Method for Determining Fatigue Limit Taking Into Account the Effect of a Surface Layer

A method is proposed for determining the fatigue limit of metallic material components based on measuring hardness, production residual stresses, surface roughness, and some other parameters. A dependence is given for fatigue limit on surface layer quality parameters. Application of the method is demonstrated on the example of steels 30KhGSNA, U8, titanium alloy VT3-1, and aluminum alloy D16 after different treatment.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1.

    A. M. Shchipachev, E. A. Naumkin, and T. F. Musairov, “Evaluation of the level of accumulated damage for metals based on neuron-counting modeling,” Neftegaz. Delo, 13, No. 3, 160–165 (2015).

    Google Scholar 

  2. 2.

    A. M. Shchipachev, “Models for evaluation of endurance with cyclic loading taking account of surface layer modification,” Neftegaz. Delo, 13, No. 3, 171–175 (2015).

    Google Scholar 

  3. 3.

    A. M. Shchipachev, R. R. Khakimova, and L. R. Chernyakhovskaya, “Prediction of metal fatigue strength properties taking account of treatment technology based on neuron-counting modeling,” Vestn. UGATU, 14, No 2(37) 80–82 (2010).

  4. 4.

    A. M. Shchipachev, “Model of the effect of a modified surface layer on fatigue endurance,” in: World Community: Problems and Solutions: Digest of Articles, Ufa (2000–2001), No. 8–10, pp. 169–178.

  5. 5.

    V. V. Fedorov, Kinetics of Solid Damage and Failure, FAN, Tashkent (1985).

    Google Scholar 

  6. 6.

    R. V. Romashov, V. V. Fedorov, and V. L. Sobolev, “Correlation of metal fatigue limit with static strength properties,” Probl. Prochn., 24–27 (1980).

  7. 7.

    A. M. Shchipaev and V. S. Mukhin, “Determination of fatigue limit taking account of surface layer quality parameters,” Izv. Vuzov. Aviats. Tekhn., No. 3, 23–25 (1999).

  8. 8.

    A. M. Shchipachev and V. S. Mukhin, “Prediction of metal fatigue limit from static tensile test properties at normal and elevated temperature,” in: Probl. Mashinoved., Konstr. Mater. Tekhnol.: Coll. Sci. Works, Gilem, Ufa (1997), pp. 270–274.

  9. 9.

    A. M. Shchipachev, Thermodynamic Theory of Strength: Prediction of Metal Multicycle Fatigue, UTIS, Ufa (1998).

    Google Scholar 

  10. 10.

    A. M. Sulima and M. I. Evstigneev, Surface Layer Quality and Fatigue Endurance of Heat-Resistant and Titanium Alloy Components, Mashinostroenie, Moscow (1974).

    Google Scholar 

  11. 11.

    A. V. Podzei (ed.), Process Residual Stresses, Mashinostroenie, Moscow (1973).

    Google Scholar 

  12. 12.

    V. K. Yatsenko, E. Ya. Korenevskii, and M. P. Bondar’, “Effect of diamond smoothing on surface quality and fatigue strength of steel EI961,” Probl. Prochn., 105–108 (1972).

Download references

Author information



Corresponding author

Correspondence to A. M. Shchipachev.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 5, pp. 41–45, May, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shchipachev, A.M. Method for Determining Fatigue Limit Taking Into Account the Effect of a Surface Layer. Chem Petrol Eng 53, 340–346 (2017).

Download citation


  • fatigue limit
  • hardness
  • residual stresses
  • roughness
  • modified surface layers