Skip to main content
Log in

Modeling Polymer Melt Flow at the Outlet from an Extruder Molding Tool

  • Published:
Chemical and Petroleum Engineering Aims and scope

Use of a Phan-Thien–Tanner model for simulating viscoelastic liquid flow at the outlet from an extruder molding tool is proposed. A dependence for free extruded surface profile of cylindrical extruded objects on Deborah number is determined. Modeling results may be used for selecting extrusion processing regimes and in designing new extrusion heads with the aim of improving object quality characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. License No. 0065974

References

  1. O. L. Sokol’skii and V. Sivetskii, Construction and Design of a Molding Tool and Equipment for Treatment of Plastics [in Ukrainian], NTUU KPI, Print-Tsentr Publishing, Kiev (2010).

    Google Scholar 

  2. A. A. Panov, Development of Structures and Calculation Method for Multi-Arm Extrusion Heads: Diss. Cand. Tech. Sci., Ufa (2000).

  3. G. A. Gadel’shina, Simulation of Non-Newtonian Liquid Flow at Extruder Outlet: Diss. Cand. Tech. Sci., Kazan (1999).

  4. O. S. Sakharov, V. Sivetskii, and O. L. Sokol’skii, Simulation of Problems of Fluid Elasticity in Processes of Molding of Polymer Work Pieces [in Ukrainian], NTUU KPI, EKMO Publishing, Kiev (2009).

    Google Scholar 

  5. V. Sivetskii, O. S. Sakharov, O. L. Sokol’skii, et al., Near-Wall Effects in Processes of Working Polymer Materials [in Ukrainian], NTUU KPI, Print-Tsentr Publishing, Kiev (2009).

    Google Scholar 

  6. R. I. Tanner, “ A new inelastic theory of extrudate swell,” J. Non-Newtonian Fluid Mech., 6, 289 (1980).

    Article  Google Scholar 

  7. T. Liu, and T. Cheng, “Finite difference solution of a Newtonian jet swell problem,” Int. J. For Num. Meth. In Fluids, 12, 125-142 (1991.).

    Article  CAS  Google Scholar 

  8. C. Allain, M. Cloitre, and P. Perrot, “Die swell in semi-rigid polymer solutions,” Eur. J. Mech, B/Fluids, 12, No. 2, 175-186 (1993).

    Google Scholar 

  9. C. Beraudo, A. Fortin, and T. Coupez, “A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments,” J. Non-Newtonian Fluid Mech., 75, 1-23 (1998).

    Article  CAS  Google Scholar 

  10. N. Phan-Thien, “Influence of wall slip on extrudate swell: a boundary element investigation,” J. Non-Newtonian Fluid Mech., 26, 327 (1988).

    Article  Google Scholar 

  11. A. V. Ramamurthy, “Wall slip in viscous fluids and influence of materials of constructions,” J. Rheology, 30, 337 (1986).

    Article  CAS  Google Scholar 

  12. B. A. Whipple and C. T Hill, “Velocity distribution in die swell,” Al-Che., 24, 664-679 (1978).

    CAS  Google Scholar 

  13. ANSYS POLYFLOW 12.1 User’s Guide, ANSYS, Inc.

  14. V. I. Sivetskii, O. L. Sokol’skii (cl.), O. V. Roslov, et al., Claim 201300518 (Ukraine), IPC B29 47/14, “Extrusion Head,” No. u 2013 00518, subm. Jan. 15, 2013.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Kovalenko.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 12, pp. 15–19, December, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, K.G., Kolosov, A.E., Sivetskii, V.I. et al. Modeling Polymer Melt Flow at the Outlet from an Extruder Molding Tool. Chem Petrol Eng 49, 792–797 (2014). https://doi.org/10.1007/s10556-014-9837-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10556-014-9837-6

Keywords

Navigation