Skip to main content

Advertisement

Log in

Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cellular plasticity refers to the ability of cells to change their identity or behavior, which can be advantageous in some cases (e.g., tissue regeneration) but detrimental in others (e.g., cancer metastasis). With a better understanding of cellular plasticity, the complexity of cancer cells, their heterogeneity, and their role in metastasis is being unraveled. The plasticity of the cells could also prove as a nemesis to their characterization. In this review, we have attempted to highlight the possibilities and benefits of using multiomics approach in characterizing the plastic nature of cancer cells. There is a need to integrate fragmented evidence at different levels of cellular organization (DNA, RNA, protein, metabolite, epigenetics, etc.) to facilitate the characterization of different forms of plasticity and cell types. We have discussed the role of cellular plasticity in generating intra-tumor heterogeneity. Different omics level evidence is being provided to highlight the variety of molecular determinants discovered using different techniques. Attempts have been made to integrate some of this information to provide a quantitative assessment and scoring of the plastic nature of the cells. However, there is a huge gap in our understanding of mechanisms that lead to the observed heterogeneity. Understanding of these mechanism(s) is necessary for finding targets for early detection and effective therapeutic interventions in metastasis. Targeting cellular plasticity is akin to neutralizing a moving target. Along with the advancements in precision and personalized medicine, these efforts may translate into better clinical outcomes for cancer patients, especially in metastatic stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46. https://doi.org/10.1158/2159-8290.cd-21-1059

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  4. Mills, J. C., Stanger, B. Z., & Sander, M. (2019). Nomenclature for cellular plasticity: Are the terms as plastic as the cells themselves? The EMBO Journal, 38(19). https://doi.org/10.15252/embj.2019103148.

  5. Gupta, P., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78. https://doi.org/10.1016/j.stem.2018.11.011.

    Article  CAS  PubMed  Google Scholar 

  6. Lambert, A. W., Pattabiraman, D. R., & Weinberg, R. A. (2017). Emerging biological principles of metastasis. Cell, 168(4), 670–691. https://doi.org/10.1016/j.cell.2016.11.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng, Z., Wu, S., Wang, Y., & Shi, D. (2022). Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine, 83, 104237. https://doi.org/10.1016/j.ebiom.2022.104237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paget, S., The distribution of secondary growths in cancer of the breast. (1889). The Lancet, 133(3421), 571–573. https://doi.org/10.1016/s0140-6736(00)49915-0

    Article  Google Scholar 

  9. Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., Santacroce, N., Beisel, C., Ivánek, R., Bürglin, T. R., Tiede, S., Van Rheenen, J., & Christofori, G. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221e11. https://doi.org/10.1016/j.devcel.2021.11.006.

    Article  CAS  PubMed  Google Scholar 

  10. Jehanno, C., Vulin, M., Richina, V., Richina, F., & Bentires-Alj, M. (2022). Phenotypic plasticity during metastatic colonization. Trends in Cell Biology, 32(10), 854–867. https://doi.org/10.1016/j.tcb.2022.03.007.

    Article  PubMed  Google Scholar 

  11. Pastushenko, I., Mauri, F., Song, Y., De Cock, F., Meeusen, B., Swedlund, B., Impens, F., Van Haver, D., Opitz, M., Théry, M., Barèche, Y., Lapouge, G., Vermeersch, M., Van Eycke, Y., Balsat, C., Decaestecker, C., Sokolow, Y., Hassid, S., Pérez-Bustillo, A., & Blanpain, C. (2020). Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature, 589(7842), 448–455. https://doi.org/10.1038/s41586-020-03046-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Massagué, J., & Ganesh, K. (2021). Metastasis-initiating cells and ecosystems. Cancer Discovery, 11(4), 971–994. https://doi.org/10.1158/2159-8290.cd-21-0010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, M. J., Huang, Y., & Park, J. (2020). Targeting WNT signaling for gastrointestinal cancer therapy: Present and evolving views. Cancers, 12(12), 3638. https://doi.org/10.3390/cancers12123638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhuang, X., Zhang, H., & Hu, G. (2019). Cancer and microenvironment plasticity: Double-edged swords in metastasis. Trends in Pharmacological Sciences, 40(6), 419–429. https://doi.org/10.1016/j.tips.2019.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yabo, Y. A., Niclou, S. P., & Golebiewska, A. (2021). Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-oncology, 24(5), 669–682. https://doi.org/10.1093/neuonc/noab269.

    Article  CAS  PubMed Central  Google Scholar 

  16. Quintanal-Villalonga, Á., Chan, J. M., Yu, H. A., Pe’er, D., Sawyers, C. L., Sen, T., & Rudin, C. M. (2020). Lineage plasticity in cancer: A shared pathway of therapeutic resistance. Nature Reviews Clinical Oncology, 17(6), 360–371. https://doi.org/10.1038/s41571-020-0340-z.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Altieri, D. C. (2023). Mitochondria in cancer: Clean windmills or stressed tinkerers? Trends in Cell Biology, 33(4), 293–299. https://doi.org/10.1016/j.tcb.2022.08.001.

    Article  CAS  PubMed  Google Scholar 

  18. Yun, C. W., Jeon, J., Go, G., Lee, J. H., & Lee, S. H. (2020). The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. International Journal of Molecular Sciences, 22(1), 179. https://doi.org/10.3390/ijms22010179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo, M., Ye, L., Chang, R., et al. (2022). Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nature Communications, 13, 6345. https://doi.org/10.1038/s41467-022-33946-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Sousa, E., Melo, F., Vermeulen, L., Fessler, E., & Medema, J. P. (2013). Cancer heterogeneity—A multifaceted view. EMBO Reports, 14(8), 686–695. https://doi.org/10.1038/embor.2013.92

    Article  CAS  Google Scholar 

  21. Culbert, S. J., Shuster, J. J., Land, V. J., Wharam, M. D., Thomas, P. R. M., Nitschke, R., Pinkel, D., & Vietti, T. J. (1991). Remission induction and continuation therapy in children with their first relapse of acute lymphoid leukemia. A pediatric oncology group study. Cancer, 67, 37–42. https://doi.org/10.1002/1097-0142(19910101)67:1<37::AID-CNCR2820670108>3.0.CO;2-#.

    Article  CAS  PubMed  Google Scholar 

  22. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  23. Iyer, D. N., Sin, W., & Ng, L. (2019). Linking stemness with colorectal cancer initiation, progression, and therapy. World Journal of Stem Cells, 11(8), 519–534. https://doi.org/10.4252/wjsc.v11.i8.519.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pon, J. R., & Marra, M. A. (2015). Driver and passenger mutations in cancer. Annual Review of Pathology-mechanisms of Disease, 10(1), 25–50. https://doi.org/10.1146/annurev-pathol-012414-040312.

    Article  CAS  Google Scholar 

  25. Kammenga, J. E. (2017). The background puzzle: How identical mutations in the same gene lead to different disease symptoms. FEBS Journal, 284, 3362–3373. https://doi.org/10.1111/febs.14080

    Article  CAS  PubMed  Google Scholar 

  26. Kosti, I., Jain, N., Aran, D., et al. (2016). Cross-tissue analysis of gene and protein expression in normal and cancer tissues. Scientific Reports, 6, 24799. https://doi.org/10.1038/srep24799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shlyakhtina, Y., Moran, K. L., & Portal, M. M. (2021). Genetic and non-genetic mechanisms underlying cancer evolution. Cancers, 13(6), 1380. https://doi.org/10.3390/cancers13061380.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dick, J. E. (2008). Stem cell concepts renew cancer research. Blood, 112(13), 4793–4807. https://doi.org/10.1182/blood-2008-08-077941.

    Article  CAS  PubMed  Google Scholar 

  29. Meacham, C. E., & Morrison, S. J. (2013). Tumour heterogeneity and cancer cell plasticity. Nature, 501(7467), 328–337. https://doi.org/10.1038/nature12624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nguyen, L. V., Vanner, R., Dirks, P. B., & Eaves, C. J. (2012). Cancer stem cells: An evolving concept. Nature Reviews Cancer, 12(2), 133–143. https://doi.org/10.1038/nrc3184.

    Article  CAS  PubMed  Google Scholar 

  31. Feinberg, A. P., Koldobskiy, M. A., & Göndör, A. (2016). Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nature Reviews Genetics, 17(5), 284–299. https://doi.org/10.1038/nrg.2016.13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M., & Taichman, R. S. (2013). Cancer stem cells and their role in metastasis. Pharmacology & Therapeutics, 138(2), 285–293. https://doi.org/10.1016/j.pharmthera.2013.01.014.

    Article  CAS  Google Scholar 

  33. Eldai, H., Periyasamy, S., Qarni, S. A., Rodayyan, M. A., Mustafa, S., Deeb, A. M., Sheikh, E. A., Khan, M. A., Johani, M., Yousef, Z., & Aziz, M. (2013). Novel genes associated with colorectal cancer are revealed by high resolution cytogenetic analysis in a patient specific manner. PLOS ONE, 8(10), e76251. https://doi.org/10.1371/journal.pone.0076251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pongor, L. S., Schultz, C. W., Rinaldi, L., Wangsa, D., Redon, C. E., Takahashi, N., Fialkoff, G., Desai, P., Zhang, Y., Burkett, S., Hermoni, N., Vilk, N., Gutin, J., Róna, G., Zhao, Y., Nichols, S., Vilimas, R., Sciuto, L., Graham, C., & Thomas, A. (2023). Extrachromosomal DNA amplification contributes to small cell lung cancer heterogeneity and is associated with worse outcomes. Cancer Discovery, 13(4), 928–949. https://doi.org/10.1158/2159-8290.cd-22-0796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mealey, N. E., O’Sullivan, D. E., Pader, J., Ruan, Y., Wang, E., Quan, M. L., & Brenner, D. R. (2020). Mutational landscape differences between young-onset and older-onset breast cancer patients. Bmc Cancer, 20(1), 212. https://doi.org/10.1186/s12885-020-6684-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Evrony, G. D., Hinch, A. G., & Luo, C. (2021). Applications of Single-Cell DNA Sequencing. Annual Review of Genomics and Human Genetics, 22(1), 171–197.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kong, S., Li, R., Tian, Y., Zhang, Y., Lu, Y., Ou, Q., Gao, P., Li, K., & Zhang, Y. (2023). Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Frontiers in Genetics, 13, 1100016. https://doi.org/10.3389/fgene.2022.1100016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan, X., Yang, C., Li, W., Bai, X., Zhou, X., Xie, H., et al. (2021). SMOOTH-Seq: Single-cell genome sequencing of human cells on a third-generation sequencing platform. Genome Biology, 22(1), 195. https://doi.org/10.1186/s13059-021-02406-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lynch, A. R., Bradford, S. V., Zhou, A. S., Oxendine, K., Henderson, L., Horner, V. L., Weaver, B. A., & Burkard, M. E. (2023). A survey of CIN measures across mechanistic models. bioRxiv (Cold Spring Harbor Laboratory). https://doi.org/10.1101/2023.06.15.544840.

    Article  Google Scholar 

  40. Aziz, M. A., Periyasamy, S., Yousef, Z., AlAbdulkarim, I., Otaibi, M. A., Alfahed, A., & Alasiri, G. (2014). Integrated EXON level expression analysis of driver genes explain their role in colorectal cancer. PLOS ONE, 9(10), e110134. https://doi.org/10.1371/journal.pone.0110134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pöhl, S., & Myant, K. (2022). Alternative RNA splicing in tumour heterogeneity, plasticity and therapy. Disease Models & Mechanisms, 15(1). https://doi.org/10.1242/dmm.049233.

  42. Althenayyan, S., AlMuhanna, M. H., AlAbdulrahman, A., Alghanem, B., Alsagaby, S. A., Alfahed, A., Alasiri, G., & Aziz, M. (2023). Alternatively spliced isoforms of MUC4 and ADAM12 as biomarkers for colorectal cancer metastasis. Journal of Personalized Medicine, 13(1), 135. https://doi.org/10.3390/jpm13010135.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kröger, C., Afeyan, A., Mraz, J., Eaton, E. N., Reinhardt, F., Khodor, Y. L., Thiru, P., Bierie, B., Ye, X., Burge, C. B., & Weinberg, R. A. (2019). Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7353–7362. https://doi.org/10.1073/pnas.1812876116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Panchy, N., Azeredo-Tseng, C., Luo, M., Randall, N., & Hong, T. (2020). Integrative transcriptomic analysis reveals a multiphasic epithelial–mesenchymal spectrum in cancer and non-tumorigenic cells. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.01479.

  45. Aiello, N. M., & Kang, Y. (2019). Context-dependent EMT programs in cancer metastasis. Journal of Experimental Medicine, 216(5), 1016–1026. https://doi.org/10.1084/jem.20181827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grigore, A. D., Jolly, M. K., Jia, D., Farach-Carson, M. C., & Levine, H. (2016). Tumor budding: The name is EMT. Partial EMT. Journal of Clinical Medicine, 5(5), 51. https://doi.org/10.3390/jcm5050051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saitoh, M. (2018). Involvement of partial EMT in cancer progression. Journal of Biochemistry, 164(4), 257–264. https://doi.org/10.1093/jb/mvy047.

    Article  CAS  PubMed  Google Scholar 

  48. Chan, J. M., Quintanal-Villalonga, Á., Gao, V. R., Xie, Y., Allaj, V., Chaudhary, O., Masilionis, I., Egger, J. V., Chow, A., Walle, T., Mattar, M. S., Yarlagadda, D. V., Wang, J. L., Uddin, F., Offin, M., Ciampricotti, M., Qeriqi, B., Bahr, A., De Stanchina, E., & Rudin, C. M. (2021). Signatures of plasticity, metastasis, and immunosuppression in an atlas of human small cell lung cancer. Cancer Cell, 39(11), 1479–1496e18. https://doi.org/10.1016/j.ccell.2021.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., Yu, M., Pely, A., Engstrom, A., Zhu, H., Brannigan, B. W., Kapur, R., Stott, S. L., Shioda, T., Ramaswamy, S., Ting, D. T., Lin, C. P., Toner, M., Haber, D. A., & Maheswaran, S. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. https://doi.org/10.1016/j.cell.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., Krol, I., Scheidmann, M. C., Beisel, C., Stirnimann, C. U., Kurzeder, C., Heinzelmann-Schwarz, V., Rochlitz, C., Weber, W., & Aceto, N. (2019). Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 176(1–2), 98–112e14. https://doi.org/10.1016/j.cell.2018.11.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vincent, A., Ouelkdite-Oumouchal, A., Souidi, M., Leclerc, J., Neve, B., & Van Seuningen, I. (2019). Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World Journal of Stem Cells, 11(11), 920–936. https://doi.org/10.4252/wjsc.v11.i11.920.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chaffer, F., Brueckmann, C. L., Scheel, I., Kaestli, C., Wiggins, A. J., Rodrigues, P. A., Brooks, L. O., Reinhardt, M., Su, F., Polyak, Y., Arendt, K., Kuperwasser, L. M., Bierie, C., & Weinberg, B. (2011). Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Natl Acad Sci U S A, 108(19), 7950–7955. https://doi.org/10.1073/pnas.1102454108.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhang, C. C., Aldrees, M., Arif, M., Li, X., Mardinoğlu, A., & Aziz, M. A. (2019). Elucidating the reprograming of colorectal cancer metabolism using genome-scale metabolic modeling. Frontiers in Oncology, 9. https://doi.org/10.3389/fonc.2019.00681.

  54. Wang, Z., Wu, X., Chen, H., & Wang, K. (2023). Amino acid metabolic reprogramming in tumor metastatic colonization. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1123192.

  55. Bergers, G., & Fendt, S. (2021). The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 21(3), 162–180. https://doi.org/10.1038/s41568-020-00320-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gaude, E., & Frezza, C. (2016). Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nature Communications, 7(1). https://doi.org/10.1038/ncomms13041.

  57. Christen, S., Lorendeau, D., Schmieder, R., Broekaert, D., Metzger, K. L., Veys, K., Elia, I., Buescher, J. M., Orth, M. F., Davidson, S. M., Grünewald, T., De Bock, K., & Fendt, S. (2016). Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Reports, 17(3), 837–848. https://doi.org/10.1016/j.celrep.2016.09.042

    Article  CAS  PubMed  Google Scholar 

  58. Delaunay, S., Pascual, G., Feng, B., Klann, K., Behm, M., Hotz-Wagenblatt, A., Richter, K., Zaoui, K., Herpel, E., Münch, C., Dietmann, S., Heß, J., Benitah, S. A., & Frye, M. (2022). Mitochondrial RNA modifications shape metabolic plasticity in metastasis. Nature, 607(7919), 593–603. https://doi.org/10.1038/s41586-022-04898-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, A., Luo, Y., Yang, Y., Fu, J., Geng, X., Shi, J., & Yang, J. (2021). Lactylation, a novel Metabolic Reprogramming Code: Current status and prospects. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.688910.

  60. Thakur, C., & Chen, F. (2019). Connections between metabolism and epigenetics in cancers. Seminars in Cancer Biology, 57, 52–58. https://doi.org/10.1016/j.semcancer.2019.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dar, M. A., Arafah, A., Bhat, K. A., Khan, A., Khan, M. S., Ali, A., Ahmad, S. M., Rashid, S. M., & Rehman, M. U. (2023). Multiomics technologies: Role in disease biomarker discoveries and therapeutics. Briefings in Functional Genomics, 22(2), 76–96. https://doi.org/10.1093/bfgp/elac017.

    Article  CAS  PubMed  Google Scholar 

  62. Althenayyan, S., AlMuhanna, M. H., AlAbdulrahman, A., Alghanem, B., Alsagaby, S. A., Alfahed, A., Alasiri, G., & Aziz, M. A. (2023). Alternatively spliced isoforms of MUC4 and ADAM12 as biomarkers for colorectal cancer metastasis. J Pers Med, 13(1), 135. https://doi.org/10.3390/jpm13010135

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu, F., Ke, J., & Song, Y. (2020). Application of biomarkers for the prediction and diagnosis of bone metastasis in breast cancer. J Breast Cancer, 23(6), 588–598. https://doi.org/10.4048/jbc.2020.23.e65

    Article  PubMed  PubMed Central  Google Scholar 

  64. Aziz, M., Yousef, Z., Saleh, A. M., Mohammad, S., & Knawy, B. A. (2017). Towards personalized medicine of colorectal cancer. Critical Reviews in Oncology/Hematology, 118, 70–78. https://doi.org/10.1016/j.critrevonc.2017.08.007.

    Article  PubMed  Google Scholar 

  65. Castro-Giner, F., & Aceto, N. (2020). Tracking cancer progression: From circulating tumor cells to metastasis. Genome Medicine, 12(1). https://doi.org/10.1186/s13073-020-00728-3.

  66. Loreth, D., Schuette, M., Zinke, J., Mohme, M., Piffko, A., Schneegans, S., Stadler, J., Janning, M., Loges, S., Joosse, S. A., Lamszus, K., Westphal, M., Müller, V., Glatzel, M., Matschke, J., Gebhardt, C., Schneider, S. W., Belczacka, I., Volkmer, B., & Wikman, H. (2021). CD74 and CD44 expression on CTCs in cancer patients with brain metastasis. International Journal of Molecular Sciences, 22(13), 6993. https://doi.org/10.3390/ijms22136993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sperger, J. M., Emamekhoo, H., McKay, R. R., Stahlfeld, C. N., Singh, A., Chen, X. E., Kwak, L., Gilsdorf, C. S., Wolfe, S. K., Wei, X. X., Silver, R., Zhang, Z., Morris, M. J., Bubley, G. J., Feng, F. Y., Scher, H. I., Rathkopf, D. E., Dehm, S. M., Choueiri, T. K., & Lang, J. M. (2021). Prospective evaluation of clinical outcomes using a multiplex liquid biopsy targeting diverse resistance mechanisms in metastatic prostate cancer. Journal of Clinical Oncology, 39(26), 2926–2937. https://doi.org/10.1200/jco.21.00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, J., Chen, J., Wo, D., Yan, H., Liu, P., Eglitis, M. A., Li, L., Zheng, L., Chen, D., Yu, Z., Liang, C., Peng, J., Ren, D., & Zhu, W. (2019). LRP6 ectodomain prevents SDF-1/CXCR4-induced breast cancer metastasis to lung. Clinical Cancer Research, 25(15), 4832–4845. https://doi.org/10.1158/1078-0432.ccr-18-3557

    Article  CAS  PubMed  Google Scholar 

  69. Yao, Q., An, Y., Hou, W., Cao, Y., Yao, M., Ma, N., Hou, L., Zhang, H., Liu, H., & Zhang, B. (2017). LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics. Oncotarget, 8(65), 109632–109645. https://doi.org/10.18632/oncotarget.22759.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nalejska, E., Mączyńska, E., & Lewandowska, M. A. (2014). Prognostic and predictive biomarkers: Tools in personalized oncology. Molecular Diagnosis & Therapy, 18, 273–284. https://doi.org/10.1007/s40291-013-0077-9

    Article  CAS  Google Scholar 

  71. Wood, S. L., & Brown, J. E. (2020). Personal medicine and bone metastases: Biomarkers, micro-RNAs and bone metastases. Cancers, 12(8), 2109. https://doi.org/10.3390/cancers12082109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kong, D., Hughes, C. J., & Ford, H. L. (2020). Cellular plasticity in breast cancer progression and therapy. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.00072.

  73. Fillmore, C. M., Gupta, P. B., Rudnick, J. A., Caballero, S., Keller, P. J., & Lander, E. S. (2010). Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proceedings of the National Academy of Sciences U S A, 107, 21737–21742. https://doi.org/10.1073/pnas.1007863107

    Article  Google Scholar 

  74. Schwitalla, S. (2014). Tumor cell plasticity: The challenge to catch a moving target. Journal of Gastroenterology, 49(4), 618–627. https://doi.org/10.1007/s00535-014-0943-1.

    Article  PubMed  Google Scholar 

  75. He, X., Liu, X., Zuo, F., Shi, H., & Jing, J. (2023). Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Seminars in Cancer Biology, 88, 187–200. https://doi.org/10.1016/j.semcancer.2022.12.009.

    Article  CAS  PubMed  Google Scholar 

  76. Naulaerts, S., Datsi, A., Borrás, D., Antoranz, A., Messiaen, J., Vanmeerbeek, I., Sprooten, J., Laureano, R. S., Govaerts, J., Panovska, D., Derweduwe, M., Sabel, M., Rapp, M., Ni, W., Mackay, S., Van Herck, Y., Gelens, L., Venken, T., More, S., & Garg, A. D. (2023). Multiomics and spatial mapping characterizes human CD8 + T cell states in cancer. Science Translational Medicine, 15(691). https://doi.org/10.1126/scitranslmed.add1016.

  77. Popa, M., Albulescu, R., Neagu, M., Hinescu, M. E., & Tănase, C. (2019). Multiplex assay for multiomics advances in personalized-precision medicine. Journal of Immunoassay & Immunochemistry, 40(1), 3–25. https://doi.org/10.1080/15321819.2018.156294.

    Article  CAS  Google Scholar 

  78. Sell, S. (2008). Alpha-fetoprotein, stem cells and cancer: How study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumor Biology, 29(3), 161–180. https://doi.org/10.1159/000143402

    Article  CAS  PubMed  Google Scholar 

  79. Walcher, L., Kistenmacher, A., Suo, H., Kitte, R., Dluczek, S., Strauß, A., Blaudszun, A., Yevsa, T., Stephan, F., & Kossatz-Boehlert, U. (2020). Cancer stem cells—Origins and biomarkers: Perspectives for targeted personalized therapies. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.01280.

  80. Alhumaid, A., Alyousef, Z., Bakhsh, H. A., Alghamdi, S., & Aziz, M. (2018). Emerging paradigms in the treatment of liver metastases in colorectal cancer. Critical Reviews in Oncology/Hematology, 132, 39–50. https://doi.org/10.1016/j.critrevonc.2018.09.011.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The encouragement of Cancer Nanomedicine Consortium members is acknowledged in the preparation of this review. Help extended by Professor Afzal Anees, Rashid Ali, Mohammad Jaseem Hasan, Mohammad Akram, Hamid Ashraf, and Hifzurrahman Siddique is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MAA is responsible for conceiving, writing, and proofreading the manuscript.

Corresponding author

Correspondence to Mohammad Azhar Aziz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, M.A. Multiomics approach towards characterization of tumor cell plasticity and its significance in precision and personalized medicine. Cancer Metastasis Rev (2024). https://doi.org/10.1007/s10555-024-10190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10555-024-10190-x

Keywords

Navigation