Chemical and Petroleum Engineering

, Volume 47, Issue 11–12, pp 741–750 | Cite as

Polypropylene composite with carbon nanotubes

  • V. G. Sister
  • E. M. Ivannikova
  • S. M. Lomakin
  • A. I. Yamchuk

Features of thermal breakdown and burning of a nanocomposite based on polypropylene and multiwalled carbon nanotubes are studied. A kinetic model is proposed on the basis on the TGA results, taking account of the diffusion nature of polypropylene nanocomposite thermal breakdown. The main parameters of nanocomposite inflammability are determined using a cone-calorimeter.


Layered Silicate Fire Resistance Effective Activation Energy Thermal Breakdown Atactic Polypropylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation within the framework of state contract of 1 December 2010, No. 14.740.11.0847.


  1. 1.
    T. Kashiwagi, E. Grulke, and J. Hilding, “Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites,” Polymer, 45, 4227–4239 (2004).CrossRefGoogle Scholar
  2. 2.
    T. Kashiwagi, E. Grulke, J. Hilding, R. H. Harris Jr,W. H. Awad, and J. Douglas, “Thermal degradation and flammability properties of poly(polypropylene)/carbon nanotubes composites,” Macromol. Rapid. Commun, 23, 761–765 (2002).CrossRefGoogle Scholar
  3. 3.
    S. M. Lomakin, L. A. Novokshonova, P. N. Brevnov, and A. N. Shchegolikhin, “Thermal properties of polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization,” J. Mat. Sci., 43(4), 1340–153 (2008).CrossRefGoogle Scholar
  4. 4.
    J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund, and R. C. Hadon, “Control test with non-functionalized SWNTs incubated in FITC-conjugated anti-rabbit references,” Science, 282, 95–98 (1998).CrossRefGoogle Scholar
  5. 5.
    J. L. Stevens, A. Y. Huang, H. Peng, I. W. Chiang, V. N. Khabashesku, and J. L. Margrave, “Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with thermal diamines,” Nano Lett., No. 3, 331 (2003).Google Scholar
  6. 6.
    M. Holzinger, J. Abraham, P. Whelan, R. Graupner, J. Ley, F. Hennrich, M. Kappes, and A. Hirsch, “Helical microtubules of graphitic carbon covalent functionalization,” J. Am. Chem. Soc., 125, 8566–8580 (2003).CrossRefGoogle Scholar
  7. 7.
    Y. Ying, R. K. Saini, F. Liang, A. K. Sadana, and W. E. Billups, “Functionalization of carbon nanotubes by free radicals,” Org. Lett., No. 5, 1471–1473 (2003).Google Scholar
  8. 8.
    A. D. Rakhimkulov, S. M. Lomakin, O. V. Alekseeva, I. L. Dubnikova, A. N. Shchegolikhin, and G. E. Zaikov, “Features of burning of polypropylene nanocomposite with multiwalled carbon nanotubes,” Proc. Conf. Young Scientists IBKhF RAN (2006).Google Scholar
  9. 9.
    S. M. Lomakin, I. L. Dubnikova, S. M. Berezina, and G. E. Zaikov, “Thermal destruction and burning of polypropylene nanocomposite based on organic modified layered aluminosilicate,” Vysokomolek, Soedin., Ser. A, 48, No. 1, 90–105 (2006).Google Scholar
  10. 10.
    J. Opferman, “Kinetic analysis using multivariant non-linear regression. 1. Basic concepts,” J. Therm. Anal. and Calorimetry, 60, No. 2, 641–658 (2000).CrossRefGoogle Scholar
  11. 11.
    V. Babrauskas, “Specimen heat fluxes for bench-scale heat release rate testing,” Fire and Materials, 19, 243–252 (2995).CrossRefGoogle Scholar
  12. 12.
    M. R. Nyden and S. I. Stoliarov, “Calculations of the energy of mixing carbon nanotubes with polymers,” Polymer, 49, 635–641 (2008).CrossRefGoogle Scholar
  13. 13.
    P. J. Krusic, E. Wasserman, P. N. Keizer, J. R. Morton, and K. F. Preston, “Radical reactions of C60,” Science, 254, 1183 (1991). CrossRefGoogle Scholar
  14. 14.
    D. Stuart and C. T. Imrie, “Role of C60 in the free radical polymerization of styrene,” Chem. Comm., No. 11, 1383–1384 (1996).Google Scholar
  15. 15.
    K. Kirkwood, D. Stewart, and C. T. Imrie, “Role of C60 in the free radical polymerization of methyl methacrylate,” J. Polymer Sci., Part A: Polymer Chem., 35, No. 15, 3323–3325 (1997).CrossRefGoogle Scholar
  16. 16.
    E. B. Zeinalov and G. Kobmehl, “Fullerene C60 as an antioxidant for polymers,” Polymer Degrad. Stabil., 71, No. 2, 197–202 (2001).CrossRefGoogle Scholar
  17. 17.
    J. Opferman, “Kinetic analysis of using multivariant non-linear regression. 1. Basic concepts,” J. Therm. Anal. Cal., 60, No. 3, 641–658 (2000).CrossRefGoogle Scholar
  18. 18.
    H. L. Friedman, “New methods fro evaluating kinetic parameters from thermal analysis data,” J. Pol. Sci. Part B, Polymer Letters, 7, No. 1, 41–46 (1959).CrossRefGoogle Scholar
  19. 19.
    J. Opferman and E. Kaisersberger, “An advantageous variant of the Ozawa-Flynn-Wall analysis,” Thermochimica Acta, 203, 167–175 (1992).CrossRefGoogle Scholar
  20. 20.
    P. Kim, L. Shi, A. Majumdar, and P. L. McEuan, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett, 87, 215502 (2001).CrossRefGoogle Scholar
  21. 21.
    W. Yi, L. Lu, D. L. Zhang, Z. W. Pan, and S. S. Xie, “Linear specific heat of carbon nanotubes,” Phys. Rev. B, 59, R9015–9018 (1999).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • V. G. Sister
    • 1
  • E. M. Ivannikova
    • 1
  • S. M. Lomakin
    • 2
  • A. I. Yamchuk
    • 3
  1. 1.MoscowRussia
  2. 2.MoscowRussia
  3. 3.MoscowRussia

Personalised recommendations