circulation 2003;108:79–85.

    Article  PubMed  CAS  Google Scholar 

  13. van der Meer P, Lipsic E, Henning RH, de Boer RA, Suurmeijer AJ, van Veldhuisen DJ, et al. Erythropoietin improves left ventricular function and coronary flow in an experimental model of ischemia–reperfusion injury. Eur J Heart Fail 2004;6:853–9.

    PubMed  Google Scholar 

  14. Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 2005;100:397–403.

    Article  PubMed  CAS  Google Scholar 

  15. Parsa CJ, Kim J, Riel RU, Pascal LS, Thompson RB, Petrofski JA, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 2004;279:20655–62.

    Article  PubMed  CAS  Google Scholar 

  16. Moon C, Krawczyk M, Ahn D, Ahmet I, Palik D, Lakatta EG, et al. Erythropoietin reduces myocardial infarction and left ventricular functional decline after coronary artery ligation in rats. Proc Natl Acad Sci USA 2003;100:11612–7.

    Article  PubMed  CAS  Google Scholar 

  17. Parsa CJ, Matsumoto A, Kim J, Riel RU, Pascal LS, Walton GB, et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 2003;112:999–1007.

    Article  PubMed  CAS  Google Scholar 

  18. Tramontano AF, Muniyappa R, Black AD, Blendea MC, Cohen I, Deng L, et al. Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 2003;308:990–4.

    Article  PubMed  CAS  Google Scholar 

  19. Carlini RG, Reyes AA, Rothstein M. Recombinant human erythropoietin stimulates angiogenesis in vitro. Kidney Int 1995;47:740–5.

    Article  PubMed  CAS  Google Scholar 

  20. Ribatti D, Vacca A, Roccaro AM, Crivellato E, Presta M. Erythropoietin as an angiogenic factor. Eur J Clin Invest. 2003;33:891–6.

    Article  PubMed  CAS  Google Scholar 

  21. Ribatti D, Presta M, Vacca A, Ria R, Giuliani R, Dell’Era P, et al. Human erythropoietin induces a pro-angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Blood 1999;93:2627–36.

    PubMed  CAS  Google Scholar 

  22. Anagnostou A, Lee ES, Kessimian N, Levinson R, Steiner M. Erythropoietin has a mitogenic and positive chemotactic effect on endothelial cells. Proc Natl Acad Sci USA 1990;87:5978–82.

    Article  PubMed  CAS  Google Scholar 

  23. Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921–6.

    Article  PubMed  CAS  Google Scholar 

  24. Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1340–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hale SL, Sesti C, Kloner RA. Administration of erythropoietin fails to improve long-term healing or cardiac function after myocardial infarction in the rat. J Cardiovasc Pharmacol 2005;46:211–5.

    Article  PubMed  CAS  Google Scholar 

  26. van der Meer P, Lipsic E, Henning RH, Boddeus K, van der Velden J, Voors AA, et al. Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 2005;46:125–33.

    Article  PubMed  Google Scholar 

  27. Nishiya D, Omura T, Shimada K, et al. Effects of erythropoietin on cardiac remodeling after myocardial infarction. J Pharmacol Sci 2006;101:31–9.

    Article  PubMed  CAS  Google Scholar 

  28. Chong ZZ, Lin SH, Kang JQ, Maiese K. Erythropoietin prevents early and late neuronal demise through modulation of Akt1 and induction of caspase 1, 3, and 8. J Neurosci Res 2003;71:659–69.

    Article  PubMed  CAS  Google Scholar 

  29. Shi Y, Rafiee P, Su J, Pritchard KA Jr, Tweddell JS, Baker JE. Acute cardioprotective effects of erythropoietin in infant rabbits are mediated by activation of protein kinases and potassium channels. Basic Res Cardiol 2004;99:173–82.

    Article  PubMed  CAS  Google Scholar 

  30. Weber KT. Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 1997;96:4065–82.

    PubMed  CAS  Google Scholar 

  31. Li L, Takemura G, Li Y, Miyata S, Esaki M, Okada H, et al. Preventive effect of erythropoietin on cardiac dysfunction in doxorubicin-induced cardiomyopathy. Circulation 2006;113:535–43.

    Article  PubMed  CAS  Google Scholar 

  32. Dhalla NS, Elmoselhi AB, Hata T, Makino N. Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 2000;7:46–56.

    Google Scholar 

  33. Chattopadhyay A, Choudhury TD, Bandyopadhyay D, Datta AG. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem Pharmacol 2000;59:419–25.

    Article  PubMed  CAS  Google Scholar 

  34. Horackova M, Ponka P, Byczko Z. The antioxidant effects of a novel iron chelator salicylaldehyde isonicotinoyl hydrazone in the prevention of H2O2 injury in adult cardiomyocytes. Cardiovasc Res 2000;47:529–36.

    Article  PubMed  CAS  Google Scholar 

  35. Bor-Kucukatay M, Yalcin O, Meiselman HJ, Baskurt OK. Erythropoietin-induced rheological changes of rat erythrocytes. Br J Haematol. 2000;110:82–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ruschitzka FT, Wenger RH, Stallmach T, Quaschning T, de Wit C, Wagner K, et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc Natl Acad Sci USA. 2000;97:11609–13.

    Article  PubMed  CAS  Google Scholar 

  37. Roger SD, Baker LR, Raine AE. Autonomic dysfunction and the development of hypertension in patients treated with recombinant human erythropoietin (r-HuEPO). Clin Nephrol 1993;39:103–10.

    PubMed  CAS  Google Scholar 

  38. Quaschning T, Ruschitzka F, Stallmach T, Shaw S, Morawietz H, Goettsch W, et al. Erythropoietin-induced excessive erythrocytosis activates the tissue endothelin system in mice. FASEB J 2003;17:259–61.

    PubMed  CAS  Google Scholar 

  39. Tobu M, Iqbal O, Fareed D, Chatha M, Hoppensteadt D, Bansal V, et al. Erythropoietin-induced thrombosis as a result of increased inflammation and thrombin activatable fibrinolytic inhibitor. Clin Appl Thromb Hemost 2004;10:225–32.

    Article  PubMed  CAS  Google Scholar 

  40. Spiess BD, Ley C, Body SC, Siegel LC, Stover EP, Maddi R, et al. Hematocrit value on intensive care unit entry influences the frequency of Q-wave myocardial infarction after coronary artery bypass grafting. The Institutions of the Multicenter Study of Perioperative Ischemia (McSPI) Research Group. J Thorac Cardiovasc Surg 1998;116: 460–7.

    Article  PubMed  CAS  Google Scholar 

  41. Lipsic E, van der Meer P, Voors AA, Westenbrink BD, van den Heuvel AF, de Boer HC, et al. A single bolus of a long-acting erythropoietin analogue darbepoetin alfa in patients with acute myocardial infarction: a randomized feasibility and safety study. Cardiovasc Drugs Ther 2006;20:135–41.

    Article  PubMed  CAS  Google Scholar 

  42. Fiordaliso F, Chimenti S, Staszewsky L, Bai A, Carlo E, Cuccovillo I, et al. A nonerythropoietic derivative of erythropoietin protects the myocardium from ischemia–reperfusion injury. Proc Natl Acad Sci USA 2005;102:2046–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the David Halperne Chair in Cellular and Molecular Cardiology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Battler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Dor, I., Hardy, B., Fuchs, S. et al. Repeated Low-dose of Erythropoietin is Associated with Improved Left Ventricular Function in Rat Acute Myocardial Infarction Model. Cardiovasc Drugs Ther 21, 339–346 (2007). https://doi.org/10.1007/s10557-007-6049-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-007-6049-8

Key words

Navigation