Chemical and Petroleum Engineering

, Volume 53, Issue 5–6, pp 340–346 | Cite as

Method for Determining Fatigue Limit Taking Into Account the Effect of a Surface Layer

  • A. M. ShchipachevEmail author

A method is proposed for determining the fatigue limit of metallic material components based on measuring hardness, production residual stresses, surface roughness, and some other parameters. A dependence is given for fatigue limit on surface layer quality parameters. Application of the method is demonstrated on the example of steels 30KhGSNA, U8, titanium alloy VT3-1, and aluminum alloy D16 after different treatment.


fatigue limit hardness residual stresses roughness modified surface layers 


  1. 1.
    A. M. Shchipachev, E. A. Naumkin, and T. F. Musairov, “Evaluation of the level of accumulated damage for metals based on neuron-counting modeling,” Neftegaz. Delo, 13, No. 3, 160–165 (2015).Google Scholar
  2. 2.
    A. M. Shchipachev, “Models for evaluation of endurance with cyclic loading taking account of surface layer modification,” Neftegaz. Delo, 13, No. 3, 171–175 (2015).Google Scholar
  3. 3.
    A. M. Shchipachev, R. R. Khakimova, and L. R. Chernyakhovskaya, “Prediction of metal fatigue strength properties taking account of treatment technology based on neuron-counting modeling,” Vestn. UGATU, 14, No 2(37) 80–82 (2010).Google Scholar
  4. 4.
    A. M. Shchipachev, “Model of the effect of a modified surface layer on fatigue endurance,” in: World Community: Problems and Solutions: Digest of Articles, Ufa (2000–2001), No. 8–10, pp. 169–178.Google Scholar
  5. 5.
    V. V. Fedorov, Kinetics of Solid Damage and Failure, FAN, Tashkent (1985).Google Scholar
  6. 6.
    R. V. Romashov, V. V. Fedorov, and V. L. Sobolev, “Correlation of metal fatigue limit with static strength properties,” Probl. Prochn., 24–27 (1980).Google Scholar
  7. 7.
    A. M. Shchipaev and V. S. Mukhin, “Determination of fatigue limit taking account of surface layer quality parameters,” Izv. Vuzov. Aviats. Tekhn., No. 3, 23–25 (1999).Google Scholar
  8. 8.
    A. M. Shchipachev and V. S. Mukhin, “Prediction of metal fatigue limit from static tensile test properties at normal and elevated temperature,” in: Probl. Mashinoved., Konstr. Mater. Tekhnol.: Coll. Sci. Works, Gilem, Ufa (1997), pp. 270–274.Google Scholar
  9. 9.
    A. M. Shchipachev, Thermodynamic Theory of Strength: Prediction of Metal Multicycle Fatigue, UTIS, Ufa (1998).Google Scholar
  10. 10.
    A. M. Sulima and M. I. Evstigneev, Surface Layer Quality and Fatigue Endurance of Heat-Resistant and Titanium Alloy Components, Mashinostroenie, Moscow (1974).Google Scholar
  11. 11.
    A. V. Podzei (ed.), Process Residual Stresses, Mashinostroenie, Moscow (1973).Google Scholar
  12. 12.
    V. K. Yatsenko, E. Ya. Korenevskii, and M. P. Bondar’, “Effect of diamond smoothing on surface quality and fatigue strength of steel EI961,” Probl. Prochn., 105–108 (1972).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Ufa State Petroleum Technical UniversityUfaRussia

Personalised recommendations