Mathematical Modeling of Non-Stationary Modes of a Helium Liquefier

Dynamic models of a heat exchanger, a turboexpander, a helium phase separator, and a dynamic model of the entire helium liquefaction installation were created. This model is necessary for modeling unsteady operating conditions of a helium liquefier. When creating models for heat exchangers, laws of conservation of energy of flows, heat transfer walls, the core and body of heat exchangers were used along with laws of conservation of energy and mass for the helium phase separator. The system of equations for unknown values in exact coordinates and time is solved by the finite difference method. The obtained results adequately describe the unsteady processes taking place in the installation.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1.

    A. V. Delkov, A. A. Kishkin, N. A. Lavrov, and F. V. Tanasienko, “Analysis of the effectiveness of systems providing the thermal regime of spacecraft,” Khim. Neftegaz. Mashinostr., No. 10, 45–48 (2015).

    Google Scholar 

  2. 2.

    N. A. Lavrov and S. I. Khutsieva, “Modeling the operation of helium liquefiers,” Delovoj Zhurnal Neftegaz.RU, No. 2, 38–42 (2019).

  3. 3.

    N. A. Lavrov and S. I. Khutsiva, “Helium liquefiers: Comparison of calculation methods for determining optimal parameters,” Delovoj Zhurnal Neftegaz.RU, No. 4, 46–48 (2017).

  4. 4.

    E. M. Strizhenov, S. S. Chugaev, and A. A. Zherdev, “A mathematical model of the process of circulating filling of an adsorption methane storage system,” Khim. Neftegaz. Mashinostr., No. 10, 38–43 (2018).

    Google Scholar 

  5. 5.

    I. A. Arkharov, R. R. Nagimov, E. S. Navasardyan, and A. N. Koveshnikov, “On the issue of cost optimization in the design of modern cryogenic complexes of large superconducting systems,” Khim. Neftegaz. Mashinostr., No. 1, 19–22 (2015).

    Google Scholar 

  6. 6.

    E. S. Navasardyan, I. A. Arkharov, and R. R. Nagimov, “Tasks and development of methods for dynamic modeling of cryogenic systems,” Khim. Neftegaz. Mashinostr., No. 7, 24–27 (2016).

    Google Scholar 

  7. 7.

    E. S. Navasardyan, I. A. Arkharov, and K. V. Mokhov, “Transient processes in air separation plants,” Chem. Petrol. Eng.,54, No. 11–12, 821–826 (2019).

    Article  Google Scholar 

  8. 8.

    N. A. Lavrov, A Multilevel System for Modeling Non-Stationary and Changing Operating Modes of Low-Temperature Installations [in Russian], Moscow (2013) 293 p.

  9. 9.

    I. K. Butkevich, “Automation of cryogenic helium plants and systems: problems and solutions,” Tekhnicheskie Gazy, No. 5, 41–46 (2010).

    Google Scholar 

  10. 10.

    I. K. Butkevich and V. V. Sirenev, “Increasing the efficiency of commercial helium liquefiers,” Chem. Petrol. Eng.,55, I. 1–2, 33–42 (2019).

  11. 11.

    R. D. McCarty and V. D. Arp, A New Wide Range Equation of State for Helium in Advances in Cryogenic Engineering, Springer, Boston, MA (1990) p. 1465–1475.

    Google Scholar 

  12. 12.

    O. K. Krasnikova, Twisted Heat Exchangers of Cryogenic and Heat Power Plants [in Russian], KolosS, Moscow (2008).

    Google Scholar 

  13. 13.

    M. P. Malkov, Handbook of the Physical and Technical Fundamentals of Cryogenics [in Russian], Energoatomizdat, Moscow (1985).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. A. Lavrov.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, Vol. 56, No. 4, pp. 33−36, April 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavrov, N.A., Khutsieva, S.I. & Butkevich, I.K. Mathematical Modeling of Non-Stationary Modes of a Helium Liquefier. Chem Petrol Eng 56, 302–309 (2020).

Download citation


  • helium liquefier
  • mathematical modeling
  • dynamic modes
  • finite difference method