Skip to main content

Advertisement

Log in

Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer—directs the road towards therapy resistance, metastatic progression and recurrence

  • Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Recent therapeutic advances have significantly uplifted the quality of life in breast cancer patients, yet several impediments block the road to disease-free survival. This involves unresponsiveness towards administered therapy, epithelial to mesenchymal transition, and metastatic progression with the eventual appearance of recurrent disease. Attainment of such characteristics is a huge adaptive challenge to which tumour cells respond by acquiring diverse phenotypically plastic states. Several signalling networks and mediators are involved in such a process. Glucocorticoid receptor being a mediator of stress response imparts prognostic significance in the context of breast carcinoma. Involvement of the glucocorticoid receptor in the signalling cascade of breast cancer phenotypic plasticity needs further elucidation. This review attempted to shed light on the inter-regulatory interactions of the glucocorticoid receptor with the mediators of the plasticity program in breast cancer; which may provide a hint for strategizing therapeutics against the glucocorticoid/glucocorticoid receptor axis so as to modulate phenotypic plasticity in breast carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  CAS  PubMed  Google Scholar 

  3. Lüönd, F., Sugiyama, N., Bill, R., Bornes, L., Hager, C., Tang, F., Santacroce, N., Beisel, C., Ivanek, R., Burglin, T., Tiede, S., Rheenen, J. V., & Christofori, G. (2021). Distinct contributions of partial and full EMT to breast cancer malignancy. Developmental Cell, 56(23), 3203–3221.e11. https://doi.org/10.1016/j.devcel.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  4. Tsang, J. Y. S., & Tse, G. M. (2020). Molecular classification of breast cancer. Advances in Anatomic Pathology, 27(1), 27–35. https://doi.org/10.1097/PAP.0000000000000232

    Article  CAS  PubMed  Google Scholar 

  5. Butz, H., & Patócs, A. (2022). Mechanisms behind context-dependent role of glucocorticoids in breast cancer progression. Cancer Metastasis Reviews, 41(4), 803–832. https://doi.org/10.1007/s10555-022-10047-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gupta, P. B., Pastushenko, I., Skibinski, A., Blanpain, C., & Kuperwasser, C. (2019). Phenotypic plasticity: Driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell, 24(1), 65–78. https://doi.org/10.1016/j.stem.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Lofterød, T., Frydenberg, H., Flote, V., Eggen, A. E., McTiernan, A., Mortensen, E. S., Akslen, A. L., Reitan, J. B., Wilsgaard, T., & Thune, I. (2020). Exploring the effects of lifestyle on breast cancer risk, age at diagnosis, and survival: The EBBA-Life study. Breast Cancer Research and Treatment, 182(1), 215–227. https://doi.org/10.1007/s10549-020-05679-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fischer, A., Ziogas, A., & Anton-Culver, H. (2018). Perception matters: Stressful life events increase breast cancer risk. Journal of Psychosomatic Research, 110, 46–53. https://doi.org/10.1016/j.jpsychores.2018.03.010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ramírez-Expósito, M. J., Dueñas-Rodríguez, B., Carrera-González, M. P., Navarro-Cecilia, J., & Martínez-Martos, J. M. (2021). Circulating levels of β-endorphin and cortisol in breast cancer. Comprehensive Psychoneuroendocrinology, 5, 100028. https://doi.org/10.1016/j.cpnec.2021.100028

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mitre-Aguilar, I. B., Moreno-Mitre, D., Melendez-Zajgla, J., Maldonado, V., Jacobo-Herrera, N. J., Ramirez-Gonzalez, V., & Mendoza-Almanza, G. (2022). The Role of glucocorticoids in breast cancer therapy. Current Oncology (Toronto, Ont.), 30(1), 298–314. https://doi.org/10.3390/curroncol30010024

    Article  PubMed  Google Scholar 

  11. Alyusuf, R., Wazir, J. F., Brahmi, U. P., Fakhro, A. R., & Bakhiet, M. (2017). The immunoexpression of glucocorticoid receptors in breast carcinomas, lactational change, and normal breast epithelium and its possible role in mammary carcinogenesis. International Journal of Breast Cancer, 2017, 1403054. https://doi.org/10.1155/2017/1403054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pan, D., Kocherginsky, M., & Conzen, S. D. (2011). Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor-negative breast cancer. Cancer Research, 71(20), 6360–6370. https://doi.org/10.1158/0008-5472.CAN-11-0362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Skor, M. N., Wonder, E. L., Kocherginsky, M., Goyal, A., Hall, B. A., Cai, Y., & Conzen, S. D. (2013). Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(22), 6163–6172. https://doi.org/10.1158/1078-0432.CCR-12-3826

    Article  CAS  PubMed  Google Scholar 

  14. Kach, J., Conzen, S. D., & Szmulewitz, R. Z. (2015). Targeting the glucocorticoid receptor in breast and prostate cancers. Science Translational Medicine, 7(305), 305ps19. https://doi.org/10.1126/scitranslmed.aac7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mourtzi, N., Sertedaki, A., & Charmandari, E. (2021). Glucocorticoid signaling and epigenetic alterations in stress-related disorders. International Journal of Molecular Sciences, 22(11), 5964. https://doi.org/10.3390/ijms22115964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vettorazzi, S., Nalbantoglu, D., Gebhardt, J. C. M., & Tuckermann, J. (2022). A guide to changing paradigms of glucocorticoid receptor function-A model system for genome regulation and physiology. The FEBS Journal, 289(19), 5718–5743. https://doi.org/10.1111/febs.16100

    Article  CAS  PubMed  Google Scholar 

  17. Noureddine, L. M., Trédan, O., Hussein, N., Badran, B., Le Romancer, M., & Poulard, C. (2021). Glucocorticoid receptor: A multifaceted actor in breast cancer. International Journal of Molecular Sciences, 22(9), 4446. https://doi.org/10.3390/ijms22094446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Truong, T. H., & Lange, C. A. (2018). Deciphering steroid receptor crosstalk in hormone-driven cancers. Endocrinology, 159(12), 3897–3907. https://doi.org/10.1210/en.2018-00831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. West, D. C., Pan, D., Tonsing-Carter, E. Y., Hernandez, K. M., Pierce, C. F., Styke, S. C., Bowie, K. R., Garcia, T. I., Kocherginsky, M., & Conzen, S. D. (2016). GR and ER Coactivation alters the expression of differentiation genes and associates with improved ER+ breast cancer outcome. Molecular cancer research: MCR, 14(8), 707–719. https://doi.org/10.1158/1541-7786.MCR-15-0433

    Article  CAS  PubMed  Google Scholar 

  20. Cardoso, F., Costa, A., Senkus, E., Aapro, M., André, F., Barrios, C. H., Bergh, J., Bhattacharyya, G., Biganzoli, L., Cardoso, M. J., Carey, L., Corneliussen-James, D., Curigliano, G., Dieras, V., El Saghir, N., Eniu, A., Fallowfield, L., Fenech, D., Francis, P., et al. (2017). 3rd ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 3). Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28(1), 16–33. https://doi.org/10.1093/annonc/mdw544

    Article  CAS  PubMed  Google Scholar 

  21. Nelson, D. R., Brown, J., Morikawa, A., & Method, M. (2022). Breast cancer-specific mortality in early breast cancer as defined by high-risk clinical and pathologic characteristics. PLoS One, 17(2), e0264637. https://doi.org/10.1371/journal.pone.0264637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhidkova, E. M., Lylova, E. S., Savinkova, A. V., Mertsalov, S. A., Kirsanov, K. I., Belitsky, G. A., Yakubovskaya, M. G., & Lesovaya, E. A. (2020). A brief overview of the paradoxical role of glucocorticoids in breast cancer. Breast Cancer: Basic and Clinical Research, 14, 1178223420974667. https://doi.org/10.1177/1178223420974667

    Article  PubMed  Google Scholar 

  23. Kong, D., Hughes, C. J., & Ford, H. L. (2020). Cellular plasticity in breast cancer progression and therapy. Frontiers in Molecular Biosciences, 7, 72. https://doi.org/10.3389/fmolb.2020.00072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pan, H., Gray, R., Braybrooke, J., Davies, C., Taylor, C., McGale, P., Peto, R., Pritchard, K. I., Bergh, J., Dowsett, M., & Hayes, D. F. (2017). 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. The New England Journal of Medicine, 377(19), 1836–1846. https://doi.org/10.1056/NEJMoa1701830

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., Levine, H., Mani, S. A., & Wicha, M. S. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ breast cancer, 7(1), 66. https://doi.org/10.1038/s41523-021-00269-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, X., Liang, X., Zheng, M., & Tang, Y. (2018). Cellular phenotype plasticity in cancer dormancy and metastasis. Frontiers in Oncology, 8, 505. https://doi.org/10.3389/fonc.2018.00505

    Article  PubMed  PubMed Central  Google Scholar 

  27. Aouad, P., Zhang, Y., De Martino, F., Stibolt, C., Ali, S., Ambrosini, G., Mani, S. A., Maggs, K., Quinn, H. M., Sflomos, G., & Brisken, C. (2022). Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nature Communications, 13(1), 4975. https://doi.org/10.1038/s41467-022-32523-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qin, X., Li, T., Li, S., Yang, H., Wu, C., Zheng, C., You, F., & Liu, Y. (2020). The tumor biochemical and biophysical microenvironments synergistically contribute to cancer cell malignancy. Cellular & Molecular Immunology, 17(11), 1186–1187. https://doi.org/10.1038/s41423-019-0282-5

    Article  CAS  Google Scholar 

  29. Dirkse, A., Golebiewska, A., Buder, T., Nazarov, P. V., Muller, A., Poovathingal, S., Brons, N. H. C., Leite, S., Sauvageot, N., Sarkisjan, D., Seyfrid, M., Fritah, S., Stieber, D., Michelucci, A., Hertel, F., Herold-Mende, C., Azuaje, F., Skupin, A., Bjerkvig, R., et al. (2019). Stem cell-associated heterogeneity in glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nature Communications, 10(1), 1787. https://doi.org/10.1038/s41467-019-09853-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oh, H.-M., & Son, C.-G. (2021). The risk of psychological stress on cancer recurrence: A systematic review. Cancers, 13(22), 5816. https://doi.org/10.3390/cancers13225816

    Article  PubMed  PubMed Central  Google Scholar 

  31. Prekovic, S., Schuurman, K., Mayayo-Peralta, I., Manjón, A. G., Buijs, M., Yavuz, S., Wellenstein, M. D., Barrera, A., Monkhorst, K., Huber, A., Morris, B., Lieftink, C., Chalkiadakis, T., Alkan, F., Silva, J., Győrffy, B., Hoekman, L., van den Broek, B., Teunissen, H., et al. (2021). Glucocorticoid receptor triggers a reversible drug-tolerant dormancy state with acquired therapeutic vulnerabilities in lung cancer. Nature Communications, 12(1), 4360. https://doi.org/10.1038/s41467-021-24537-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sorrentino, G., Ruggeri, N., Zannini, A., Ingallina, E., Bertolio, R., Marotta, C., Neri, C., Cappuzzello, E., Forcato, M., Rosato, A., Mano, M., Bicciato, S., & Del Sal, G. (2017). Glucocorticoid receptor signalling activates YAP in breast cancer. Nature Communications, 8, 14073. https://doi.org/10.1038/ncomms14073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buoso, E., Ronfani, M., Galasso, M., Ventura, D., Corsini, E., & Racchi, M. (2019). Cortisol-induced SRSF3 expression promotes GR splicing, RACK1 expression and breast cancer cells migration. Pharmacological Research, 143, 17–26. https://doi.org/10.1016/j.phrs.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  34. Meng, X.-G., & Yue, S.-W. (2014). Dexamethasone disrupts cytoskeleton organization and migration of T47D human breast cancer cells by modulating the AKT/mTOR/RhoA pathway. Asian Pacific Journal of Cancer Prevention : APJCP, 15(23), 10245–10250. https://doi.org/10.7314/apjcp.2014.15.23.10245

    Article  PubMed  Google Scholar 

  35. Li, Z., Dong, J., Zou, T., Du, C., Li, S., Chen, C., Liu, R., & Wang, K. (2017). Dexamethasone induces docetaxel and cisplatin resistance partially through up-regulating Krüppel-like factor 5 in triple-negative breast cancer. Oncotarget, 8(7), 11555–11565. https://doi.org/10.18632/oncotarget.14135

    Article  PubMed  Google Scholar 

  36. Obradović, M. M. S., Hamelin, B., Manevski, N., Couto, J. P., Sethi, A., Coissieux, M. M., Münst, S., Okamoto, R., Kohler, H., Schmidt, A., & Bentires-Alj, M. (2019). Glucocorticoids promote breast cancer metastasis. Nature, 567(7749), 540–544. https://doi.org/10.1038/s41586-019-1019-4

    Article  CAS  PubMed  Google Scholar 

  37. Riggio, A. I., Varley, K. E., & Welm, A. L. (2021). The lingering mysteries of metastatic recurrence in breast cancer. British Journal of Cancer, 124(1), 13–26. https://doi.org/10.1038/s41416-020-01161-4

    Article  PubMed  Google Scholar 

  38. Lim, B., & Hortobagyi, G. N. (2016). Current challenges of metastatic breast cancer. Cancer Metastasis Reviews, 35(4), 495–514. https://doi.org/10.1007/s10555-016-9636-y

    Article  CAS  PubMed  Google Scholar 

  39. Mehrotra, R., & Yadav, K. (2022). Breast cancer in India: Present scenario and the challenges ahead. World Journal of Clinical Oncology, 13(3), 209–218. https://doi.org/10.5306/wjco.v13.i3.209

    Article  PubMed  PubMed Central  Google Scholar 

  40. Massagué, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529(7586), 298–306. https://doi.org/10.1038/nature17038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ganesh, K., & Massagué, J. (2021). Targeting metastatic cancer. Nature Medicine, 27(1), 34–44. https://doi.org/10.1038/s41591-020-01195-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Gioia, D., Stieber, P., Schmidt, G. P., Nagel, D., Heinemann, V., & Baur-Melnyk, A. (2015). Early detection of metastatic disease in asymptomatic breast cancer patients with whole-body imaging and defined tumour marker increase. British Journal of Cancer, 112(5), 809–818. https://doi.org/10.1038/bjc.2015.8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gradishar, W. J., Anderson, B. O., Abraham, J., Aft, R., Agnese, D., Allison, K. H., Blair, S. L., Burstein, H. J., Dang, C., Elias, A. D., Giordano, S. H., Goetz, M. P., Goldstein, L. J., Isakoff, S. J., Krishnamurthy, J., Lyons, J., Marcom, P. K., Matro, J., Mayer, I. A., et al. (2020). Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 18(4), 452–478. https://doi.org/10.6004/jnccn.2020.0016

    Article  CAS  PubMed  Google Scholar 

  44. Khatcheressian, J. L., Hurley, P., Bantug, E., Esserman, L. J., Grunfeld, E., Halberg, F., Hantel, A., Henry, N. L., Muss, H. B., Smith, T. J., Vogel, V. G., Wolff, A. C., Somerfield, M. R., Davidson, N. E., & American Society of Clinical Oncology. (2013). Breast cancer follow-up and management after primary treatment: American Society of Clinical Oncology clinical practice guideline update. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 31(7), 961–965. https://doi.org/10.1200/JCO.2012.45.9859

    Article  CAS  PubMed  Google Scholar 

  45. Sabe, H. (2011). Cancer early dissemination: Cancerous epithelial-mesenchymal transdifferentiation and transforming growth factor β signalling. Journal of Biochemistry, 149(6), 633–639. https://doi.org/10.1093/jb/mvr044

    Article  CAS  PubMed  Google Scholar 

  46. Chemi, F., Mohan, S., Guevara, T., Clipson, A., Rothwell, D. G., & Dive, C. (2021). Early dissemination of circulating tumor cells: Biological and clinical insights. Frontiers in Oncology, 11, 672195. https://doi.org/10.3389/fonc.2021.672195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews. Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. An, J., Feng, L., Ren, J., Li, Y., Li, G., Liu, C., Yao, Y., Yao, Y., Jiang, Z., Gao, Y., Xu, Y., Wang, Y., Li, J., Liu, J., Cao, L., Qi, Z., & Yang, L. (2021). Chronic stress promotes breast carcinoma metastasis by accumulating myeloid-derived suppressor cells through activating β-adrenergic signaling. Oncoimmunology, 10(1), 2004659. https://doi.org/10.1080/2162402X.2021.2004659

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shi, W., Wang, D., Yuan, X., Liu, Y., Guo, X., Li, J., & Song, J. (2019). Glucocorticoid receptor-IRS-1 axis controls EMT and the metastasis of breast cancers. Journal of Molecular Cell Biology, 11(12), 1042–1055. https://doi.org/10.1093/jmcb/mjz001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, S., Chen, L., Cui, B., Chuang, H. Y., Yu, J., Wang-Rodriguez, J., Tang, L., Chen, G., Basak, G. W., & Kipps, T. J. (2012). ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One, 7(3), e31127. https://doi.org/10.1371/journal.pone.0031127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Masi, M., Garattini, E., Bolis, M., Di Marino, D., Maraccani, L., Morelli, E., Grolla, A. A., Fagiani, F., Corsini, E., Travelli, C., Govoni, S., Racchi, M., & Buoso, E. (2020). OXER1 and RACK1-associated pathway: A promising drug target for breast cancer progression. Oncogenesis, 9(12), 105. https://doi.org/10.1038/s41389-020-00291-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Conway, M. E., McDaniel, J. M., Graham, J. M., Guillen, K. P., Oliver, P. G., Parker, S. L., Yue, P., Turkson, J., Buchsbaum, D. J., Welm, B. E., Myers, R. M., & Varley, K. E. (2020). STAT3 and GR cooperate to drive gene expression and growth of basal-like triple-negative breast cancer. Cancer Research, 80(20), 4355–4370. https://doi.org/10.1158/0008-5472.CAN-20-1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Castel, P., Ellis, H., Bago, R., Toska, E., Razavi, P., Carmona, F. J., Kannan, S., Verma, C. S., Dickler, M., Chandarlapaty, S., Brogi, E., Alessi, D. R., Baselga, J., & Scaltriti, M. (2016). PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition. Cancer Cell, 30(2), 229–242. https://doi.org/10.1016/j.ccell.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hata, S., Shimada, H., Sato, N., Koshiishi, M., Ise, K., Ogata, T., Yamashita, S., Ito, A., Sasano, H., & Nakamura, Y. (2022). Expression and clinicopathological significance of glucocorticoid receptor, SGK1, and NDRG1 in hormone-naïve prostate carcinoma. Medical Molecular Morphology, 55(4), 283–291. https://doi.org/10.1007/s00795-022-00332-x

    Article  CAS  PubMed  Google Scholar 

  55. Yuan, S., Norgard, R. J., & Stanger, B. Z. (2019). Cellular plasticity in cancer. Cancer. Discovery, 9(7), 837–851. https://doi.org/10.1158/2159-8290.CD-19-0015

    Article  CAS  Google Scholar 

  56. Yamashita, N., Tokunaga, E., Iimori, M., Inoue, Y., Tanaka, K., Kitao, H., Saeki, H., Oki, E., & Maehara, Y. (2018). Epithelial paradox: Clinical significance of coexpression of E-cadherin and vimentin with regard to invasion and metastasis of breast cancer. Clinical Breast Cancer, 18(5), e1003–e1009. https://doi.org/10.1016/j.clbc.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  57. Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., Van Keymeulen, A., Brown, D., Moers, V., Lemaire, S., De Clercq, S., Minguijón, E., Balsat, C., Sokolow, Y., Dubois, C., De Cock, F., Scozzaro, S., Sopena, F., Lanas, A., et al. (2018). Identification of the tumour transition states occurring during EMT. Nature, 556(7702), 463–468. https://doi.org/10.1038/s41586-018-0040-3

    Article  CAS  PubMed  Google Scholar 

  58. Nieto, M. A., Huang, R. Y.-J., Jackson, R. A., & Thiery, J. P. (2016). EMT: 2016. Cell, 166(1), 21–45. https://doi.org/10.1016/j.cell.2016.06.028

    Article  CAS  PubMed  Google Scholar 

  59. Xu, Y., Lee, D. K., Feng, Z., Xu, Y., Bu, W., Li, Y., Liao, L., & Xu, J. (2017). Breast tumor cell-specific knockout of Twist1 inhibits cancer cell plasticity, dissemination, and lung metastasis in mice. Proceedings of the National Academy of Sciences of the United States of America, 114(43), 11494–11499. https://doi.org/10.1073/pnas.1618091114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Friedl, P., Locker, J., Sahai, E., & Segall, J. E. (2012). Classifying collective cancer cell invasion. Nature Cell Biology, 14(8), 777–783. https://doi.org/10.1038/ncb2548

    Article  CAS  PubMed  Google Scholar 

  61. Strumane, K., Berx, G., & Van Roy, F. (2004). Cadherins in cancer. Handbook of Experimental Pharmacology, 165, 69–103. https://doi.org/10.1007/978-3-540-68170-0_4

    Article  CAS  Google Scholar 

  62. Shi, R. Z., He, Y. F., Wen, J., Niu, Y. N., Gao, Y., Liu, L. H., Zhang, X. P., Wang, Y., Zhang, X. L., Zhang, H. F., Chen, M., & Hu, X. L. (2021). Epithelial cell adhesion molecule promotes breast cancer resistance protein-mediated multidrug resistance in breast cancer by inducing partial epithelial-mesenchymal transition. Cell Biology International, 45(8), 1644–1653. https://doi.org/10.1002/cbin.11598

    Article  CAS  PubMed  Google Scholar 

  63. Brown, T. C., Sankpal, N. V., & Gillanders, W. E. (2021). Functional implications of the dynamic regulation of EpCAM during epithelial-to-mesenchymal transition. Biomolecules, 11(7), 956. https://doi.org/10.3390/biom11070956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Xiao, L., Zhang, C., Li, X., Jia, C., Chen, L., Yuan, Y., Gao, Q., Lu, Z., Feng, Y., Zhao, R., Zhao, X., Cheng, S., Shu, Z., Xu, J., Duan, W., Nie, G., & Hou, Y. (2021). LEF1 enhances the progression of colonic adenocarcinoma via remodeling the cell motility associated structures. International Journal of Molecular Sciences, 22(19), 10870. https://doi.org/10.3390/ijms221910870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Blazquez, R., Rietkötter, E., Wenske, B., Wlochowitz, D., Sparrer, D., Vollmer, E., Müller, G., Seegerer, J., Sun, X., Dettmer, K., Barrantes-Freer, A., Stange, L., Utpatel, K., Bleckmann, A., Treiber, H., Bohnenberger, H., Lenz, C., Schulz, M., Reimelt, C., et al. (2020). LEF1 supports metastatic brain colonization by regulating glutathione metabolism and increasing ROS resistance in breast cancer. International Journal of Cancer, 146(11), 3170–3183. https://doi.org/10.1002/ijc.32742

    Article  CAS  PubMed  Google Scholar 

  66. Hao, Y. H., Lafita-Navarro, M. C., Zacharias, L., Borenstein-Auerbach, N., Kim, M., Barnes, S., Kim, J., Shay, J., DeBerardinis, R. J., & Conacci-Sorrell, M. (2019). Induction of LEF1 by MYC activates the WNT pathway and maintains cell proliferation. Cell Communication and Signaling: CCS, 17(1), 129. https://doi.org/10.1186/s12964-019-0444-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen, J., Huang, Q., Jia, W., Feng, S., Liu, L., Li, X., Tao, D., & Xie, D. (2022). YAP1 induces invadopodia formation by transcriptionally activating TIAM1 through enhancer in breast cancer. Oncogene, 41(31), 3830–3845. https://doi.org/10.1038/s41388-022-02344-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Perez Kerkvliet, C., Dwyer, A. R., Diep, C. H., Oakley, R. H., Liddle, C., Cidlowski, J. A., & Lange, C. A. (2020). Glucocorticoid receptors are required effectors of TGFβ1-induced p38 MAPK signaling to advanced cancer phenotypes in triple-negative breast cancer. Breast cancer research: BCR, 22(1), 39. https://doi.org/10.1186/s13058-020-01277-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bikkavilli, R. K., & Malbon, C. C. (2009). Mitogen-activated protein kinases and Wnt/beta-catenin signaling: Molecular conversations among signaling pathways. Communicative & Integrative Biology, 2(1), 46–49. https://doi.org/10.4161/cib.2.1.7503

    Article  CAS  Google Scholar 

  70. Li, S., Lu, J., Chen, Y., Xiong, N., Li, L., Zhang, J., Yang, H., Wu, C., Zeng, H., & Liu, Y. (2017). MCP-1-induced ERK/GSK-3β/Snail signaling facilitates the epithelial-mesenchymal transition and promotes the migration of MCF-7 human breast carcinoma cells. Cellular & Molecular Immunology, 14(7), 621–630. https://doi.org/10.1038/cmi.2015.106

    Article  CAS  Google Scholar 

  71. Zhang, X., Jiang, G., Sun, M., Zhou, H., Miao, Y., Liang, M., Wang, E., & Zhang, Y. (2017). Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway. Oncotarget, 8(8), 13357–13366. https://doi.org/10.18632/oncotarget.14528

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chang, P. H., Chen, M. C., Tsai, Y. P., Tan, G. Y. T., Hsu, P. H., Jeng, Y. M., Tsai, Y. F., Yang, M. H., & Hwang-Verslues, W. W. (2021). Interplay between desmoglein2 and hypoxia controls metastasis in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 118(3), e2014408118. https://doi.org/10.1073/pnas.2014408118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mao, X., Cho, M. J. T., Ellebrecht, C. T., Mukherjee, E. M., & Payne, A. S. (2017). Stat3 regulates desmoglein 3 transcription in epithelial keratinocytes. JCI. Insight, 2(9). https://doi.org/10.1172/jci.insight.92253

  74. Jinesh, G. G., Flores, E. R., & Brohl, A. S. (2018). Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers. PLoS One, 13(10), e0206008. https://doi.org/10.1371/journal.pone.0206008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Verma, A., Singh, A., Singh, M. P., Nengroo, M. A., Saini, K. K., Satrusal, S. R., Khan, M. A., Chaturvedi, P., Sinha, A., Meena, S., Singh, A. K., & Datta, D. (2022). EZH2-H3K27me3 mediated KRT14 upregulation promotes TNBC peritoneal metastasis. Nature Communications, 13(1), 7344. https://doi.org/10.1038/s41467-022-35059-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Merkin, R. D., Vanner, E. A., Romeiser, J. L., Shroyer, A. L. W., Escobar-Hoyos, L. F., Li, J., Powers, R. S., Burke, S., & Shroyer, K. R. (2017). Keratin 17 is overexpressed and predicts poor survival in estrogen receptor-negative/human epidermal growth factor receptor-2-negative breast cancer. Human Pathology, 62, 23–32. https://doi.org/10.1016/j.humpath.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  77. Lim, H. W., Uhlenhaut, N. H., Rauch, A., Weiner, J., Hübner, S., Hübner, N., Won, K. J., Lazar, M. A., Tuckermann, J., & Steger, D. J. (2015). Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Research, 25(6), 836–844. https://doi.org/10.1101/gr.188581.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Blumenberg, M. (2013). Transcriptional regulation of keratin gene expression. In Madame Curie Bioscience Database [Internet]. Landes Bioscience Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK6213/

    Google Scholar 

  79. Forster, N., Saladi, S. V., van Bragt, M., Sfondouris, M. E., Jones, F. E., Li, Z., & Ellisen, L. W. (2014). Basal cell signaling by p63 controls luminal progenitor function and lactation via NRG1. Developmental Cell, 28(2), 147–160. https://doi.org/10.1016/j.devcel.2013.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cheung, K. J., Gabrielson, E., Werb, Z., & Ewald, A. J. (2013). Collective invasion in breast cancer requires a conserved basal epithelial program. Cell, 155(7), 1639–1651. https://doi.org/10.1016/j.cell.2013.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sundqvist, A., Vasilaki, E., Voytyuk, O., Bai, Y., Morikawa, M., Moustakas, A., Miyazono, K., Heldin, C. H., Ten Dijke, P., & van Dam, H. (2020). TGFβ and EGF signaling orchestrates the AP-1- and p63 transcriptional regulation of breast cancer invasiveness. Oncogene, 39(22), 4436–4449. https://doi.org/10.1038/s41388-020-1299-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xu, C., Yan, T., & Yang, J. (2019). OVOL1 inhibits oral squamous cell carcinoma growth and metastasis by suppressing zinc finger E-box binding homeobox 1. International Journal of Clinical and Experimental Pathology, 12(7), 2801–2808.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fan, C., Wang, Q., van der Zon, G., Ren, J., Agaser, C., Slieker, R. C., Iyengar, P. V., Mei, H., & Ten Dijke, P. (2022). OVOL1 inhibits breast cancer cell invasion by enhancing the degradation of TGF-β type I receptor. Signal Transduction and Targeted Therapy, 7(1), 126. https://doi.org/10.1038/s41392-022-00944-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Band, A. M., & Laiho, M. (2011). Crosstalk of TGF-β and estrogen receptor signaling in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 16(2), 109–115. https://doi.org/10.1007/s10911-011-9203-7

    Article  PubMed  Google Scholar 

  85. Song, C. Z., Tian, X., & Gelehrter, T. D. (1999). Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 11776–11781. https://doi.org/10.1073/pnas.96.21.11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiang, X., Deng, Z., Zhuang, X., Ju, S., Mu, J., Jiang, H., Zhang, L., Yan, J., Miller, D., & Zhang, H.-G. (2012). Grhl2 determines the epithelial phenotype of breast cancers and promotes tumor progression. PLoS One, 7(12), e50781. https://doi.org/10.1371/journal.pone.0050781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nishino, H., Takano, S., Yoshitomi, H., Suzuki, K., Kagawa, S., Shimazaki, R., Shimizu, H., Furukawa, K., Miyazaki, M., & Ohtsuka, M. (2017). Grainyhead-like 2 (GRHL2) regulates epithelial plasticity in pancreatic cancer progression. Cancer Medicine, 6(11), 2686–2696. https://doi.org/10.1002/cam4.1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Reese, R. M., Helzer, K. T., Allen, K. O., Zheng, C., Solodin, N., & Alarid, E. T. (2022). GRHL2 enhances phosphorylated estrogen receptor (ER) chromatin binding and regulates ER-mediated transcriptional activation and repression. Molecular and Cellular Biology, 42(10), e0019122. https://doi.org/10.1128/mcb.00191-22

    Article  CAS  PubMed  Google Scholar 

  89. Paakinaho, V., & Palvimo, J. J. (2021). Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocrine-Related Cancer, 28(9), R231–R250. https://doi.org/10.1530/ERC-21-0038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, H., Teng, C., Huang, W., Peng, J., & Wang, C. (2015). SOX2 Promotes the epithelial to mesenchymal transition of esophageal squamous cells by modulating slug expression through the activation of STAT3/HIF-α signaling. International Journal of Molecular Sciences, 16(9), 21643–21657. https://doi.org/10.3390/ijms160921643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, S., Xiong, X., & Sun, Y. (2020). Functional characterization of SOX2 as an anticancer target. Signal Transduction and Targeted Therapy, 5(1), 135. https://doi.org/10.1038/s41392-020-00242-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, H., Song, Y., Qiu, H., Liu, Y., Luo, K., Yi, Y., Jiang, G., Lu, M., Zhang, Z., Yin, J., Zeng, S., Chen, X., Deng, M., Jia, X., Gu, Y., Chen, D., Zheng, G., & He, Z. (2020). Downregulation of FOXO3a by DNMT1 promotes breast cancer stem cell properties and tumorigenesis. Cell Death and Differentiation, 27(3), 966–983. https://doi.org/10.1038/s41418-019-0389-3

    Article  CAS  PubMed  Google Scholar 

  93. Yao, S., Fan, L. Y.-N., & Lam, E. W.-F. (2018). The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Seminars in Cancer Biology, 50, 77–89. https://doi.org/10.1016/j.semcancer.2017.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pires, B. R. B., Mencalha, A. L., Ferreira, G. M., de Souza, W. F., Morgado-Díaz, J. A., Maia, A. M., et al. (2017). NF-kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS One, 12(1), e0169622. https://doi.org/10.1371/journal.pone.0169622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Satelli, A., & Li, S. (2011). Vimentin in cancer and its potential as a molecular target for cancer therapy. Cellular and Molecular Life Sciences: CMLS, 68(18), 3033–3046. https://doi.org/10.1007/s00018-011-0735-1

    Article  CAS  PubMed  Google Scholar 

  96. Ling, J., & Kumar, R. (2012). Crosstalk between NFkB and glucocorticoid signaling: A potential target of breast cancer therapy. Cancer Letters, 322(2), 119–126. https://doi.org/10.1016/j.canlet.2012.02.033

    Article  CAS  PubMed  Google Scholar 

  97. Puré, E., & Blomberg, R. (2018). Pro-tumorigenic roles of fibroblast activation protein in cancer: Back to the basics. Oncogene, 37(32), 4343–4357. https://doi.org/10.1038/s41388-018-0275-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu, Q.-Q., Zhao, M., Huang, G.-Z., Zheng, Z.-N., Chen, Y., Zeng, W.-S., & Lv, X.-Z. (2020). Fibroblast activation protein (FAP) overexpression induces epithelial-mesenchymal transition (EMT) in oral squamous cell carcinoma by down-regulating dipeptidyl peptidase 9 (DPP9). Oncotargets and Therapy, 13, 2599–2611. https://doi.org/10.2147/OTT.S243417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fitzgerald, A. A., & Weiner, L. M. (2020). The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Reviews, 39(3), 783–803. https://doi.org/10.1007/s10555-020-09909-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, M., & Moon, A. (2022). A curcumin analog CA-5f inhibits urokinase-type plasminogen activator and invasive phenotype of triple-negative breast cancer cells. Toxicological Research, 38(1), 19–26. https://doi.org/10.1007/s43188-021-00112-2

    Article  CAS  PubMed  Google Scholar 

  101. Wickert, L., Chatain, N., Kruschinsky, K., & Gressner, A. M. (2007). Glucocorticoids activate TGF-beta induced PAI-1 and CTGF expression in rat hepatocytes. Comparative Hepatology, 6, 5. https://doi.org/10.1186/1476-5926-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, Y., Du, Y., Hu, X., Zhao, L., & Xia, W. (2018). Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer, 18(1), 367. https://doi.org/10.1186/s12885-018-4255-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Banfi, C., Eriksson, P., Giandomenico, G., Mussoni, L., Sironi, L., Hamsten, A., & Tremoli, E. (2001). Transcriptional regulation of plasminogen activator inhibitor type 1 gene by insulin: Insights into the signaling pathway. Diabetes, 50(7), 1522–1530. https://doi.org/10.2337/diabetes.50.7.1522

    Article  CAS  PubMed  Google Scholar 

  104. Oppenheim, A., & Lahav, G. (2017). The puzzling interplay between p53 and Sp1. Aging, 9(5), 1355–1356. https://doi.org/10.18632/aging.101238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sengupta, S., Vonesch, J. L., Waltzinger, C., Zheng, H., & Wasylyk, B. (2000). Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. The EMBO Journal, 19(22), 6051–6064. https://doi.org/10.1093/emboj/19.22.6051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Feng, Z., Liu, L., Zhang, C., Zheng, T., Wang, J., Lin, M., Zhao, Y., Wang, X., Levine, A. J., & Hu, W. (2012). Chronic restraint stress attenuates p53 function and promotes tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 109(18), 7013–7018. https://doi.org/10.1073/pnas.1203930109

    Article  PubMed  PubMed Central  Google Scholar 

  107. Aziz, M. H., Shen, H., & Maki, C. G. (2012). Glucocorticoid receptor activation inhibits p53-induced apoptosis of MCF10Amyc cells via induction of protein kinase Cε. The Journal of Biological Chemistry, 287(35), 29825–29836. https://doi.org/10.1074/jbc.M112.393256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shenoy, A. K., Jin, Y., Luo, H., Tang, M., Pampo, C., Shao, R., Siemann, D. W., Wu, L., Heldermon, C. D., Law, B. K., Chang, L. J., & Lu, J. (2016). Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. The Journal of Clinical Investigation, 126(11), 4174–4186. https://doi.org/10.1172/JCI86623

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jansson, S., Aaltonen, K., Bendahl, P.-O., Falck, A.-K., Karlsson, M., Pietras, K., & Rydén, L. (2018). The PDGF pathway in breast cancer is linked to tumour aggressiveness, triple-negative subtype and early recurrence. Breast Cancer Research and Treatment, 169(2), 231–241. https://doi.org/10.1007/s10549-018-4664-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Forte, L., Turdo, F., Ghirelli, C., Aiello, P., Casalini, P., Iorio, M. V., D'Ippolito, E., Gasparini, P., Agresti, R., Belmonte, B., Sozzi, G., Sfondrini, L., Tagliabue, E., Campiglio, M., & Bianchi, F. (2018). The PDGFRβ/ERK1/2 pathway regulates CDCP1 expression in triple-negative breast cancer. BMC Cancer, 18(1), 586. https://doi.org/10.1186/s12885-018-4500-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bai, F., Liu, S., Liu, X., Hollern, D. P., Scott, A., Wang, C., Zhang, L., Fan, C., Fu, L., Perou, C. M., Zhu, W. G., & Pei, X.-H. (2021). PDGFRβ is an essential therapeutic target for BRCA1-deficient mammary tumors. Breast cancer research: BCR, 23(1), 10. https://doi.org/10.1186/s13058-021-01387-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ritter, H. D., & Mueller, C. R. (2014). Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells. BMC Cancer, 14, 275. https://doi.org/10.1186/1471-2407-14-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hong, H., Ji, M., & Lai, D. (2021). Chronic stress effects on tumor: Pathway and mechanism. Frontiers in Oncology, 11, 738252. https://doi.org/10.3389/fonc.2021.738252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong, J., Lv, Z., Chen, Q., Wang, X., & Li, F. (2018). PRRX1 drives tamoxifen therapy resistance through induction of epithelial-mesenchymal transition in MCF-7 breast cancer cells. International Journal of Clinical and Experimental Pathology, 11(5), 2629–2635.

    PubMed  PubMed Central  Google Scholar 

  115. Górnicki, T., Lambrinow, J., Mrozowska, M., Romanowicz, H., Smolarz, B., Piotrowska, A., Gomułkiewicz, A., Podhorska-Okołów, M., Dzięgiel, P., & Grzegrzółka, J. (2023). Expression of RBMS3 in breast cancer progression. International Journal of Molecular Sciences, 24(3), 2866. https://doi.org/10.3390/ijms24032866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cho, H., Park, O. H., Park, J., Ryu, I., Kim, J., Ko, J., & Kim, Y. K. (2015). Glucocorticoid receptor interacts with PNRC2 in a ligand-dependent manner to recruit UPF1 for rapid mRNA degradation. Proceedings of the National Academy of Sciences of the United States of America, 112(13), E1540–E1549. https://doi.org/10.1073/pnas.1409612112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Park, O. H., Park, J., Yu, M., An, H.-T., Ko, J., & Kim, Y. K. (2016). Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay. Genes & Development, 30(18), 2093–2105. https://doi.org/10.1101/gad.286484.116

    Article  CAS  Google Scholar 

  118. Ferreira, S., Saraiva, N., Rijo, P., & Fernandes, A. S. (2021). LOXL2 inhibitors and breast cancer progression. Antioxidants, 10(2), 312. https://doi.org/10.3390/antiox10020312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ji, F., Wang, Y., Qiu, L., Li, S., Zhu, J., Liang, Z., Wan, Y., & Di, W. (2013). Hypoxia inducible factor 1α-mediated LOX expression correlates with migration and invasion in epithelial ovarian cancer. International Journal of Oncology, 42(5), 1578–1588. https://doi.org/10.3892/ijo.2013.1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Regan Anderson, T. M., Ma, S. H., Raj, G. V., Cidlowski, J. A., Helle, T. M., Knutson, T. P., Krutilina, R. I., Seagroves, T. N., & Lange, C. A. (2016). Breast tumor kinase (Brk/PTK6) is induced by HIF, glucocorticoid receptor, and PELP1-mediated stress signaling in triple-negative breast cancer. Cancer Research, 76(6), 1653–1663. https://doi.org/10.1158/0008-5472.CAN-15-2510

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, H., Ding, C., Li, Y., Xing, C., Wang, S., Yu, Z., Chen, L., Li, P., & Dai, M. (2021). Data mining-based study of collagen type III alpha 1 (COL3A1) prognostic value and immune exploration in pan-cancer. Bioengineered, 12(1), 3634–3646. https://doi.org/10.1080/21655979.2021.1949838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shi, Y., Zheng, C., Jin, Y., Bao, B., Wang, D., Hou, K., Feng, J., Tang, S., Qu, X., Liu, Y., Che, X., & Teng, Y. (2020). Reduced expression of METTL3 promotes metastasis of triple-negative breast cancer by m6A methylation-mediated COL3A1 up-regulation. Frontiers in Oncology, 10, 1126. https://doi.org/10.3389/fonc.2020.01126

    Article  PubMed  PubMed Central  Google Scholar 

  123. Bi, X., Lou, P., Song, Y., Sheng, X., Liu, R., Deng, M., Yang, X., Li, G., Yuan, S., Zhang, H., Jiao, B., Zhang, B., Xue, L., Liu, Z., Plikus, M. V., Ren, F., Gao, S., Zhao, L., & Yu, Z. (2021). Msi1 promotes breast cancer metastasis by regulating invadopodia-mediated extracellular matrix degradation via the Timp3-Mmp9 pathway. Oncogene, 40(29), 4832–4845. https://doi.org/10.1038/s41388-021-01873-8

    Article  CAS  PubMed  Google Scholar 

  124. Radisky, E. S., & Radisky, D. C. (2015). Matrix metalloproteinases as breast cancer drivers and therapeutic targets. Frontiers in Bioscience (Landmark Edition), 20(7), 1144–1163. https://doi.org/10.2741/4364

    Article  CAS  PubMed  Google Scholar 

  125. Saha Roy, S., & Vadlamudi, R. K. (2012). Role of estrogen receptor signaling in breast cancer metastasis. International Journal of Breast Cancer, 2012, 654698. https://doi.org/10.1155/2012/654698

    Article  CAS  PubMed  Google Scholar 

  126. Chu, Y. H., Huang, Y. C., Chiu, P. Y., Kuo, W. H., Pan, Y. R., Kuo, Y. T., Wang, R. H., Kao, Y. C., Wang, Y. H., Lin, Y. F., & Lin, K.-T. (2023). Combating breast cancer progression through combination therapy with hypomethylating agent and glucocorticoid. iScience, 26(5), 106597. https://doi.org/10.1016/j.isci.2023.106597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. De Las Rivas, J., Brozovic, A., Izraely, S., Casas-Pais, A., Witz, I. P., & Figueroa, A. (2021). Cancer drug resistance induced by EMT: Novel therapeutic strategies. Archives of Toxicology, 95(7), 2279–2297. https://doi.org/10.1007/s00204-021-03063-7

    Article  CAS  PubMed Central  Google Scholar 

  128. Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., McDermott, U., Azizian, N., Zou, L., Fischbach, M. A., Wong, K. K., Brandstetter, K., Wittner, B., Ramaswamy, S., Classon, M., & Settleman, J. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. https://doi.org/10.1016/j.cell.2010.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Georgopoulou, D., Callari, M., Rueda, O. M., Shea, A., Martin, A., Giovannetti, A., Qosaj, F., Dariush, A., Chin, S. F., Carnevalli, L. S., Provenzano, E., Greenwood, W., Lerda, G., Esmaeilishirazifard, E., O’Reilly, M., Serra, V., Bressan, D., Consortium, I. M. A. X. T., Mills, G. B., et al. (2021). Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nature Communications, 12(1), 1998. https://doi.org/10.1038/s41467-021-22303-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Marine, J.-C., Dawson, S.-J., & Dawson, M. A. (2020). Non-genetic mechanisms of therapeutic resistance in cancer. Nature Reviews. Cancer, 20(12), 743–756. https://doi.org/10.1038/s41568-020-00302-4

    Article  CAS  PubMed  Google Scholar 

  131. Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C., & Lander, E. S. (2011). Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146(4), 633–644. https://doi.org/10.1016/j.cell.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  132. Kim, C., Gao, R., Sei, E., Brandt, R., Hartman, J., Hatschek, T., Crosetto, N., Foukakis, T., & Navin, N. E. (2018). Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell, 173(4), 879–893.e13. https://doi.org/10.1016/j.cell.2018.03.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Garcia-Martinez, L., Zhang, Y., Nakata, Y., Chan, H. L., & Morey, L. (2021). Epigenetic mechanisms in breast cancer therapy and resistance. Nature Communications, 12(1), 1786. https://doi.org/10.1038/s41467-021-22024-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Flaherty, R. L., Owen, M., Fagan-Murphy, A., Intabli, H., Healy, D., Patel, A., Allen, M. C., Patel, B. A., & Flint, M. S. (2017). Glucocorticoids induce production of reactive oxygen species/reactive nitrogen species and DNA damage through an iNOS mediated pathway in breast cancer. Breast cancer research: BCR, 19(1), 35. https://doi.org/10.1186/s13058-017-0823-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. El-Sayes, N., Vito, A., & Mossman, K. (2021). Tumor heterogeneity: A great barrier in the age of cancer immunotherapy. Cancers, 13(4), 806. https://doi.org/10.3390/cancers13040806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fang, J., Ye, Z., Gu, F., Yan, M., Lin, Q., Lin, J., Wang, Z., Xu, Y., & Wang, Y. (2018). DUSP1 enhances the chemoresistance of gallbladder cancer via the modulation of the p38 pathway and DNA damage/repair system. Oncology Letters, 16(2), 1869–1875. https://doi.org/10.3892/ol.2018.8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pan, C., Kang, J., Hwang, J. S., Li, J., Boese, A. C., Wang, X., Yang, L., Boggon, T. J., Chen, G. Z., Saba, N. F., Shin, D. M., Magliocca, K. R., Jin, L., & Kang, S. (2021). Cisplatin-mediated activation of glucocorticoid receptor induces platinum resistance via MAST1. Nature Communications, 12(1), 4960. https://doi.org/10.1038/s41467-021-24845-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tai, D. J. C., Su, C.-C., Ma, Y.-L., & Lee, E. H. Y. (2009). SGK1 phosphorylation of IkappaB Kinase alpha and p300 Up-regulates NF-kappaB activity and increases N-Methyl-D-aspartate receptor NR2A and NR2B expression. The Journal of Biological Chemistry, 284(7), 4073–4089. https://doi.org/10.1074/jbc.M805055200

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, J., Lv, W., Liu, Y., Fu, W., Chen, B., Ma, Q., Gao, X., & Cui, X. (2021). Knockdown of serum- and glucocorticoid-regulated kinase 1 enhances cisplatin sensitivity of gastric cancer through suppressing the nuclear factor kappa-B signaling pathway. Balkan Medical Journal, 38(6), 331–340. https://doi.org/10.5152/balkanmedj.2021.21114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Pellegrino, M., Rizza, P., Donà, A., Nigro, A., Ricci, E., Fiorillo, M., Perrotta, I., Lanzino, M., Giordano, C., Bonofiglio, D., Bruno, R., Sotgia, F., Lisanti, M. P., Sisci, D., & Morelli, C. (2019). FoxO3a as a positive prognostic marker and a therapeutic target in tamoxifen-resistant breast cancer. Cancers, 11(12), 1858. https://doi.org/10.3390/cancers11121858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, Q., Gun, M., & Hong, X.-Y. (2019). Induced tamoxifen resistance is mediated by increased methylation of E-cadherin in estrogen receptor-expressing breast cancer cells. Scientific Reports, 9(1), 14140. https://doi.org/10.1038/s41598-019-50749-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hanker, A. B., Sudhan, D. R., & Arteaga, C. L. (2020). Overcoming endocrine resistance in breast cancer. Cancer Cell, 37(4), 496–513. https://doi.org/10.1016/j.ccell.2020.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Johnson, T. A., Paakinaho, V., Kim, S., Hager, G. L., & Presman, D. M. (2021). Genome-wide binding potential and regulatory activity of the glucocorticoid receptor’s monomeric and dimeric forms. Nature Communications, 12(1), 1987. https://doi.org/10.1038/s41467-021-22234-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Intabli, H., Gee, J. M., Oesterreich, S., Yeoman, M. S., Allen, M. C., Qattan, A., & Flint, M. S. (2023). Glucocorticoid induced loss of oestrogen receptor alpha gene methylation and restoration of sensitivity to fulvestrant in triple negative breast cancer. Gene, 851, 147022. https://doi.org/10.1016/j.gene.2022.147022

    Article  CAS  PubMed  Google Scholar 

  145. Romero-Garcia, S., Prado-Garcia, H., & Carlos-Reyes, A. (2020). Role of DNA methylation in the resistance to therapy in solid tumors. Frontiers in Oncology, 10, 1152. https://doi.org/10.3389/fonc.2020.01152

    Article  PubMed  PubMed Central  Google Scholar 

  146. Chellamuthu, A., & Gray, S. G. (2020). The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells, 9(8), 1758. https://doi.org/10.3390/cells9081758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Alam, M. M., Okazaki, K., Nguyen, L. T. T., Ota, N., Kitamura, H., Murakami, S., Shima, H., Igarashi, K., Sekine, H., & Motohashi, H. (2017). Glucocorticoid receptor signaling represses the antioxidant response by inhibiting histone acetylation mediated by the transcriptional activator NRF2. The Journal of Biological Chemistry, 292(18), 7519–7530. https://doi.org/10.1074/jbc.M116.773960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tascioglu Aliyev, A., Panieri, E., Stepanić, V., Gurer-Orhan, H., & Saso, L. (2021). Involvement of NRF2 in breast cancer and possible therapeutical role of polyphenols and melatonin. Molecules (Basel, Switzerland), 26(7), 1853. https://doi.org/10.3390/molecules26071853

    Article  CAS  PubMed  Google Scholar 

  149. Dubey, R., Lebensohn, A. M., Bahrami-Nejad, Z., Marceau, C., Champion, M., Gevaert, O., Sikic, B. I., Carette, J. E., & Rohatgi, R. (2016). Chromatin-remodeling complex SWI/SNF controls multidrug resistance by transcriptionally regulating the drug efflux pump ABCB1. Cancer Research, 76(19), 5810–5821. https://doi.org/10.1158/0008-5472.CAN-16-0716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Johnson, T. A., Chereji, R. V., Stavreva, D. A., Morris, S. A., Hager, G. L., & Clark, D. J. (2018). Conventional and pioneer modes of glucocorticoid receptor interaction with enhancer chromatin in vivo. Nucleic Acids Research, 46(1), 203–214. https://doi.org/10.1093/nar/gkx1044

    Article  CAS  PubMed  Google Scholar 

  151. Hollestelle, A., Peeters, J. K., Smid, M., Timmermans, M., Verhoog, L. C., Westenend, P. J., Heine, A. A., Chan, A., Sieuwerts, A. M., Wiemer, E. A., Klijn, J. G., van der Spek, P. J., Foekens, J. A., Schutte, M., den Bakker, M. A., & Martens, J. W. M. (2013). Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast Cancer Research and Treatment, 138(1), 47–57. https://doi.org/10.1007/s10549-013-2415-3

    Article  CAS  PubMed  Google Scholar 

  152. Grosse-Wilde, A., Fouquier d'Hérouël, A., McIntosh, E., Ertaylan, G., Skupin, A., Kuestner, R. E., del Sol, A., Walters, K. A., & Huang, S. (2015). Stemness of the hybrid epithelial/mesenchymal state in breast cancer and its association with poor survival. PLoS One, 10(5), e0126522. https://doi.org/10.1371/journal.pone.0126522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kröger, C., Afeyan, A., Mraz, J., Eaton, E. N., Reinhardt, F., Khodor, Y. L., Thiru, P., Bierie, B., Ye, X., Burge, C. B., & Weinberg, R. A. (2019). Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 116(15), 7353–7362. https://doi.org/10.1073/pnas.1812876116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Agliano, A., Calvo, A., & Box, C. (2017). The challenge of targeting cancer stem cells to halt metastasis. Seminars in Cancer Biology, 44, 25–42. https://doi.org/10.1016/j.semcancer.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  155. Chaffer, C. L., Marjanovic, N. D., Lee, T., Bell, G., Kleer, C. G., Reinhardt, F., D'Alessio, A. C., Young, R. A., & Weinberg, R. A. (2013). Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell, 154(1), 61–74. https://doi.org/10.1016/j.cell.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, Y., Liu, J., Ying, X., Lin, P. C., & Zhou, B. P. (2016). Twist-mediated epithelial-mesenchymal transition promotes breast tumor cell invasion via inhibition of hippo pathway. Scientific Reports, 6, 24606. https://doi.org/10.1038/srep24606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chang, Z., Zhang, Y., Liu, J., Zheng, Y., Li, H., Kong, Y., Li, P., Peng, H., Shi, Y., Cao, B., Ran, F., Chen, Y., Song, Y., Ye, Q., & Ding, L. (2020). Snail promotes the generation of vascular endothelium by breast cancer cells. Cell Death & Disease, 11(6), 457. https://doi.org/10.1038/s41419-020-2651-5

    Article  CAS  Google Scholar 

  158. Doherty, M. R., Smigiel, J. M., Junk, D. J., & Jackson, M. W. (2016). Cancer stem cell plasticity drives therapeutic resistance. Cancers, 8(1), 8. https://doi.org/10.3390/cancers8010008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Cazet, A. S., Hui, M. N., Elsworth, B. L., Wu, S. Z., Roden, D., Chan, C. L., Skhinas, J. N., Collot, R., Yang, J., Harvey, K., Johan, M. Z., Cooper, C., Nair, R., Herrmann, D., McFarland, A., Deng, N., Ruiz-Borrego, M., Rojo, F., Trigo, J. M., et al. (2018). Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nature Communications, 9(1), 2897. https://doi.org/10.1038/s41467-018-05220-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zubeldia-Plazaola, A., Recalde-Percaz, L., Moragas, N., Alcaraz, M., Chen, X., Mancino, M., Fernández-Nogueira, P., Prats de Puig, M., Guzman, F., Noguera-Castells, A., López-Plana, A., Enreig, E., Carbó, N., Almendro, V., Gascón, P., Bragado, P., & Fuster, G. (2018). Glucocorticoids promote transition of ductal carcinoma in situ to invasive ductal carcinoma by inducing myoepithelial cell apoptosis. Breast cancer research: BCR, 20(1), 65. https://doi.org/10.1186/s13058-018-0977-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Zhang, Q., Han, Z., Zhu, Y., Chen, J., & Li, W. (2021). Role of hypoxia inducible factor-1 in cancer stem cells (Review). Molecular Medicine Reports, 23(1), 17. https://doi.org/10.3892/mmr.2020.11655

    Article  CAS  PubMed  Google Scholar 

  162. Buckley, N. E., & Mullan, P. B. (2012). BRCA1--conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Reviews and Reports, 8(3), 982–993. https://doi.org/10.1007/s12015-012-9354-y

    Article  CAS  PubMed  Google Scholar 

  163. Courtney, D., Davey, M. G., Moloney, B. M., Barry, M. K., Sweeney, K., McLaughlin, R. P., Malone, C. M., Lowery, A. J., & Kerin, M. J. (2022). Breast cancer recurrence: Factors impacting occurrence and survival. Irish Journal of Medical Science, 191(6), 2501–2510. https://doi.org/10.1007/s11845-022-02926-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Foldi, J., O’Meara, T., Marczyk, M., Sanft, T., Silber, A., & Pusztai, L. (2019). Defining risk of late recurrence in early-stage estrogen receptor-positive breast cancer: Clinical versus molecular tools. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37(16), 1365–1369. https://doi.org/10.1200/JCO.18.01933

    Article  CAS  PubMed  Google Scholar 

  165. Santos-de-Frutos, K., & Djouder, N. (2021). When dormancy fuels tumour relapse. Communications Biology, 4(1), 747. https://doi.org/10.1038/s42003-021-02257-0

    Article  PubMed  PubMed Central  Google Scholar 

  166. Agudo, J., Park, E. S., Rose, S. A., Alibo, E., Sweeney, R., Dhainaut, M., Kobayashi, K. S., Sachidanandam, R., Baccarini, A., Merad, M., & Brown, B. D. (2018). Quiescent tissue stem cells evade immune surveillance. Immunity, 48(2), 271–285.e5. https://doi.org/10.1016/j.immuni.2018.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hen, O., & Barkan, D. (2020). Dormant disseminated tumor cells and cancer stem/progenitor-like cells: Similarities and opportunities. Seminars in Cancer Biology, 60, 157–165. https://doi.org/10.1016/j.semcancer.2019.09.002

    Article  CAS  PubMed  Google Scholar 

  168. Barkan, D., & Chambers, A. F. (2011). β1-integrin: A potential therapeutic target in the battle against cancer recurrence. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17(23), 7219–7223. https://doi.org/10.1158/1078-0432.CCR-11-0642

    Article  CAS  PubMed  Google Scholar 

  169. Capulli, M., Hristova, D., Valbret, Z., Carys, K., Arjan, R., Maurizi, A., Masedu, F., Cappariello, A., Rucci, N., & Teti, A. (2019). Notch2 pathway mediates breast cancer cellular dormancy and mobilisation in bone and contributes to haematopoietic stem cell mimicry. British Journal of Cancer, 121(2), 157–171. https://doi.org/10.1038/s41416-019-0501-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zanotti, S., Yu, J., Adhikari, S., & Canalis, E. (2018). Glucocorticoids inhibit notch target gene expression in osteoblasts. Journal of Cellular Biochemistry, 119(7), 6016–6023. https://doi.org/10.1002/jcb.26798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jorgensen, M. M., & de la Puente, P. (2022). Leukemia inhibitory factor: An important cytokine in pathologies and cancer. Biomolecules, 12(2), 217. https://doi.org/10.3390/biom12020217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., Merkel, A. R., Johnson, J. R., Sterling, J. A., Wu, J. Y., & Giaccia, A. J. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089. https://doi.org/10.1038/ncb3408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lee, S., Liu, P., Ahmad, M., & Tuckermann, J. P. (2021). Leukemia inhibitory factor treatment attenuates the detrimental effects of glucocorticoids on bone in mice. Bone, 145, 115843. https://doi.org/10.1016/j.bone.2021.115843

    Article  CAS  PubMed  Google Scholar 

  174. Portella, L., Bello, A. M., & Scala, S. (2021). CXCL12 signaling in the tumor microenvironment. Advances in Experimental Medicine and Biology, 1302, 51–70. https://doi.org/10.1007/978-3-030-62658-7_5

    Article  CAS  PubMed  Google Scholar 

  175. Shiozawa, Y., & Taichman, R. S. (2012). Cancer stem cells and the bone marrow microenvironment. BoneKEy reports, 1, 48. https://doi.org/10.1038/bonekey.2012.48

    Article  PubMed Central  Google Scholar 

  176. Taves, M. D., & Ashwell, J. D. (2021). Glucocorticoids in T cell development, differentiation and function. Nature Reviews. Immunology, 21(4), 233–243. https://doi.org/10.1038/s41577-020-00464-0

    Article  CAS  PubMed  Google Scholar 

  177. Xu, C., Zhao, H., Chen, H., & Yao, Q. (2015). CXCR4 in breast cancer: Oncogenic role and therapeutic targeting. Drug Design, Development and Therapy, 9, 4953–4964. https://doi.org/10.2147/DDDT.S84932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Malanchi, I., Santamaria-Martínez, A., Susanto, E., Peng, H., Lehr, H.-A., Delaloye, J.-F., & Huelsken, J. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89. https://doi.org/10.1038/nature10694

    Article  CAS  PubMed  Google Scholar 

  179. Gao, H., Chakraborty, G., Zhang, Z., Akalay, I., Gadiya, M., Gao, Y., Sinha, S., Hu, J., Jiang, C., Akram, M., Brogi, E., Leitinger, B., & Giancotti, F. G. (2016). Multi-organ site metastatic reactivation mediated by non-canonical discoidin domain receptor 1 signaling. Cell, 166(1), 47–62. https://doi.org/10.1016/j.cell.2016.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., Almeida, D., Koller, A., Hajjar, K. A., Stainier, D. Y., Chen, E. I., Lyden, D., & Bissell, M. J. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817. https://doi.org/10.1038/ncb2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wang, Y.-Y., Song, Y.-Y., Jiang, W.-Y., Zhang, H.-T., Chen, J.-W., Murao, K., Sun, W.P., Zhang, G.-X. (2023). Mechanism of glucocorticoid receptor activation regulated expression of thrombospondin-1. bioRxiv. https://doi.org/10.1101/2023.04.13.536820

  182. Sciuto, T. E., Merley, A., Lin, C. I., Richardson, D., Liu, Y., Li, D., Dvorak, A. M., Dvorak, H. F., & Jaminet, S.-C. S. (2015). Intracellular distribution of TM4SF1 and internalization of TM4SF1-antibody complex in vascular endothelial cells. Biochemical and Biophysical Research Communications, 465(3), 338–343. https://doi.org/10.1016/j.bbrc.2015.07.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jin, L., Han, B., Siegel, E., Cui, Y., Giuliano, A., & Cui, X. (2018). Breast cancer lung metastasis: Molecular biology and therapeutic implications. Cancer Biology & Therapy, 19(10), 858–868. https://doi.org/10.1080/15384047.2018.1456599

    Article  CAS  Google Scholar 

  184. Tieszen, C. R., Goyeneche, A. A., Brandhagen, B. N., Ortbahn, C. T., & Telleria, C. M. (2011). Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer, 11, 207. https://doi.org/10.1186/1471-2407-11-207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen, J., Wang, J., Shao, J., Gao, Y., Xu, J., Yu, S., Liu, Z., & Jia, L. (2014). The unique pharmacological characteristics of mifepristone (RU486): From terminating pregnancy to preventing cancer metastasis. Medicinal Research Reviews, 34(5), 979–1000. https://doi.org/10.1002/med.21311

    Article  CAS  PubMed  Google Scholar 

  186. Serritella, A. V., Shevrin, D., Heath, E. I., Wade, J. L., Martinez, E., Anderson, A., Schonhoft, J., Chu, Y. L., Karrison, T., Stadler, W. M., & Szmulewitz, R. Z. (2022). Phase I/II trial of enzalutamide and mifepristone, a glucocorticoid receptor antagonist, for metastatic castration-resistant prostate cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 28(8), 1549–1559. https://doi.org/10.1158/1078-0432.CCR-21-4049

    Article  CAS  PubMed  Google Scholar 

  187. Nanda, R., Stringer-Reasor, E. M., Saha, P., Kocherginsky, M., Gibson, J., Libao, B., Hoffman, P. C., Obeid, E., Merkel, D. E., Khramtsova, G., Skor, M., Krausz, T., Cohen, R. N., Ratain, M. J., Fleming, G. F., & Conzen, S. D. (2016). A randomized phase I trial of nanoparticle albumin-bound paclitaxel with or without mifepristone for advanced breast cancer. SpringerPlus, 5(1), 947. https://doi.org/10.1186/s40064-016-2457-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shirley, M. (2021). Ketoconazole in Cushing’s syndrome: A profile of its use. Drugs & Therapy Perspectives, 37(2), 55–64. https://doi.org/10.1007/s40267-020-00799-7

    Article  Google Scholar 

  189. Doheny, D., Manore, S., Sirkisoon, S. R., Zhu, D., Aguayo, N. R., Harrison, A., Najjar, M., Anguelov, M., Cox, A. O., Furdui, C. M., Watabe, K., Hollis, T., Thomas, A., Strowd, R., & Lo, H.-W. (2022). An FDA-approved antifungal, ketoconazole, and its novel derivative suppress tGLI1-mediated breast cancer brain metastasis by inhibiting the DNA-binding activity of brain metastasis-promoting transcription factor tGLI1. Cancers, 14(17), 4256. https://doi.org/10.3390/cancers14174256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. West, D. C., Kocherginsky, M., Tonsing-Carter, E. Y., Dolcen, D. N., Hosfield, D. J., Lastra, R. R., Sinnwell, J. P., Thompson, K. J., Bowie, K. R., Harkless, R. V., Skor, M. N., Pierce, C. F., Styke, S. C., Kim, C. R., de Wet, L., Greene, G. L., Boughey, J. C., Goetz, M. P., Kalari, K. R., et al. (2018). Discovery of a glucocorticoid receptor (GR) activity signature using selective GR antagonism in ER-negative breast cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(14), 3433–3446. https://doi.org/10.1158/1078-0432.CCR-17-2793

    Article  CAS  PubMed  Google Scholar 

  191. Munster, P. N., Greenstein, A. E., Fleming, G. F., Borazanci, E., Sharma, M. R., Custodio, J. M., Tudor, I. C., Pashova, H. I., Shepherd, S. P., Grauer, A., & Sachdev, J. C. (2022). Overcoming taxane resistance: Preclinical and phase 1 studies of relacorilant, a selective glucocorticoid receptor modulator, with nab-paclitaxel in solid tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 28(15), 3214–3224. https://doi.org/10.1158/1078-0432.CCR-21-4363

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jayanta Chakrabarti, Director, CNCI, for providing fellowship to DT and all other infrastructural facilities required for the study.

Author information

Authors and Affiliations

Authors

Contributions

DT was responsible for the review concept, literature search and wrote the entire review manuscript. DS was actively involved in editing, entire figure construction and providing critical analysis. EM, SD and RS helped in literature search. SM conceived the idea, critically reviewed and contributed to editing, and revising the manuscript. All authors also read and approved the final manuscript.

Corresponding author

Correspondence to Sutapa Mukherjee.

Ethics declarations

Ethics approval

N.A.

Informed consent

N.A.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, D., Sengupta, D., Mahapatra, E. et al. Glucocorticoid receptor: a harmonizer of cellular plasticity in breast cancer—directs the road towards therapy resistance, metastatic progression and recurrence. Cancer Metastasis Rev 43, 481–499 (2024). https://doi.org/10.1007/s10555-023-10163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10163-6

Keywords

Navigation