Chemical and Petroleum Engineering

, Volume 53, Issue 1–2, pp 30–35 | Cite as

Factors Limiting the Processing Rate of Plant Biomass Into Synthesis Gas

  • E. M. Ivannikova
  • V. G. Sister
  • V. G. Chirkov

The advantages of thermochemical processing of renewable organic feedstock for production of synthetic biofuels are noted. Chemical kinetic, thermodynamic, and thermophysical factors limiting the gasification rate of plant biomass and; therefore, the reactor throughput, are analyzed using wood cellulose as an example. It is shown that the very low thermal conductivity of polymeric materials is the main factor limiting the throughput of a volume-type thermochemical reactor. The processing advantages of gasifying a thin layer of organic matter heated by direct thermal contact with the working surfaces are theoretically justified using a one-dimensional model.


renewable organic feedstock wood cellulose gasification synthetic motor fuel contact heating in a thin layer 


  1. 1.
    V. G. Chirkov, “The problem of atmospheric oxygen depletion and a concept for solving it,” Energy Bull., No. 19, 64–72 (2015).Google Scholar
  2. 2.
    V. G. Sister, E. M. Ivannikova, A. I. Yamchuk, et al., “Use of third-generation biofuels in self-contained power generation systems based on contemporary steam piston engines,” Khim. Neftegaz. Mashinostr., No. 3, 41–43 (2013).Google Scholar
  3. 3.
    V. G. Sister, E. M. Ivannikova, V. G. Chirkov, et al., “Comparative estimation of the energy efficiency for thermochemical technologies of third generation biofuels production,” Altern. Energ. Ekol., No. 12, 60–64 (2011).Google Scholar
  4. 4.
    I. B. Rapoport, Synthetic Liquid Fuel, Moscow (1955), 2nd ed.Google Scholar
  5. 5.
    R. Muller, V. Olshanskaya, A. Rumyantsev, and M. Sychev, Patent No. 2468065 RF, “Thermal processing method of high-molecular-mass carbon-containing raw material to lighter compounds,” subm. 12.07.2010, publ. 11.27.2012, Byull., No. 17.Google Scholar
  6. 6.
    V. G. Sister, A. S. Kholmanskii, V. G. Chirkov, et al., “Analysis of the dependence of yield and composition of gaseous pyrolysis products of various types of organic feedstock,” Khim. Tekhnol., 12, No. 4, 222–226 (2011).Google Scholar
  7. 7.
    I. L. Knunyants (ed.), Chemical Encyclopedia, Vol. 3, Copper Sulfi des – Polymeric Dye, Bolshaya Ross. Entsiklop., Moscow (1992).Google Scholar
  8. 8.
    S. A. Prokop’ev, Technology Development for Ultrapyrolysis of Wood Biomass for Producing Biofuel and Charcoal: Auth. Abstr. Dissert. Cand. Techn. Sci., St. Petersburg (2007).Google Scholar
  9. 9.
    G. Steiner and G. Staudinger, “PARSM model for pyrolysis of large particles of biomass,” PyNe, I. 9, March (2000).Google Scholar
  10. 10.
    M. A. Deminski, V. K. Zhivotov, I. A. Kirilov, et al., “A thermodynamic analysis of solid domestic waste gasification in a molten metal,” Khim. Neftegaz. Mashinostr., No. 10, 32–35 (2008).Google Scholar
  11. 11.
    V. G. Chirkov and E. F. Vainshtein, Patent No. 2314455 RF, “Method of thermochemical processing of solid multicomponent organic materials,” subm. 06.09.2006, publ. 01.10.2008, Byull., No. 1(56).Google Scholar
  12. 12.
    A. V. Lykov, Heat and Mass Exchange. Handbook, Energiya, Moscow (1978).Google Scholar
  13. 13.
    V. G. Sister, E. M. Ivannikova, S. P. Plotnikov, et al., “Use of adaptive properties of microalgae in production of phytomass for biofuel purposes,” Ekol. Prom. Rossii, No. 7, 18–21 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • E. M. Ivannikova
    • 1
  • V. G. Sister
    • 1
  • V. G. Chirkov
    • 2
  1. 1.Moscow Polytechnic UniversityMoscowRussia
  2. 2.All-Russia Research Institute for Electrification of AgricultureMoscowRussia

Personalised recommendations