Skip to main content

Advertisement

Log in

Hydrogen Permeability of Palladium Membranes Made of Alloy V-1 in Laboratory Investigations and Membrane Devices

  • Published:
Chemical and Petroleum Engineering Aims and scope

An analysis of literature data on determination of the hydrogen permeability of palladium alloy V-1 membranes is given. It is shown that attention should be focused on the reliability of the specific hydrogen-permeability coefficients when performing design calculations using mathematical models to predict and analyze the optimal environment of various types of membrane devices for producing highly pure hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V. A. Goltsov, I. V. Frantsenyuk, N. I. Timofeev, et al., “Industrial operating experience of membrane alloy V-1 in a diffusion device for producing highly pure hydrogen from coke gas,” Vopr. At. Nauki Tekhn. Ser. At.-Vodor. Energet. Tekhn., Iss. 1, 36–37 (1987).

  2. V. A. Goltsov, “Hydrogen in metals,” Atomic Hydrogen Energy and Technology, Atomizdat, Moscow (1978), Iss. 1, pp. 193–230.

  3. E. Fromm and E. Gebkhardt, Gases and Carbon in Metals, Metallurgy, Moscow (1980).

    Google Scholar 

  4. R. M. Barrer, Diffusion In and Through Solids [Russian translation], Izd. Inostr. Lit, Moscow (1948), pp. 169–230.

  5. G. S. Burkhanov, N. B. Gorina, N. B. Kolchugina, and N. R. Roshan, “Alloys of palladium for hydrogen energy,” Ross. Khim. Zh., 50, No. 4, 36–40 (2006)

    CAS  Google Scholar 

  6. M. N. Sivkov, I. N. Sakhanskaya, D. I. Slovetskii, et al., “Results of applied research on hydrogen membrane technology,” Tsvet. Met., No. 1, 36–39 (2007).

  7. A. B. Shigirov and V. A. Kirillov, “Modelling a membrane reactor for methane vapor reforming: From granular to structured catalyst,” Teor. Osn. Khim. Tekhnol., 46, No. 2, 131–143 (2012).

    Google Scholar 

  8. Yu. K. Baichtok, V. P. Semenov, M. Kh. Sosna, and Yu. M. Baranov, “Hydrogen-permeable membrane of palladium alloy V-1 for separating hydrogen from gas mixtures,” Vopr. At. Nauki Tekhn. Ser. At.-Vodor. Energet. Tekhn., Iss. 2 (15), 26–31 (1983).

  9. V. A. Kirillov, D. V. Meshcheryakov, O. F. Brizitskii, and V. Ya. Terent’ev, “Design analysis of low-temperature fuel element energy devices and fuel processor with hydrogen separation membrane,” Teor. Osn. Khim. Tekhnol., 44, No. 3, 243–251 (2010).

    Google Scholar 

  10. A. B. Vandyshev, V. A. Kulikov, I. V. Kirnos, and S. N. Nikishin, “High-temperature membrane devices in hydrogen recycling systems,” Khim. Neftegaz. Mashinostr., No. 11, 20–12 (2006).

  11. A. B. Vandyshev, V. A. Kulikov, and S. N. Nikishin, “Analysis of consumption characteristics of high-throughput membrane devices for producing highly pure hydrogen,” Khim. Neftegaz. Mashinostr., No. 2, 12–15 (2010).

  12. A. B. Vandyshev, V. M. Makarov, L. L. Myrav’ev, et al., “Modelling high-temperature membrane devices for producing highly pure hydrogen,” Teor. Osn. Khim. Tekhnol., 30, No. 5, 554–556 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Vandyshev.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 6, pp. 18–21, June, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandyshev, A.B., Kulikov, V.A. Hydrogen Permeability of Palladium Membranes Made of Alloy V-1 in Laboratory Investigations and Membrane Devices. Chem Petrol Eng 51, 396–401 (2015). https://doi.org/10.1007/s10556-015-0058-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-015-0058-4

Keywords

Navigation