Chemical and Petroleum Engineering

, Volume 49, Issue 1–2, pp 41–45 | Cite as

3He supply crisis: reasons and challenges

  • A. M. Arkharov
  • I. A. Arkharov
  • D. A. Dolgopyatov
  • V. L. Bondarenko
Cryogenic Engineering, Production and Use of Industrial Gases, Vacuum Engineering

The reasons for the 3He supply crisis developed in the global market toward the year 2009 are discussed. The isotope demand structure is provided. Possible measures to overcome the crisis are reviewed. Primary attention is focused on development of new technologies, particularly pertaining to neutron detection methods and alternative MRT 3He contrasting agents. Advantages and disadvantages are discussed briefly.


inert gases isotopes 3He 21Ne 83Kr 129Xe 19neutron detectors MRT supply crisis 


  1. 1.
    R. T. Kouzes et al., “Neutron detection alternatives to 3He for national security applications,” Nucl. Instr. Meth. Phys. Res., 623, 1035–1045 (2010).CrossRefGoogle Scholar
  2. 2.
    D. Kramer, “DOE begins rationing helium-3,” Phys. Today, 22–25 (June 2010).Google Scholar
  3. 3.
    H. Terrel, “The DOE and helium-3: How to turn a problem into a crisis,” World Oil, 232, No. 10, 21 (2011).Google Scholar
  4. 4.
    J. C. Woods, Congressional Hearing: Caught by Surprise: Causes and Consequences of the Helium-3 Supply Crisis, United States House of Representatives, April 22, 2010, p. 14.Google Scholar
  5. 5.
    M. S. Conradi et al., “Hyperpolarized 3He and perfluorocarbon gas diffusion MRI of lungs,” Progr. Nucl. Magn. Reson. Spectrosc., 48, 63–68 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Luhmer and J. Reisse, “Quadrupole NMR relaxation of the noble gases dissolved in simple liquids and solutions: A critical review of experimental data in the light of computer simulation results,” Progr. Nucl. Magn. Reson. Spectrosc., 33, 57–76 (1998).CrossRefGoogle Scholar
  7. 7.
    Z. I. Cleveland et al., “Exploring hyperpolarized 83Kr by remotely detected NMR relaxometry,” J. Chem. Phys., 124, No. 4, 044312–044312–7 (2006).CrossRefGoogle Scholar
  8. 8.
    L. Zhao and M. S. Albert, “Biomedical imaging using hyperpolarized noble gas MRI: Pulse sequence considerations,” Nucl. Instr. Meth. Phys. Res., A402, 454–460 (1998).Google Scholar
  9. 9.
    R. C. Welsh et al., “Magnetic resonance imaging with laser-polarized 129Xe,” Nucl. Instr. Meth. Phys. Res., A402, 461–463 (1998).Google Scholar
  10. 10.
    S. Patz et al., “Hyperpolarized 129Xe MRI: A viable functional lung imaging modality?” Eur. J. Radiol., 64, 335–344 (2007).CrossRefGoogle Scholar
  11. 11.
    I. Dregely, “Multiple exchange time xenon transfer contrast (MXTC): First results with COPD subjects,” The 2011 Int. Functional Pulmonary Imaging Workshop, Feb. 28 – Mar. 2, 2011, Philadelphia, PA.Google Scholar
  12. 12.
    M. Boudreau et al., “129Xe apparent diffusion coefficient anisotropy in emphysema: simulations using 3-D budded cylinder model,” ibid.Google Scholar
  13. 13.
    P. Diehl et al., “Magnetic resonance of 21Ne in liquid solvents,” Chem. Phys. Letters, 178, Nos. 2–3, 147–149 (1991).CrossRefGoogle Scholar
  14. 14.
    P. Ingman et al., “21Ne NMR spectroscopy: temperature dependence of the 21Ne quadrupole coupling and electric field gradient in a liquid crystal,” Chem. Phys. Letters, 182, Nos. 3–4, 253–256 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. M. Arkharov
    • 1
  • I. A. Arkharov
    • 1
  • D. A. Dolgopyatov
    • 1
  • V. L. Bondarenko
    • 2
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.United Machine Building Plants (OMZ), Uralmash-Izhora GroupMoscowRussia

Personalised recommendations