Skip to main content
Log in

CVT-4325 Inhibits Myocardial Fatty Acid Uptake and Improves Left Ventricular Systolic Function without Increasing Myocardial Oxygen Consumption in Dogs with Chronic Heart Failure

  • Basic Research
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Background

Inhibition of myocardial fatty acid oxidation has been suggested as a therapeutic approach for improving cardiac function in chronic heart failure (HF). The novel piperazine derivative CVT-4325 was shown to inhibit fatty acid oxidation in cardiac mitochondria and in isolated perfused rat hearts. In the present study, we tested the hemodynamic and metabolic effects of acute intravenous CVT-4325 in dogs with HF.

Methods and results

HF (LV ejection fraction ≤35%) was created in eight dogs by multiple sequential intracoronary microembolizations. Treatment with CVT-4325 administered intravenously as 0.5 mg/kg bolus followed by a continuous infusion of 0.8 mg/kg/h for 40 min reduced free fatty acid (FFA) uptake (4.51 ± 0.96 to 1.65 ± 0.32 μmols/min, p < 0.04), coronary blood flow (56 ± 3 to 46 ± 4 ml/min, p < 0.01), and myocardial oxygen consumption (MVO2) (240 ± 23 to 172 ± 7 μmols/min, p < 0.03), and increased LV ejection fraction (30 ± 2 to 37 ± 1%, p < 0.0001). In the same study, but on a different day, the same dogs were treated with an inactive analogue of CVT-4325 (CVT-2540), and no hemodynamic or metabolic effects were observed.

Conclusions

In dogs with HF, acute intravenous infusion of CVT-4325 reduces FFA uptake and improves LV systolic function without increasing MVO2. The improvement in LV systolic function in the absence of an increase in MVO2 and a lower FFA uptake is consistent with the concept that inhibition of myocardial fatty acid oxidation may be an effective treatment for HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LV:

left ventricular

HF:

heart failure

FFA:

free fatty acid

MVO2 :

myocardial oxygen consumption

EF:

LV ejection fraction

EDV:

LV end-diastolic volume

ESV:

LV end-systolic volume

SV:

stroke volume

CBF:

total LV coronary blood flow

LCX:

left circumflex coronary artery

ATP:

adenosine triphosphate

ADP:

adenosine diphosphate

References

  1. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093–129.

    Article  PubMed  CAS  Google Scholar 

  2. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 2004;95:135–45.

    Article  PubMed  CAS  Google Scholar 

  3. Mjos OD. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 1971;50:1386–9.

    Article  PubMed  CAS  Google Scholar 

  4. Korvald C, Elvenes OP, Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol 2000;278:H1345–51.

    PubMed  CAS  Google Scholar 

  5. Simonsen S, Kjekshus JK. The effect of free fatty acids on myocardial oxygen consumption during atrial pacing and catecholamine infusion in man. Circulation 1978;58:484–91.

    PubMed  CAS  Google Scholar 

  6. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, Gropler RJ. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271–7.

    Article  PubMed  CAS  Google Scholar 

  7. Recchia FA, McConnell PI, Bernstein RD, Vogel TR, Xu X, Hintze TH. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 1998;83:969–79.

    PubMed  CAS  Google Scholar 

  8. Lei B, Lionetti V, Young ME, Chandler MP, d’Agostino C, Kang E, et al. Paradoxical downregulation of the glucose oxidation pathway despite enhanced flux in severe heart failure. J Mol Cell Cardiol 2004;36:567–76.

    Article  PubMed  CAS  Google Scholar 

  9. Paolisso G, Gambardella A, Galzerano D, D’Amore A, Rubino P, Verza M, et al. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism 1994;43:174–9.

    Article  PubMed  CAS  Google Scholar 

  10. Chandler MP, Kerner J, Huang H, Vazquez E, Reszko A, Martini WZ, et al. J, Huang H et al. Moderate severity heart failure does not involve a downregulation of myocardial fatty acid oxidation. Am J Physiol Heart Circ Physiol 2004;287:H1538–43.

    Article  PubMed  CAS  Google Scholar 

  11. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 2005;112:3280–8.

    Article  PubMed  CAS  Google Scholar 

  12. Lee L, Horowitz J, Frenneaux M. Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004;25:634–41.

    Article  PubMed  CAS  Google Scholar 

  13. Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, et al. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodeling and delays decompensation in pacing-induced heart failure. Cardiovasc Res 2005;66:454–61.

    Article  PubMed  CAS  Google Scholar 

  14. Vitale C, Wajngaten M, Sposato B, Gebara O, Rossini P, Fini M, et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J 2004;25:1814–21.

    Article  PubMed  CAS  Google Scholar 

  15. Belardinelli R, Purcaro A. Effects of trimetazidine on the contractile response of chronically dysfunctional myocardium to low-dose dobutamine in ischaemic cardiomyopathy. Eur Heart J 2001;22:2164–70.

    Article  PubMed  CAS  Google Scholar 

  16. Rosano GM, Vitale C, Sposato B, Mrtcuro G, Fini M. Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol 2003;2:16.

    Article  PubMed  Google Scholar 

  17. Elzein E, Ibrahim P, Koltun DO, Rehder K, Shenk KD, Marquart TA, et al. CVT-4325: a potent fatty acid oxidation inhibitor with favorable oral bioavailability. Bioorg Med Chem Lett 2004;14:6017–21.

    Article  PubMed  CAS  Google Scholar 

  18. Fraser H, Ibrahim P, Blackburn BK, Belardinelli L. Conditional-dependent effects of CVT-4325, a novel fatty acid oxidation inhibitor, on palmitate utilization. J Am Coll Cardiol 2003;41(suppl 1):253A.

    Article  Google Scholar 

  19. Sabbah HN, Stein PD, Kono T, Gheorghiade TB, Levine S, Jafri ET, et al. A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. Am J Physiol 1991;260:H1379–84.

    PubMed  CAS  Google Scholar 

  20. Sabbah HN, Shimoyama H, Kono T, Gupta RC, Sharov VG, Scicli G, et al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation 1994;89:2852–9.

    PubMed  CAS  Google Scholar 

  21. Chandler MP, Stanley WC, Morita H, Suzuki G, Roth BA, Blackburn B, et al. Short-term treatment with ranolazine improves mechanical efficiency in dogs with chronic heart failure. Circ Res 2002;91:278–80.

    Article  PubMed  CAS  Google Scholar 

  22. Dodge HT, Sandler H, Baxley WA, Hawley RR. Usefulness and limitations of radiographic methods for determining left ventricular volume. Am J Cardiol 1966;18:10–24.

    Article  PubMed  CAS  Google Scholar 

  23. Nikolaidis LA, Hentosz T, Doverspike A, Huerbin R, Stolarski C, Shen YT, et al. Catecholamine stimulation is associated with impaired myocardial O(2) utilization in heart failure. Cardiovasc Res 2002;53:392–404.

    Article  PubMed  CAS  Google Scholar 

  24. Nikolaidis LA, Trumble D, Hentosz T, Doverspike A, Huerbin R, Mathier MA, et al. Catecholamines restore myocardial contractility in dilated cardiomyopathy at the expense of increased coronary blood flow and myocardial oxygen consumption (MvO2 cost of catecholamines in heart failure). Eur J Heart Fail 2004;6:409–19.

    Article  PubMed  CAS  Google Scholar 

  25. Stanley WC. Ranolazine: new approach for the treatment of stable angina pectoris. Expert Rev Cardiovasc Ther 2005;3:821–9.

    Article  PubMed  CAS  Google Scholar 

  26. Bersin RM, Wolfe C, Kwasman M, Lau D, Klinski C, Tanaka K, et al. Improved hemodynamic function and mechanical efficiency in congestive heart failure with sodium dichloroacetate. J Am Coll Cardiol 1994;23:1617–24.

    Article  PubMed  CAS  Google Scholar 

  27. Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, et al. Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 2001;104:2407–11.

    Article  PubMed  CAS  Google Scholar 

  28. Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, et al. Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 1999;85:437–45.

    PubMed  CAS  Google Scholar 

  29. Nelson GS, Berger RD, Fetics BJ, Talbot M, Spinelli JC, Hare JM, et al. Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle–branch block. Circulation 2000;102:3053–9.

    PubMed  CAS  Google Scholar 

  30. Stanley WC, Chandler MP. Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 2002;7:115–30.

    Article  PubMed  CAS  Google Scholar 

  31. Borst P, Loos JA, Christ EJ, Slater EC. Uncoupling activity of long-chain fatty acids. Biochem Biophys Acta 1962;62:509–18.

    Article  PubMed  CAS  Google Scholar 

  32. Pressman BC, Lardy HA. Effects of surface active agents on the latent ATPase of mitochondria. Biochem Biophys Acta 1956;21:458–66.

    Article  PubMed  CAS  Google Scholar 

  33. Panchal AR, Stanley WC, Kerner J, Sabbah HN. Beta-receptor blockade decreases carnitine palmitoyl transferase I activity in dogs with heart failure. J Card Fail 1998;4: 121–6.

    Article  PubMed  CAS  Google Scholar 

  34. Sabbah HN, Sharov V, Riddle JM, Kono T, Lesch M, Goldstein S. Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1992;24:1333–47.

    Article  PubMed  CAS  Google Scholar 

  35. Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol 1998;30:1757–62.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani N. Sabbah.

Additional information

Supported, in part, by a research grant from CV Therapeutics, Inc., and by a Program Project Grant from the National heart, Lung, and Blood Institute PO1 HL074237-03.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imai, M., Rastogi, S., Sharma, N. et al. CVT-4325 Inhibits Myocardial Fatty Acid Uptake and Improves Left Ventricular Systolic Function without Increasing Myocardial Oxygen Consumption in Dogs with Chronic Heart Failure. Cardiovasc Drugs Ther 21, 9–15 (2007). https://doi.org/10.1007/s10557-006-0496-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-006-0496-5

Key words

Navigation