Skip to main content

Advertisement

Log in

The Cardioprotective Effect of a Statin and Cilostazol Combination: Relationship to Akt and Endothelial Nitric Oxide Synthase Activation

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Atorvastatin (ATV) protects against ischemia-reperfusion by upregulating Akt and subsequently, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser-1177. However, when given orally, high doses of ATV (10 mg/kg/d) are needed to achieve maximal protective effect in the rat. Protein kinase A (PKA) also phosphorylates eNOS at Ser-1177. As PKA activity depends on cAMP, cilostazol (CIL), a phosphodiesterase type III inhibitor, may stimulate NO production by activating PKA. Hypothesis: CIL and ATV may have synergistic effects on eNOS phosphorylation and myocardial infarct size (IS) reduction.

Methods

Sprague-Dawley rats received 3-day oral pretreatment with: (1) water; (2) low dose ATV (2 mg/kg/d); (3) CIL (20 mg/kg/d): (4) ATV+CIL. Rats underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts explanted for immunoblotting without being subjected to ischemia. Area at risk (AR) was assessed by blue dye and IS by triphenyl–tetrazolium–chloride.

Results

Body weight and the size of AR were comparable among groups. There were no significant differences among groups in mean blood pressure and heart rate. CIL, but not ATV, reduced IS. IS in the ATV+CIL group was significantly smaller than the other three groups (P < 0.001 for each comparison). ATV, CIL and their combination did not affect total eNOS expression. ATV at 2 mg/kg/d did not affect Ser-1177 P-eNOS levels, whereas CIL increased it (258 ± 15%). The level of myocardial P-eNOS levels was highest in the ATV+CIL group (406 ± 7%).

Conclusions

ATV and CIL have synergistic effect on eNOS phosphorylation and IS reduction. By increased activation of eNOS, CIL may augment the pleiotropic effects of statins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atar S, Ye Y, Lin Y, Freeberg SY, Nishi SP, Rosanio S, et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol 2006;290:H1960–8.

    Article  PubMed  CAS  Google Scholar 

  2. Birnbaum Y, Ashitkov T, Uretsky BF, Ballinger S, Motamedi M. Reduction of infarct size by short-term pretreatment with atorvastatin. Cardiovasc Drugs Ther 2003;17:25–30.

    Article  PubMed  CAS  Google Scholar 

  3. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu Z-Y, Schwarz ER, et al. Prostaglandins mediate the cardioprotective effects of atorvastatin against ischemia-reperfusion injury. Cardiovasc Res 2005;65:345–55.

    Article  PubMed  CAS  Google Scholar 

  4. Jones S, Gibson M, Rimmer D, Gibson T, Sharp B, Lefer D. Direct vascular and cardioprotective effects of rosuvastatin, a new HMG-CoA reductase inhibitor. J Am Coll Cardiol 2002;40:1172–8.

    Article  PubMed  CAS  Google Scholar 

  5. Jones SP, Trocha SD, Lefer DJ. Pretreatment with simvastatin attenuates myocardial dysfunction after ischemia and chronic reperfusion. Arterioscler Thromb Vasc Biol 2001;21:2059–64.

    Article  PubMed  CAS  Google Scholar 

  6. Rosanio S, Ye Y, Atar S, Rahman AM, Freeberg SY, Huang MH, et al. Enhanced cardioprotection against ischemia-reperfusion injury with combining sildenafil with low-dose atorvastatin. Cardiovasc Drugs Ther 2006;20:27–36.

    Article  PubMed  CAS  Google Scholar 

  7. Sanada S, Asanuma H, Minamino T, Node K, Takashima S, Okuda H, et al. Optimal windows of statin use for immediate infarct limitation: 5′-nucleotidase as another downstream molecule of phosphatidylinositol 3-kinase. Circulation. 2004;110:2143–9.

    Article  PubMed  CAS  Google Scholar 

  8. Scalia R, Gooszen ME, Jones SP, Hoffmeyer M, Rimmer DM, 3rd, Trocha SD, et al. Simvastatin exerts both anti-inflammatory and cardioprotective effects in apolipoprotein E-deficient mice. Circulation 2001;103:2598–603.

    PubMed  CAS  Google Scholar 

  9. Tavackoli S, Ashitkov T, Hu ZY, Motamedi M, Uretsky BF, Birnbaum Y. Simvastatin-induced myocardial protection against ischemia-reperfusion injury is mediated by activation of ATP-sensitive K+ channels. Coron Artery Dis 2004;15:53–8.

    Article  PubMed  Google Scholar 

  10. Tiefenbacher CP, Kapitza J, Dietz V, Lee CH, Niroomand F. Reduction of myocardial infarct size by fluvastatin. Am J Physiol Heart Circ Physiol 2003;285:H59–64.

    PubMed  CAS  Google Scholar 

  11. Wayman NS, Ellis BL, Thiemermann C. Simvastatin reduces infarct size in a model of acute myocardial ischemia and reperfusion in the rat. Med Sci Monit 2003;9:BR155–9.

    PubMed  CAS  Google Scholar 

  12. Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, et al. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the phosphatidylinositide 3-kinase/Akt pathway. J Cardiovasc Pharmacol 2004;44:348–55.

    Article  PubMed  CAS  Google Scholar 

  13. Wolfrum S, Grimm M, Heidbreder M, Dendorfer A, Katus HA, Liao JK, et al. Acute reduction of myocardial infarct size by a hydroxymethyl glutaryl coenzyme A reductase inhibitor is mediated by endothelial nitric oxide synthase. J Cardiovasc Pharmacol 2003;41:474–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, et al. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol 2006;291:H1158–69.

    Article  PubMed  CAS  Google Scholar 

  15. Yamakuchi M, Greer JJ, Cameron SJ, Matsushita K, Morrell CN, Talbot-Fox K, et al. HMG-CoA reductase inhibitors inhibit endothelial exocytosis and decrease myocardial infarct size. Circ Res 2005;96:1185–92.

    Article  PubMed  CAS  Google Scholar 

  16. Bell RM, Yellon DM. Atorvastatin, administered at the onset of reperfusion, and independent of lipid lowering, protects the myocardium by up-regulating a pro-survival pathway. J Am Coll Cardiol 2003;41:508–15.

    Article  PubMed  CAS  Google Scholar 

  17. Efthymiou CA, Mocanu MM, Yellon DM. Atorvastatin and myocardial reperfusion injury: new pleiotropic effect implicating multiple prosurvival signaling. J Cardiovasc Pharmacol 2005;45:247–52.

    Article  PubMed  CAS  Google Scholar 

  18. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004;61:448–60.

    Article  PubMed  CAS  Google Scholar 

  19. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 2000;6:1004–10.

    Article  PubMed  CAS  Google Scholar 

  20. Skaletz-Rorowski A, Lutchman M, Kureishi Y, Lefer DJ, Faust JR, Walsh K. HMG-CoA reductase inhibitors promote cholesterol-dependent Akt/PKB translocation to membrane domains in endothelial cells. Cardiovasc Res 2003;57:253–64.

    Article  PubMed  CAS  Google Scholar 

  21. Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron O. Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 2001;89:866–73.

    Article  PubMed  CAS  Google Scholar 

  22. Mensah K, Mocanu MM, Yellon DM. Failure to protect the myocardium against ischemia/reperfusion injury after chronic atorvastatin treatment is recaptured by acute atorvastatin treatment: a potential role for phosphatase and tensin homolog deleted on chromosome ten? J Am Coll Cardiol 2005;45:1287–91.

    Article  PubMed  CAS  Google Scholar 

  23. Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, et al. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circ Physiol 2004;287:H560–6.

    Article  PubMed  CAS  Google Scholar 

  24. Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, et al. Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol 1999;34:2120–5.

    Article  PubMed  CAS  Google Scholar 

  25. Birnbaum Y, Ye Y, Lin Y, Uretsky BF, Kitakaze M, Perez-Polo JR. Mechanisms of myocardial protection by atorvastatin: 5′-Nucleotidase is upstream to eNOS activation [abstract]. Circ Res 2006;99:E26.

    Google Scholar 

  26. Gao F, Christopher TA, Lopez BL, Friedman E, Cai G, Ma XL. Mechanism of decreased adenosine protection in reperfusion injury of aging rats. Am J Physiol Heart Circ Physiol 2000;279:H329–38.

    PubMed  CAS  Google Scholar 

  27. Smits P, Williams SB, Lipson DE, Banitt P, Rongen GA, Creager MA. Endothelial release of nitric oxide contributes to the vasodilator effect of adenosine in humans. Circulation 1995;92:2135–41.

    PubMed  CAS  Google Scholar 

  28. Sobrevia L, Yudilevich DL, Mann GE. Activation of A2-purinoceptors by adenosine stimulates l-arginine transport (system y+) and nitric oxide synthesis in human fetal endothelial cells. J Physiol 1997;499:135–40.

    PubMed  CAS  Google Scholar 

  29. Lee TM, Su SF, Chou TF, Tsai CH. Effect of pravastatin on myocardial protection during coronary angioplasty and the role of adenosine. Am J Cardiol 2001;88:1108–13.

    Article  PubMed  CAS  Google Scholar 

  30. Ye Y, Lin Y, Perez-Polo JR, Huang MH, Hughes MG, McAdoo DJ, et al. Enhanced cardioprotection against ischemia-reperfusion injury with a dipyridamole and low-dose atorvastatin combination. Am J Physiol Heart Circ Physiol 2007 (in press).

  31. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, et al. Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation 2006;114:929–35.

    Article  PubMed  CAS  Google Scholar 

  32. Kambayashi J, Liu Y, Sun B, Shakur Y, Yoshitake M, Czerwiec F. Cilostazol as a unique antithrombotic agent. Curr Pharm Des 2003;9:2289–302.

    Article  PubMed  CAS  Google Scholar 

  33. Hiatt WR. Pharmacologic therapy for peripheral arterial disease and claudication. J Vasc Surg 2002;36:1283–91.

    Article  PubMed  Google Scholar 

  34. Hashimoto A, Miyakoda G, Hirose Y, Mori T. Activation of endothelial nitric oxide synthase by cilostazol via a cAMP/protein kinase A- and phosphatidylinositol 3-kinase/Akt-dependent mechanism. Atherosclerosis 2006;189:350–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hong KW, Kim KY, Shin HK, Lee JH, Choi JM, Kwak YG, et al. Cilostazol prevents tumor necrosis factor-alpha-induced cell death by suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and activation of Akt/cyclic AMP response element-binding protein phosphorylation. J Pharmacol Exp Ther 2003;306:1182–90.

    Article  PubMed  CAS  Google Scholar 

  36. Kim KY, Shin HK, Lee JH, Kim CD, Lee WS, Rhim BY, et al. Cilostazol enhances casein kinase 2 phosphorylation and suppresses tumor necrosis factor-alpha-induced increased phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and apoptotic cell death in SK-N-SH cells. J Pharmacol Exp Ther 2004;308:97–104.

    Article  PubMed  CAS  Google Scholar 

  37. Lee JH, Park SY, Lee WS, Hong KW. Lack of antiapoptotic effects of antiplatelet drug, aspirin and clopidogrel, and antioxidant, MCI-186, against focal ischemic brain damage in rats. Neurol Res 2005;27:483–92.

    Article  PubMed  CAS  Google Scholar 

  38. Lee JH, Kim KY, Lee YK, Park SY, Kim CD, Lee WS, et al. Cilostazol prevents focal cerebral ischemic injury by enhancing casein kinase 2 phosphorylation and suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation in rats. J Pharmacol Exp Ther 2004;308:896–903.

    Article  PubMed  Google Scholar 

  39. Liu Y, Fong M, Cone J, Wang S, Yoshitake M, Kambayashi J. Inhibition of adenosine uptake and augmentation of ischemia-induced increase of interstitial adenosine by cilostazol, an agent to treat intermittent claudication. J Cardiovasc Pharmacol 2000;36:351–60.

    Article  PubMed  CAS  Google Scholar 

  40. Wakida K, Morimoto N, Shimazawa M, Hozumi I, Nagase H, Inuzuka T, et al. Cilostazol reduces ischemic brain damage partly by inducing metallothionein-1 and -2. Brain Res 2006;1116:187–93.

    Article  PubMed  CAS  Google Scholar 

  41. Birnbaum Y, Lin Y, Ye Y, Martinez JD, Huang M-H, Lui CY, et al. Aspirin before reperfusion blunts the infarct size limiting effect of atorvastatin. Am J Physiol Heart Circ Physiol 2007:In press.

  42. Wojcik WJ, Neff NH. Adenosine measurement by a rapid HPLC-fluorometric method: induced changes of adenosine content in regions of rat brain. J Neurochem 1982;39:280–2.

    Article  PubMed  CAS  Google Scholar 

  43. Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA. Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 2001;32:980–6.

    PubMed  CAS  Google Scholar 

  44. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA, et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci USA 1998;95:8880–5.

    Article  PubMed  CAS  Google Scholar 

  45. Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, et al. Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem 2002;277:3388–96.

    Article  PubMed  CAS  Google Scholar 

  46. Dixit M, Loot AE, Mohamed A, Fisslthaler B, Boulanger CM, Ceacareanu B, et al. Gab1, SHP2, and protein kinase A are crucial for the activation of the endothelial NO synthase by fluid shear stress. Circ Res 2005;97:1236–44.

    Article  PubMed  CAS  Google Scholar 

  47. Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    PubMed  CAS  Google Scholar 

  48. Yayama K, Hiyoshi H, Imazu D, Okamoto H. Angiotensin II stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension 2006;48:958–64.

    Article  PubMed  CAS  Google Scholar 

  49. Cai Z, Semenza GL. PTEN activity is modulated during ischemia and reperfusion: involvement in the induction and decay of preconditioning. Circ Res 2005;97:1351–9.

    Article  PubMed  CAS  Google Scholar 

  50. Mocanu MM, Yellon DM. PTEN, the Achilles’ heel of myocardial ischaemia/reperfusion injury? Br J Pharmacol 2007;150:833–8.

    Article  PubMed  CAS  Google Scholar 

  51. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 2004;37:449–71.

    Article  PubMed  CAS  Google Scholar 

  52. Krieg T, Qin Q, McIntosh EC, Cohen MV, Downey JM. ACh and adenosine activate PI3-kinase in rabbit hearts through transactivation of receptor tyrosine kinases. Am J Physiol Heart Circ Physiol 2002;283:H2322–30.

    PubMed  CAS  Google Scholar 

  53. Li J, Fenton RA, Wheeler HB, Powell CC, Peyton BD, Cutler BS, et al. Adenosine A2a receptors increase arterial endothelial cell nitric oxide. J Surg Res 1998;80:357–64.

    Article  PubMed  CAS  Google Scholar 

  54. Vials A, Burnstock G. A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide. Br J Pharmacol 1993;109:424–9.

    PubMed  CAS  Google Scholar 

  55. Ye Y, Ramanna M, Lin Y, Martinez JD, Uretsky BF, Polo JRP-, et al. The role of adenosine in activation of endothelial nitric oxide synthase (eNOS) by atorvastatin: adenosine, generated by ecto-5′-nucleotidase, is needed for Akt phosphorylation by phosphorylated 3-phosphoinositide-dependent kinase 1 (PDK1)[Abstract]. J Am Col Cardiol 2007;49:184A.

    Article  Google Scholar 

  56. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Huang MH, Perez-Polo JR, et al. Aspirin augments 15-epi-lipoxin A(4) production by lipopolysaccharide, but blocks the pioglitazone and atorvastatin induction of 15-epi-lipoxin A(4) in the rat heart. Prostaglandins Other Lipid Mediat 2007;83:89–98.

    Article  PubMed  CAS  Google Scholar 

  57. Tsuchikane E, Katoh O, Sumitsuji S, Fukuhara A, Funamoto M, Otsuji S, et al. Impact of cilostazol on intimal proliferation after directional coronary atherectomy. Am Heart J 1998;135:495–502.

    Article  PubMed  CAS  Google Scholar 

  58. Kunishima T, Musha H, Eto F, Iwasaki T, Nagashima J, Masui Y, et al. A randomized trial of aspirin versus cilostazol therapy after successful coronary stent implantation. Clin Ther 1997;19:1058–66.

    Article  PubMed  CAS  Google Scholar 

  59. Sekiya M, Funada J, Watanabe K, Miyagawa M, Akutsu H. Effects of probucol and cilostazol alone and in combination on frequency of poststenting restenosis. Am J Cardiol. 1998;82:144–7.

    Article  PubMed  CAS  Google Scholar 

  60. Ochiai M, Eto K, Takeshita S, Yokoyama N, Oshima A, Kondo K, et al. Impact of cilostazol on clinical and angiographic outcome after primary stenting for acute myocardial infarction. Am J Cardiol 1999;84:1074–6, A6, A9.

    Google Scholar 

  61. Park SW, Lee CW, Kim HS, Lee HJ, Park HK, Hong MK, et al. Comparison of cilostazol versus ticlopidine therapy after stent implantation. Am J Cardiol 1999;84:511–4.

    Article  PubMed  CAS  Google Scholar 

  62. Ge J, Han Y, Jiang H, Sun B, Chen J, Zhang S, et al. RACTS: a prospective randomized antiplatelet trial of cilostazol versus ticlopidine in patients undergoing coronary stenting: long-term clinical and angiographic outcome. J Cardiovasc Pharmacol 2005;46:162–6.

    Article  PubMed  CAS  Google Scholar 

  63. Douglas JS, Jr., Holmes DR, Jr., Kereiakes DJ, Grines CL, Block E, Ghazzal ZM, et al. Coronary stent restenosis in patients treated with cilostazol. Circulation 2005;112:2826–32.

    Article  PubMed  CAS  Google Scholar 

  64. Inoue T, Uchida T, Sakuma M, Imoto Y, Ozeki Y, Ozaki Y, et al. Cilostazol inhibits leukocyte integrin Mac-1, leading to a potential reduction in restenosis after coronary stent implantation. J Am Coll Cardiol 2004;44:1408–14.

    Article  PubMed  CAS  Google Scholar 

  65. Lee JH, Oh GT, Park SY, Choi JH, Park JG, Kim CD, et al. Cilostazol reduces atherosclerosis by inhibition of superoxide and tumor necrosis factor-alpha formation in low-density lipoprotein receptor-null mice fed high cholesterol. J Pharmacol Exp Ther 2005;313:502–9.

    Article  PubMed  CAS  Google Scholar 

  66. Saitoh S, Saito T, Otake A, Owada T, Mitsugi M, Hashimoto H, et al. Cilostazol, a novel cyclic AMP phosphodiesterase inhibitor, prevents reocclusion after coronary arterial thrombolysis with recombinant tissue-type plasminogen activator. Arterioscler Thromb 1993;13:563–70.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by a grant from the Edward D. and Sally M. Futch Endowment of the Division of Cardiology, UTMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yochai Birnbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manickavasagam, S., Ye, Y., Lin, Y. et al. The Cardioprotective Effect of a Statin and Cilostazol Combination: Relationship to Akt and Endothelial Nitric Oxide Synthase Activation. Cardiovasc Drugs Ther 21, 321–330 (2007). https://doi.org/10.1007/s10557-007-6036-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-007-6036-0

Key words

Navigation