Skip to main content
Log in

Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Biller, L. H., & Schrag, D. (2021). Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA, 325(7), 669–685. https://doi.org/10.1001/jama.2021.0106

    Article  CAS  PubMed  Google Scholar 

  2. Dekker, E., Tanis, P. J., Vleugels, J. L. A., Kasi, P. M., & Wallace, M. B. (2019). Colorectal cancer. Lancet, 394(10207), 1467–1480. https://doi.org/10.1016/S0140-6736(19)32319-0

    Article  PubMed  Google Scholar 

  3. Tsilimigras, D. I., Brodt, P., Clavien, P. A., Muschel, R. J., D'Angelica, M. I., Endo, I., et al. (2021). Liver metastases. Nature Reviews Disease Primers, 7(1), 27. https://doi.org/10.1038/s41572-021-00261-6

    Article  PubMed  Google Scholar 

  4. Milette, S., Sicklick, J. K., Lowy, A. M., & Brodt, P. (2017). Molecular pathways: Targeting the Microenvironment of liver metastases. Clinical Cancer Research, 23(21), 6390–6399. https://doi.org/10.1158/1078-0432.CCR-15-1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hess, K. R., Varadhachary, G. R., Taylor, S. H., Wei, W., Raber, M. N., Lenzi, R., et al. (2006). Metastatic patterns in adenocarcinoma. Cancer, 106(7), 1624–1633. https://doi.org/10.1002/cncr.21778

    Article  PubMed  Google Scholar 

  6. Paget, S. (1989). The distribution of secondary growths in cancer of the breast. The Lancet, 8(2), 98–101.

    CAS  Google Scholar 

  7. Chow, F. C., & Chok, K. S. (2019). Colorectal liver metastases: An update on multidisciplinary approach. World Journal of Hepatology, 11(2), 150–172. https://doi.org/10.4254/wjh.v11.i2.150

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vidal-Vanaclocha, F. (2008). The prometastatic microenvironment of the liver. Cancer Microenviron, 1(1), 113–129. https://doi.org/10.1007/s12307-008-0011-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mielgo, A., & Schmid, M. C. (2020). Liver tropism in cancer: The hepatic metastatic niche. Cold Spring Harbor Perspectives in Medicine, 10(3), a037259. https://doi.org/10.1101/cshperspect.a037259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poisson, J., Lemoinne, S., Boulanger, C., Durand, F., Moreau, R., Valla, D., et al. (2017). Liver sinusoidal endothelial cells: Physiology and role in liver diseases. Journal of Hepatology, 66(1), 212–227. https://doi.org/10.1016/j.jhep.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  11. Miskovic, D., & Mirnezami, R. (2021). Is complete mesocolic excision superior to conventional colectomy for colon cancer? Lancet Oncology, 22(7), 917–918. https://doi.org/10.1016/S1470-2045(21)00256-4

    Article  PubMed  Google Scholar 

  12. Fujita, S., Mizusawa, J., Kanemitsu, Y., Ito, M., Kinugasa, Y., Komori, K., et al. (2017). Mesorectal excision with or without lateral lymph node dissection for clinical stage II/III lower rectal cancer (JCOG0212): A multicenter, randomized controlled, noninferiority trial. Annals of Surgery, 266(2), 201–207. https://doi.org/10.1097/SLA.0000000000002212

    Article  PubMed  Google Scholar 

  13. Markowitz, S. D. (2017). Cancer bypasses the lymph nodes. Science, 357(6346), 35–36. https://doi.org/10.1126/science.aan8299

    Article  CAS  PubMed  Google Scholar 

  14. Siravegna, G., Lazzari, L., Crisafulli, G., Sartore-Bianchi, A., Mussolin, B., Cassingena, A., et al. (2018). Radiologic and genomic evolution of individual metastases during HER2 blockade in colorectal cancer. Cancer Cell, 34(1), 148–162. https://doi.org/10.1016/j.ccell.2018.06.004

    Article  CAS  PubMed  Google Scholar 

  15. Russo, M., Siravegna, G., Blaszkowsky, L. S., Corti, G., Crisafulli, G., Ahronian, L. G., et al. (2016). Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discovery, 6(2), 147–153. https://doi.org/10.1158/2159-8290.CD-15-1283

    Article  CAS  PubMed  Google Scholar 

  16. Pietrantonio, F., Oddo, D., Gloghini, A., Valtorta, E., Berenato, R., Barault, L., et al. (2016). MET-driven resistance to dual EGFR and BRAF blockade may be overcome by switching from EGFR to MET inhibition in BRAF-mutated colorectal cancer. Cancer Discovery, 6(9), 963–971. https://doi.org/10.1158/2159-8290.CD-16-0297

    Article  CAS  PubMed  Google Scholar 

  17. Ryser, M. D., Mallo, D., Hall, A., Hardman, T., King, L. M., Tatishchev, S., et al. (2020). Minimal barriers to invasion during human colorectal tumor growth. Nature Communications, 11(1), 1280. https://doi.org/10.1038/s41467-020-14908-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu, Z., Li, Z., Ma, Z., & Curtis, C. (2020). Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nature Genetics, 52(7), 701–708. https://doi.org/10.1038/s41588-020-0628-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naxerova, K., Reiter, J. G., Brachtel, E., Lennerz, J. K., van de Wetering, M., Rowan, A., et al. (2017). Origins of lymphatic and distant metastases in human colorectal cancer. Science, 357(6346), 55–60. https://doi.org/10.1126/science.aai8515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Househam, J., Heide, T., Cresswell, G. D., Spiteri, I., Kimberley, C., Zapata, L., et al. (2022). Phenotypic plasticity and genetic control in colorectal cancer evolution. Nature, 611(7937), 744–753. https://doi.org/10.1038/s41586-022-05311-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu, Y., Yang, S., Ma, J., Chen, Z., Song, G., Rao, D., et al. (2021). Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discovery, 12(1), 134–153. https://doi.org/10.1158/2159-8290.CD-21-0316

    Article  PubMed  Google Scholar 

  22. Li, C., Sun, Y. D., Yu, G. Y., Cui, J. R., Lou, Z., Zhang, H., et al. (2020). Integrated omics of metastatic colorectal cancer. Cancer Cell, 38(5), 734–747 e739. https://doi.org/10.1016/j.ccell.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  23. Liu, Y., Zhang, Q., Xing, B., Luo, N., Gao, R., Yu, K., et al. (2022). Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell, 40(4), 424–437. https://doi.org/10.1016/j.ccell.2022.02.013

    Article  CAS  PubMed  Google Scholar 

  24. Obenauf, A. C., & Massague, J. (2015). Surviving at a distance: Organ-specific metastasis. Trends in Cancer, 1(1), 76–91. https://doi.org/10.1016/j.trecan.2015.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wei, Q., Ye, Z., Zhong, X., Li, L., Wang, C., Myers, R. E., et al. (2017). Multiregion whole-exome sequencing of matched primary and metastatic tumors revealed genomic heterogeneity and suggested polyclonal seeding in colorectal cancer metastasis. Annals of Oncology, 28(9), 2135–2141. https://doi.org/10.1093/annonc/mdx278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dang, H. X., Krasnick, B. A., White, B. S., Grossman, J. G., Strand, M. S., Zhang, J., et al. (2020). The clonal evolution of metastatic colorectal cancer. Science Advances, 6(24), eaay9691. https://doi.org/10.1126/sciadv.aay9691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alves, J. M., Prado-Lopez, S., Cameselle-Teijeiro, J. M., & Posada, D. (2019). Rapid evolution and biogeographic spread in a colorectal cancer. Nature Communications, 10(1), 5139. https://doi.org/10.1038/s41467-019-12926-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467(7319), 1114–1117. https://doi.org/10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., Stebbings, L. A., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467(7319), 1109–1113. https://doi.org/10.1038/nature09460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science, 352(6282), 169–175. https://doi.org/10.1126/science.aaf2784

    Article  CAS  PubMed  Google Scholar 

  31. Turajlic, S., Furney, S. J., Lambros, M. B., Mitsopoulos, C., Kozarewa, I., Geyer, F. C., et al. (2012). Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Research, 22(2), 196–207. https://doi.org/10.1101/gr.125591.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gundem, G., Van Loo, P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M. C., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357. https://doi.org/10.1038/nature14347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gkountela, S., Castro-Giner, F., Szczerba, B. M., Vetter, M., Landin, J., Scherrer, R., et al. (2019). Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell, 176(1-2), 98–112. https://doi.org/10.1016/j.cell.2018.11.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122. https://doi.org/10.1016/j.cell.2014.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reiter, J. G., Hung, W. T., Lee, I. H., Nagpal, S., Giunta, P., Degner, S., et al. (2020). Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nature Genetics, 52(7), 692–700. https://doi.org/10.1038/s41588-020-0633-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Priestley, P., Baber, J., Lolkema, M. P., Steeghs, N., de Bruijn, E., Shale, C., et al. (2019). Pan-cancer whole-genome analyses of metastatic solid tumours. Nature, 575(7781), 210–216. https://doi.org/10.1038/s41586-019-1689-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bian, S., Hou, Y., Zhou, X., Li, X., Yong, J., Wang, Y., et al. (2018). Single-cell multiomics sequencing and analyses of human colorectal cancer. Science, 362(6418), 1060–1063. https://doi.org/10.1126/science.aao3791

    Article  CAS  PubMed  Google Scholar 

  38. Reiter, J. G., Makohon-Moore, A. P., Gerold, J. M., Heyde, A., Attiyeh, M. A., Kohutek, Z. A., et al. (2018). Minimal functional driver gene heterogeneity among untreated metastases. Science, 361(6406), 1033–1037. https://doi.org/10.1126/science.aat7171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, H. N., Shu, Y., Liao, F., Liao, X., Zhang, H., Qin, Y., et al. (2021). Genomic evolution and diverse models of systemic metastases in colorectal cancer. Gut, 71(2), 322–332. https://doi.org/10.1136/gutjnl-2020-323703

    Article  CAS  PubMed  Google Scholar 

  40. Ishaque, N., Abba, M. L., Hauser, C., Patil, N., Paramasivam, N., Huebschmann, D., et al. (2018). Whole genome sequencing puts forward hypotheses on metastasis evolution and therapy in colorectal cancer. Nature Communications, 9(1), 4782. https://doi.org/10.1038/s41467-018-07041-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alves, J. M., Prado-Lopez, S., Tomas, L., Valecha, M., Estevez-Gomez, N., Alvarino, P., et al. (2022). Clonality and timing of relapsing colorectal cancer metastasis revealed through whole-genome single-cell sequencing. Cancer Letters, 543, 215767. https://doi.org/10.1016/j.canlet.2022.215767

    Article  CAS  PubMed  Google Scholar 

  42. van de Haar, J., Hoes, L. R., Roepman, P., Lolkema, M. P., Verheul, H. M. W., Gelderblom, H., et al. (2021). Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nature Medicine, 27(9), 1553–1563. https://doi.org/10.1038/s41591-021-01448-w

    Article  CAS  PubMed  Google Scholar 

  43. Ahronian, L. G., Sennott, E. M., Van Allen, E. M., Wagle, N., Kwak, E. L., Faris, J. E., et al. (2015). Clinical acquired resistance to RAF inhibitor combinations in BRAF-mutant colorectal cancer through MAPK pathway alterations. Cancer Discovery, 5(4), 358–367. https://doi.org/10.1158/2159-8290.CD-14-1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertotti, A., Papp, E., Jones, S., Adleff, V., Anagnostou, V., Lupo, B., et al. (2015). The genomic landscape of response to EGFR blockade in colorectal cancer. Nature, 526(7572), 263–267. https://doi.org/10.1038/nature14969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Missiaglia, E., Jacobs, B., D'Ario, G., Di Narzo, A. F., Soneson, C., Budinska, E., et al. (2014). Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features. Annals of Oncology, 25(10), 1995–2001. https://doi.org/10.1093/annonc/mdu275

    Article  CAS  PubMed  Google Scholar 

  46. Amri, R., Bordeianou, L. G., Sylla, P., & Berger, D. L. (2015). Variations in metastasis site by primary location in colon cancer. Journal of Gastrointestinal Surgery, 19(8), 1522–1527. https://doi.org/10.1007/s11605-015-2837-9

    Article  PubMed  Google Scholar 

  47. Riihimaki, M., Hemminki, A., Sundquist, J., & Hemminki, K. (2016). Patterns of metastasis in colon and rectal cancer. Science Reporter, 6, 29765. https://doi.org/10.1038/srep29765

    Article  CAS  Google Scholar 

  48. Russolillo, N., Sperti, E., Langella, S., Menonna, F., Allieta, A., Di Maio, M., et al. (2020). Impact of primary tumor location on patterns of recurrence and survival of patients undergoing resection of liver metastases from colon cancer. HPB (Oxford), 22(1), 116–123. https://doi.org/10.1016/j.hpb.2019.05.014

    Article  PubMed  Google Scholar 

  49. Engstrand, J., Nilsson, H., Stromberg, C., Jonas, E., & Freedman, J. (2018). Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer, 18(1), 78. https://doi.org/10.1186/s12885-017-3925-x

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yaeger, R., Chatila, W. K., Lipsyc, M. D., Hechtman, J. F., Cercek, A., Sanchez-Vega, F., et al. (2018). Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell, 33(1), 125–136. https://doi.org/10.1016/j.ccell.2017.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, S. C., Park, J. W., Seo, H. Y., Kim, M., Park, J. H., Kim, G. H., et al. (2022). Multifocal organoid capturing of colon cancer reveals pervasive intratumoral heterogenous drug responses. Advanced Sciencev (Weinh), 9(5), e2103360. https://doi.org/10.1002/advs.202103360

    Article  CAS  Google Scholar 

  52. Banerjee, S., Zhang, X., Kuang, S., Wang, J., Li, L., Fan, G., et al. (2021). Comparative analysis of clonal evolution among patients with right- and left-sided colon and rectal cancer. Iscience, 24(7), 102718. https://doi.org/10.1016/j.isci.2021.102718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sobral, D., Martins, M., Kaplan, S., Golkaram, M., Salmans, M., Khan, N., et al. (2022). Genetic and microenvironmental intra-tumor heterogeneity impacts colorectal cancer evolution and metastatic development. Communications Biology, 5(1), 937. https://doi.org/10.1038/s42003-022-03884-x

    Article  PubMed  PubMed Central  Google Scholar 

  54. Joung, J. G., Oh, B. Y., Hong, H. K., Al-Khalidi, H., Al-Alem, F., Lee, H. O., et al. (2017). Tumor heterogeneity predicts metastatic potential in colorectal cancer. Clinical Cancer Research, 23(23), 7209–7216. https://doi.org/10.1158/1078-0432.CCR-17-0306

    Article  CAS  PubMed  Google Scholar 

  55. Malesci, A., Laghi, L., Bianchi, P., Delconte, G., Randolph, A., Torri, V., et al. (2007). Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clinical Cancer Research, 13(13), 3831–3839. https://doi.org/10.1158/1078-0432.CCR-07-0366

    Article  CAS  PubMed  Google Scholar 

  56. Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L., & Heikenwalder, M. (2021). The immunological and metabolic landscape in primary and metastatic liver cancer. Nature Reviews Cancer, 21(9), 541–557. https://doi.org/10.1038/s41568-021-00383-9

    Article  CAS  PubMed  Google Scholar 

  57. Berndt, N., Kolbe, E., Gajowski, R., Eckstein, J., Ott, F., Meierhofer, D., et al. (2021). Functional consequences of metabolic zonation in murine livers: Insights for an old Story. Hepatology, 73(2), 795–810. https://doi.org/10.1002/hep.31274

    Article  CAS  PubMed  Google Scholar 

  58. Bergers, G., & Fendt, S. M. (2021). The metabolism of cancer cells during metastasis. Nature Reviews Cancer, 21(3), 162–180. https://doi.org/10.1038/s41568-020-00320-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bu, P., Chen, K. Y., Xiang, K., Johnson, C., Crown, S. B., Rakhilin, N., et al. (2018). Aldolase B-mediated fructose metabolism drives metabolic reprogramming of colon cancer liver metastasis. Cell Metabolism, 27(6), 1249–1262. https://doi.org/10.1016/j.cmet.2018.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Loo, J. M., Scherl, A., Nguyen, A., Man, F. Y., Weinberg, E., Zeng, Z., et al. (2015). Extracellular metabolic energetics can promote cancer progression. Cell, 160(3), 393–406. https://doi.org/10.1016/j.cell.2014.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia-Bermudez, J., Baudrier, L., La, K., Zhu, X. G., Fidelin, J., Sviderskiy, V. O., et al. (2018). Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, 20(7), 775–781. https://doi.org/10.1038/s41556-018-0118-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamaguchi, N., Weinberg, E. M., Nguyen, A., Liberti, M. V., Goodarzi, H., Janjigian, Y. Y., et al. (2019). PCK1 and DHODH drive colorectal cancer liver metastatic colonization and hypoxic growth by promoting nucleotide synthesis. Elife, 8, e52135. https://doi.org/10.7554/eLife.52135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, K., Jiang, J., Lei, Y., Zhou, S., Wei, Y., & Huang, C. (2019). Targeting metabolic-redox circuits for cancer therapy. Trends in Biochemical Sciences, 44(5), 401–414. https://doi.org/10.1016/j.tibs.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  64. Gao, W., Chen, L., Ma, Z., Du, Z., Zhao, Z., Hu, Z., et al. (2013). Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology, 145(3), 636–646. https://doi.org/10.1053/j.gastro.2013.05.049

    Article  CAS  PubMed  Google Scholar 

  65. Wu, Z., Wei, D., Gao, W., Xu, Y., Hu, Z., Ma, Z., et al. (2015). TPO-induced metabolic reprogramming drives liver metastasis of colorectal cancer CD110+ tumor-initiating Cells. Cell Stem Cell, 17(1), 47–59. https://doi.org/10.1016/j.stem.2015.05.016

    Article  CAS  PubMed  Google Scholar 

  66. Nguyen, A., Loo, J. M., Mital, R., Weinberg, E. M., Man, F. Y., Zeng, Z., et al. (2016). PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis. The Journal of Clinical Investigation, 126(2), 681–694. https://doi.org/10.1172/JCI83587

    Article  PubMed  PubMed Central  Google Scholar 

  67. Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., et al. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science, 334(6060), 1278–1283. https://doi.org/10.1126/science.1211485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heymann, F., & Tacke, F. (2016). Immunology in the liver--from homeostasis to disease. Nature Reviews. Gastroenterology & Hepatology, 13(2), 88–110. https://doi.org/10.1038/nrgastro.2015.200

    Article  CAS  Google Scholar 

  69. Crispe, I. N. (2014). Immune tolerance in liver disease. Hepatology, 60(6), 2109–2117. https://doi.org/10.1002/hep.27254

    Article  CAS  PubMed  Google Scholar 

  70. O'Leary, K. (2021). Liver metastases cultivate an immune desert. Nature Reviews. Cancer, 21(3), 143. https://doi.org/10.1038/s41568-021-00338-0

    Article  CAS  PubMed  Google Scholar 

  71. Canellas-Socias, A., Cortina, C., Hernando-Momblona, X., Palomo-Ponce, S., Mulholland, E. J., Turon, G., et al. (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1(+) cells. Nature, 611(7936), 603–613. https://doi.org/10.1038/s41586-022-05402-9

    Article  CAS  PubMed  Google Scholar 

  72. Yu, J., Green, M. D., Li, S., Sun, Y., Journey, S. N., Choi, J. E., et al. (2021). Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nature Medicine, 27(1), 152–164. https://doi.org/10.1038/s41591-020-1131-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Song, J., Song, H., Wei, H., Sun, R., Tian, Z., & Peng, H. (2022). Requirement of RORalpha for maintenance and antitumor immunity of liver-resident natural killer cells/ILC1s. Hepatology, 75(5), 1181–1193. https://doi.org/10.1002/hep.32147

    Article  CAS  PubMed  Google Scholar 

  74. Tian, S., Chu, Y., Hu, J., Ding, X., Liu, Z., Fu, D., et al. (2022). Tumour-associated neutrophils secrete AGR2 to promote colorectal cancer metastasis via its receptor CD98hc-xCT. Gut, 71(12), 2489–2501. https://doi.org/10.1136/gutjnl-2021-325137

    Article  CAS  PubMed  Google Scholar 

  75. Wang, H., Zhang, B., Li, R., Chen, J., Xu, G., Zhu, Y., et al. (2022). KIAA1199 drives immune suppression to promote colorectal cancer liver metastasis by modulating neutrophil infiltration. Hepatology, 76(4), 967–981. https://doi.org/10.1002/hep.32383

    Article  CAS  PubMed  Google Scholar 

  76. Canellas-Socias, A., Cortina, C., Hernando-Momblona, X., Palomo-Ponce, S., Mulholland, E. J., Turon, G., et al. (2022). Metastatic recurrence in colorectal cancer arises from residual EMP1<sup>+</sup> cells. Nature, 611(7936), 603–613. https://doi.org/10.1038/s41586-022-05402-9

    Article  CAS  PubMed  Google Scholar 

  77. Gorelik, L., & Flavell, R. A. (2000). Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity, 12(2), 171–181. https://doi.org/10.1016/s1074-7613(00)80170-3

    Article  CAS  PubMed  Google Scholar 

  78. Tauriello, D. V. F., Palomo-Ponce, S., Stork, D., Berenguer-Llergo, A., Badia-Ramentol, J., Iglesias, M., et al. (2018). TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature, 554(7693), 538–543. https://doi.org/10.1038/nature25492

    Article  CAS  PubMed  Google Scholar 

  79. Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., et al. (2018). Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 360(6391). https://doi.org/10.1126/science.aan5931

  80. Bertocchi, A., Carloni, S., Ravenda, P. S., Bertalot, G., Spadoni, I., Lo Cascio, A., et al. (2021). Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell, 39(5), 708–724. https://doi.org/10.1016/j.ccell.2021.03.004

    Article  CAS  PubMed  Google Scholar 

  81. Bullman, S., Pedamallu, C. S., Sicinska, E., Clancy, T. E., Zhang, X., Cai, D., et al. (2017). Analysis of fusobacterium persistence and antibiotic response in colorectal cancer. Science, 358(6369), 1443–1448. https://doi.org/10.1126/science.aal5240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Spadoni, I., Zagato, E., Bertocchi, A., Paolinelli, R., Hot, E., Di Sabatino, A., et al. (2015). A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 350(6262), 830–834. https://doi.org/10.1126/science.aad0135

    Article  CAS  PubMed  Google Scholar 

  83. Taieb, J., Svrcek, M., Cohen, R., Basile, D., Tougeron, D., & Phelip, J. M. (2022). Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. European Journal of Cancer, 175, 136–157. https://doi.org/10.1016/j.ejca.2022.07.020

    Article  CAS  PubMed  Google Scholar 

  84. Testa, U., Castelli, G., & Pelosi, E. (2020). Genetic alterations of metastatic colorectal cancer. Biomedicines, 8(10), 414. https://doi.org/10.3390/biomedicines8100414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mouradov, D., Greenfield, P., Li, S., In, E. J., Storey, C., Sakthianandeswaren, A., et al. (2023). Onco-microbial community profiling identifies clinico-molecular and prognostic subtypes of colorectal cancer. Gastroenterology. https://doi.org/10.1053/j.gastro.2023.03.205

  86. Moreno, E., & Basler, K. (2004). dMyc transforms cells into super-competitors. Cell, 117(1), 117–129. https://doi.org/10.1016/s0092-8674(04)00262-4

    Article  CAS  PubMed  Google Scholar 

  87. Flanagan, D. J., Pentinmikko, N., Luopajarvi, K., Willis, N. J., Gilroy, K., Raven, A. P., et al. (2021). NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature, 594(7863), 430–435. https://doi.org/10.1038/s41586-021-03525-z

    Article  CAS  PubMed  Google Scholar 

  88. Kanada, M., Bachmann, M. H., & Contag, C. H. (2016). Signaling by extracellular vesicles advances cancer hallmarks. Trends in Cancer, 2(2), 84–94. https://doi.org/10.1016/j.trecan.2015.12.005

    Article  PubMed  Google Scholar 

  89. Moya, I. M., Castaldo, S. A., Van den Mooter, L., Soheily, S., Sansores-Garcia, L., Jacobs, J., et al. (2019). Peritumoral activation of the hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science, 366(6468), 1029–1034. https://doi.org/10.1126/science.aaw9886

    Article  CAS  PubMed  Google Scholar 

  90. Lee, J. W., Stone, M. L., Porrett, P. M., Thomas, S. K., Komar, C. A., Li, J. H., et al. (2019). Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature, 567(7747), 249–252. https://doi.org/10.1038/s41586-019-1004-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sethi, V., Kurtom, S., Tarique, M., Lavania, S., Malchiodi, Z., Hellmund, L., et al. (2018). Gut microbiota promotes tumor growth in mice by modulating immune response. Gastroenterology, 155(1), 33–37. https://doi.org/10.1053/j.gastro.2018.04.001

    Article  CAS  PubMed  Google Scholar 

  92. Bhattacharjee, S., Hamberger, F., Ravichandra, A., Miller, M., Nair, A., Affo, S., et al. (2021). Tumor restriction by type I collagen opposes tumor-promoting effects of cancer-associated fibroblasts. The Journal of Clinical Investigation, 131(11). https://doi.org/10.1172/JCI146987

  93. Biffi, G., & Tuveson, D. A. (2021). Diversity and biology of cancer-associated fibroblasts. Physiological Reviews, 101(1), 147–176. https://doi.org/10.1152/physrev.00048.2019

    Article  CAS  PubMed  Google Scholar 

  94. Barbazan, J., & Matic Vignjevic, D. (2019). Cancer associated fibroblasts: Is the force the path to the dark side? Current Opinion in Cell Biology, 56, 71–79. https://doi.org/10.1016/j.ceb.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  95. Qi, M., Fan, S., Huang, M., Pan, J., Li, Y., Miao, Q., et al. (2022). Targeting FAPα-expressing hepatic stellate cells overcomes resistance to antiangiogenics in colorectal cancer liver metastasis models. The Journal of Clinical Investigation, 132. https://doi.org/10.1172/JCI157399

  96. Lampi, M. C., & Reinhart-King, C. A. (2018). Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials. Science Translational Medicine, 10(422). https://doi.org/10.1126/scitranslmed.aao0475

  97. Kalli, M., & Stylianopoulos, T. (2018). Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis. Frontiers in Oncology, 8, 55. https://doi.org/10.3389/fonc.2018.00055

    Article  PubMed  PubMed Central  Google Scholar 

  98. Burnier, J. V., Wang, N., Michel, R. P., Hassanain, M., Li, S., Lu, Y., et al. (2011). Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene, 30(35), 3766–3783. https://doi.org/10.1038/onc.2011.89

    Article  CAS  PubMed  Google Scholar 

  99. Nystrom, H., Tavelin, B., Bjorklund, M., Naredi, P., & Sund, M. (2015). Improved tumour marker sensitivity in detecting colorectal liver metastases by combined type IV collagen and CEA measurement. Tumour Biology, 36(12), 9839–9847. https://doi.org/10.1007/s13277-015-3729-z

    Article  CAS  PubMed  Google Scholar 

  100. Shen, Y., Wang, X., Lu, J., Salfenmoser, M., Wirsik, N. M., Schleussner, N., et al. (2020). Reduction of liver metastasis stiffness improves response to bevacizumab in metastatic colorectal cancer. Cancer Cell, 37(6), 800–817. https://doi.org/10.1016/j.ccell.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  101. Liu, L., Mayes, P. A., Eastman, S., Shi, H., Yadavilli, S., Zhang, T., et al. (2015). The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research, 21(7), 1639–1651. https://doi.org/10.1158/1078-0432.CCR-14-2339

    Article  CAS  PubMed  Google Scholar 

  102. Pfirschke, C., Engblom, C., Rickelt, S., Cortez-Retamozo, V., Garris, C., Pucci, F., et al. (2016). Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity, 44(2), 343–354. https://doi.org/10.1016/j.immuni.2015.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang, L., Zhu, Z., Yan, H., Wang, W., Wu, Z., Zhang, F., et al. (2021). Creatine promotes cancer metastasis through activation of Smad2/3. Cell Metabolism, 33(6), 1111–1123. https://doi.org/10.1016/j.cmet.2021.03.009

    Article  CAS  PubMed  Google Scholar 

  104. Le, D. T., Durham, J. N., Smith, K. N., Wang, H., Bartlett, B. R., Aulakh, L. K., et al. (2017). Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 357(6349), 409–413. https://doi.org/10.1126/science.aan6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebert, P. J. R., Cheung, J., Yang, Y., McNamara, E., Hong, R., Moskalenko, M., et al. (2016). MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity, 44(3), 609–621. https://doi.org/10.1016/j.immuni.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  106. Hodi, F. S., Lawrence, D., Lezcano, C., Wu, X., Zhou, J., Sasada, T., et al. (2014). Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunology Research, 2(7), 632–642. https://doi.org/10.1158/2326-6066.CIR-14-0053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by (1) National Natural Science Foundation of China (82073246); (2) Sichuan Science and Technology Program (2022JDRC0049, 2022YFS0175); (3) 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD20006).

Author information

Authors and Affiliations

Authors

Contributions

Hai-Ning Chen and Zong-Guang Zhou designed the article, Qiu-Luo Liu and Huijie Zhou performed the literature search and drafted the work, Hai-Ning Chen and Zong-Guang Zhou revised the work.

Corresponding author

Correspondence to Hai-Ning Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QL., Zhou, H., Zhou, ZG. et al. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 42, 575–587 (2023). https://doi.org/10.1007/s10555-023-10107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10107-0

Keywords

Navigation