Evaluation of Critical Parameters of Neon Isotopes for Comparative Analysis of Various Methods for Separating Them

Values of critical parameters of neon isotopes 20Ne and 22Ne are calculated. Approximate constants of the van-der-Waals, Berthelot, Dieterici I, and Redlich–Kwong equations of state are obtained. The data allow the adsorption isotherms for the neon isotopes on different adsorbents to be estimated by calculations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    B. M. Andreev et al., Isotopes, Yu. V. Baranov (ed.), Fizmatgiz, Moscow (2005).

    Google Scholar 

  2. 2.

    M. P. Malkov (ed.), Handbook of Physical and Technical Principles of Deep Cooling, Gos. Energeticheskoe Izd., Moscow–Leningrad (1985).

    Google Scholar 

  3. 3.

    A. M. Rozen, Theory of Isotope Separation in Columns, Atomizdat, Moscow (1960).

    Google Scholar 

  4. 4.

    V. G. Fastovskii (ed.), A. E. Rovinskii, and Yu. V. Petrovskii, Inert Gases, Atomizdat, Moscow (1964).

  5. 5.

    G. L Hertz, “Ein Verfahren zur Trennung von gazformigen Isotopengemischen und seine Anwendung durch auf die Isotopen des Neons,” Z. Phys., 79, 108–121 (1932).

    CAS  Article  Google Scholar 

  6. 6.

    Yu. V. Nikiforov and V. B. Vorotyntsev, “Estimation of minimal specific power consumptions for extraction of 16O18O, 18O18O, and 17O17O from natural molecular oxygen,” Khim. Neftegaz. Mashinostr., No. 12, 22–24 (2014).

  7. 7.

    V. S. Parbuzin and V. A. Yakovlev, “MGU-DETRA, multi-purpose gas separation installation to produce ultraenriched deuterium and tritium by cryogenic adsorption,” Vestn. Mosk. Gos. Univ., Ser. Khim., 44, No. 5, 299–303 (2003).

    CAS  Google Scholar 

  8. 8.

    E. I. Mikulin and I. V. Marfenina, “Thermodynamic diagrams and some properties of neon,” Inzh.-Fiz. Zh., VI, No. 12, 111–117 (1963).

    Google Scholar 

  9. 9.

    R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1982).

    Google Scholar 

  10. 10.

    M. P. Vukalovich and I. I. Novikov, Equation of State of Actual Gases, Gos. Energet. Izd., Moscow–Leningrad (1948).

    Google Scholar 

  11. 11.

    S. M. Walas, Phase Equilibria in Chemical Engineering [Russian translation], Mir, Moscow (1989), Vol. 1.

    Google Scholar 

  12. 12.

    A. M. Arkharov, I. V. Marfenina, and E. I. Mikulin, Cryogenic Systems, Mashinostroenie, Moscow (1996).

    Google Scholar 

  13. 13.

    J. H. Mathews and K. D. Fink, Numerical Methods Using Mathlab [Russian translation], Moscow–St. Petersburg–Kiev (2003).

  14. 14.

    V. A. Rabinovich, A. A. Wasserman, et al., Thermophysical Properties of Neon, Argon, Krypton, and Xenon, Izd. Standartov, Moscow (1976).

    Google Scholar 

  15. 15.

    M. M. Dubinin, Adsorption and Porosity, VAKhZ im. Timoshenko, Moscow (1972).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Nikiforov.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 11, pp. 10–13, November, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, V.L., Nikiforov, Y.V. & Vorotyntsev, V.B. Evaluation of Critical Parameters of Neon Isotopes for Comparative Analysis of Various Methods for Separating Them. Chem Petrol Eng 51, 736–742 (2016). https://doi.org/10.1007/s10556-016-0114-8

Download citation

Keywords

  • neon
  • isotope separation
  • analysis of isotope composition in a mixture
  • equilibrium constants
  • fractionation
  • minimal separation work
  • step contact