Skip to main content

3He supply crisis: reasons and challenges

The reasons for the 3He supply crisis developed in the global market toward the year 2009 are discussed. The isotope demand structure is provided. Possible measures to overcome the crisis are reviewed. Primary attention is focused on development of new technologies, particularly pertaining to neutron detection methods and alternative MRT 3He contrasting agents. Advantages and disadvantages are discussed briefly.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. T. Kouzes et al., “Neutron detection alternatives to 3He for national security applications,” Nucl. Instr. Meth. Phys. Res., 623, 1035–1045 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    D. Kramer, “DOE begins rationing helium-3,” Phys. Today, 22–25 (June 2010).

  3. 3.

    H. Terrel, “The DOE and helium-3: How to turn a problem into a crisis,” World Oil, 232, No. 10, 21 (2011).

    Google Scholar 

  4. 4.

    J. C. Woods, Congressional Hearing: Caught by Surprise: Causes and Consequences of the Helium-3 Supply Crisis, United States House of Representatives, April 22, 2010, p. 14.

  5. 5.

    M. S. Conradi et al., “Hyperpolarized 3He and perfluorocarbon gas diffusion MRI of lungs,” Progr. Nucl. Magn. Reson. Spectrosc., 48, 63–68 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    M. Luhmer and J. Reisse, “Quadrupole NMR relaxation of the noble gases dissolved in simple liquids and solutions: A critical review of experimental data in the light of computer simulation results,” Progr. Nucl. Magn. Reson. Spectrosc., 33, 57–76 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    Z. I. Cleveland et al., “Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry,” J. Chem. Phys., 124, No. 4, 044312–044312–7 (2006).

    Article  Google Scholar 

  8. 8.

    L. Zhao and M. S. Albert, “Biomedical imaging using hyperpolarized noble gas MRI: Pulse sequence considerations,” Nucl. Instr. Meth. Phys. Res., A402, 454–460 (1998).

    Google Scholar 

  9. 9.

    R. C. Welsh et al., “Magnetic resonance imaging with laser-polarized 129Xe,” Nucl. Instr. Meth. Phys. Res., A402, 461–463 (1998).

    Google Scholar 

  10. 10.

    S. Patz et al., “Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?” Eur. J. Radiol., 64, 335–344 (2007).

    Article  Google Scholar 

  11. 11.

    I. Dregely, “Multiple exchange time xenon transfer contrast (MXTC): First results with COPD subjects,” The 2011 Int. Functional Pulmonary Imaging Workshop, Feb. 28 – Mar. 2, 2011, Philadelphia, PA.

  12. 12.

    M. Boudreau et al., “129Xe apparent diffusion coefficient anisotropy in emphysema: simulations using 3-D budded cylinder model,” ibid.

  13. 13.

    P. Diehl et al., “Magnetic resonance of 21Ne in liquid solvents,” Chem. Phys. Letters, 178, Nos. 2–3, 147–149 (1991).

    CAS  Article  Google Scholar 

  14. 14.

    P. Ingman et al., “21Ne NMR spectroscopy: temperature dependence of the 21Ne quadrupole coupling and electric field gradient in a liquid crystal,” Chem. Phys. Letters, 182, Nos. 3–4, 253–256 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. M. Arkharov.

Additional information

Translated from Khimicheskoe i Neftegazovoe Mashinostroenie, No. 1, pp. 30–33, January, 2013.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arkharov, A.M., Arkharov, I.A., Dolgopyatov, D.A. et al. 3He supply crisis: reasons and challenges. Chem Petrol Eng 49, 41–45 (2013).

Download citation


  • inert gases
  • isotopes
  • 3He
  • 21Ne
  • 83Kr
  • 129Xe
  • 19F
  • neutron detectors
  • MRT
  • supply crisis