Abstract
Tetrahydrocannabinols (THCs) antagonize the CB1 and CB2 cannabinoid receptors, whose signaling to the endocannabinoid system is essential for controlling cell survival and proliferation as well as psychoactive effects. Most tumor cells express a much higher level of CB1 and CB2; THCs have been investigated as potential cancer therapeutic due to their cannabimimetic properties. To date, THCs have been prescribed as palliative medicine to cancer patients but not as an anticancer modality. Growing evidence of preclinical research demonstrates that THCs reduce tumor progression by stimulating apoptosis and autophagy and inhibiting two significant hallmarks of cancer pathogenesis: metastasis and angiogenesis. However, the degree of their anticancer effects depends on the origin of the tumor site, the expression of cannabinoid receptors on tumor cells, and the dosages and types of THC. This review summarizes the current state of knowledge on the molecular processes that THCs target for their anticancer effects. It also emphasizes the substantial knowledge gaps that should be of concern in future studies. We also discuss the therapeutic effects of THCs and the problems that will need to be addressed in the future. Clarifying unanswered queries is a prerequisite to translating the THCs into an effective anticancer regime.
This is a preview of subscription content, access via your institution.

Abbreviations
- Ag2:
-
Angiopoietin-2
- AKT:
-
Protein kinase B
- ATF-4:
-
Activating transcription factor 4
- BAD:
-
Bcl2-associated agonist of cell death protein
- BAX:
-
Bcl2-associated X protein
- CACS:
-
Cancer anorexia-cachexia syndrome
- CB1:
-
Cannabinoid receptor type1
- CB2:
-
Cannabinoid receptor type2
- CBC:
-
Cannabichromene
- CBD:
-
Cannabidiol
- CBN:
-
Cannabinol
- CBDA:
-
Cannabidiolic acid
- CBG:
-
Cannabigerol
- CD147:
-
Cluster of differentiation 147
- CD31:
-
Cluster of differentiation 31
- CD45:
-
Cluster of differentiation 45
- Cdc2:
-
Cell division cycle protein 2
- CDH1:
-
Gene encoded E-cadherin
- CDH2:
-
Gene encoded N-cadherin
- Cdk4/2:
-
Cyclin-dependent kinase 4/2
- CHOP:
-
C/EBP homologous protein
- COX2:
-
Cyclooxygenase 2
- CP55940:
-
Synthetic cannabinoid
- CRC:
-
Colorectal cancer
- CXCR4:
-
C-X-C chemokine receptor type 4
- DRAM:
-
DNA damage-regulated autophagy modulator
- ECS:
-
Endocannabinoid systems
- EGF:
-
Epidermal growth factor
- EMT:
-
Epithelial-mesenchymal transition
- ER:
-
Endoplasmic reticulum
- ERK:
-
Extracellular signal-regulated kinase
- GBM:
-
Glioblastoma multiforme
- GPCR:
-
G protein-coupled receptor
- GRP78:
-
Glucose-regulated protein
- GSH:
-
Glutathione
- H2AX:
-
H2A histone family member X
- HER2:
-
Human epidermal growth factor receptor 2
- 5-HT3:
-
5-hydroxytryptamine 3
- ICAM-1:
-
Intercellular adhesion molecule 1
- IL-10:
-
Interleukin 10
- IL-4:
-
Interleukin 4
- JNK:
-
c-Jun N-terminal kinase
- JunD:
-
AP-1 transcription factor
- LAK-1:
-
Lymphokine-activated killer-1
- MAPK:
-
Mitogen-activated protein kinases
- MM:
-
Multiple myeloma
- MMP2:
-
Matrix metalloproteinase-2
- MMP2/9:
-
Matrix metalloproteinase-2/9
- MMP9:
-
Matrix metalloproteinase-9
- mTOR:
-
Mammalian target of rapamycin
- NOXA:
-
A proapoptotic member of BH3-only Bcl-2 family proteins
- NSCLC:
-
Non-small-cell lung cancer
- p21:
-
Cyclin-dependent kinase inhibitor 1
- p27:
-
Cyclin-dependent kinase inhibitor 1B
- p38-MAPK:
-
p38 mitogen-activated protein kinase
- p42/44:
-
Mitogen-activated protein kinase;
- PAK1:
-
p-21 activated kinase 1
- Parkin:
-
Cytosolic E3 ubiquitin ligase
- PC:
-
Pancreatic cancer
- PD-1:
-
Programmed cell death protein-1
- PD-L1:
-
Programmed cell death ligand-1
- PI3K:
-
Phosphatidylinositol-3 kinase
- PINK1:
-
PTEN-induced putative kinase 1
- PPARγ:
-
Peroxisome proliferator-activated receptor γ
- pRb:
-
Phosphoretinoblastoma protein
- PSC:
-
Pancreatic stellate cells
- PUMA:
-
p53 upregulated modulator of apoptosis
- QOL:
-
Quality of life
- RAD51:
-
Gene encode a DNA repair protein
- RAS:
-
Rat sarcoma virus
- TGF-β:
-
Transforming growth factor
- THC:
-
Tetrahydrocannabinol
- TIMP1:
-
Tissue inhibitors of metalloproteinases1
- Tes:
-
Testin
- TME:
-
Tumor microenvironment
- TMZ:
-
Temozolomide
- TRB3:
-
Tribbles-like protein 3
- TRPV1:
-
Transient receptor potential vanilloid-1
- VEGF:
-
Vascular endothelial growth factors
- VEGFR:
-
Vascular endothelial growth factor receptor
- VIM:
-
Vimentin
References
Suchopár, J., Laštůvka, Z., Mašková, S., Alblová, M., & Pařízek, A. (2021). Endocannabinoids. Ceska Gynekol, 86(6), 414–420. https://doi.org/10.48095/cccg2021414
Guggisberg, J., Schumacher, M., Gilmore, G., & Zylla, D. M. (2022). Cannabis as an anticancer agent: A review of clinical data and assessment of case reports. Cannabis and Cannabinoid Research, 7(1), 24–33. https://doi.org/10.1089/can.2021.0045
Maccarrone, M. (2017). Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Frontiers in Molecular Neuroscience, 10:166. https://doi.org/10.3389/fnmol.2017.00166
Guzman, M. (2003). Cannabinoids: Potential anticancer agents. Nature Reviews Cancer, 3(10), 745–755. https://doi.org/10.1038/nrc1188
Hosami, F., Ghadimkhah, M. H., Salimi, V., Ghorbanhosseini, S. S., & Tavakoli-Yaraki, M. (2021). The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomedicine & Pharmacotherapy, 144, 112279. https://doi.org/10.1016/J.Biopha.2021.112279
Sledzinski, P., Zeyland, J., Slomski, R., & Nowak, A. (2018). The current state and future perspectives of cannabinoids in cancer biology. Cancer Medicine, 7(3), 765–775. https://doi.org/10.1002/cam4.1312
Braile, M., Marcella, S., Marone, G., Galdiero, M. R., Varricchi, G., & Loffredo, S. (2021). The interplay between the immune and the endocannabinoid systems in cancer. Cells, 10(6), 1282. https://doi.org/10.3390/Cells10061282
Arif, Y., Singh, P., Bajguz, A., & Hayat, S. (2021). Phytocannabinoids biosynthesis in angiosperms, fungi, and liverworts and their versatile role. Plants-Basel, 10(7), 1307. https://doi.org/10.3390/Plants10071307
O'Reilly, E. M., Cosgrave, J. M., Gallagher, W. M., & Perry, A. S. (2022). Plant-derived cannabinoids as anticancer agents. Trends in Cancer, 8(5), 350–357. https://doi.org/10.1016/j.trecan.2022.01.017
Hinz, B., & Ramer, R. (2022). Cannabinoids as anticancer drugs: Current status of preclinical research. British Journal of Cancer, 127(1), 1–13. https://doi.org/10.1038/s41416-022-01727-4
Daris, B., Verboten, M. T., Knez, Z., & Ferk, P. (2019). Cannabinoids in cancer treatment: Therapeutic potential and legislation. Bosnian Journal of Basic Medical Sciences, 19(1), 14–23. https://doi.org/10.17305/bjbms.2018.3532
Kovalchuk, O., & Kovalchuk, I. (2020). Cannabinoids as anticancer therapeutic agents. Cell Cycle, 19(9), 961–989. https://doi.org/10.1080/15384101.2020.1742952
Pagano, C., Navarra, G., Coppola, L., Bifulco, M., & Laezza, C. (2021). Molecular mechanism of cannabinoids in cancer progression. International Journal of Molecular Sciences, 22(7), 3680. https://doi.org/10.3390/Ijms22073680
Abrams, D. I. (2022). Cannabis, cannabinoids and cannabis-based medicines in cancer care comment. Integrative Cancer Therapies, 21, 153473542210817. https://doi.org/10.1177/15347354221081772
Abuhasira, R., Shbiro, L., & Landschaft, Y. (2018). Medical use of cannabis and cannabinoids containing products - Regulations in Europe and North America. European Journal of Internal Medicine, 49, 2–6. https://doi.org/10.1016/j.ejim.2018.01.001
Janatova, A., Frankova, A., Tlustos, P., Hamouz, K., Bozik, M., & Kloucek, P. (2018). Yield and cannabinoids contents in different cannabis (Cannabis sativa L.) genotypes for medical use. Industrial Crops and Products, 112, 363–367. https://doi.org/10.1016/j.indcrop.2017.12.006
Velasco, G., Hernandez-Tiedra, S., Davila, D., & Lorente, M. (2016). The use of cannabinoids as anticancer agents. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 64, 259–266. https://doi.org/10.1016/j.pnpbp.2015.05.010
Velasco, G., Sanchez, C., & Guzman, M. (2016). Anticancer mechanisms of cannabinoids. Current Oncology, 23, S23–S32. https://doi.org/10.3747/co.23.3080
Bouca-Machado, R., Rosario, M., Alarcao, J., Correia-Guedes, L., Abreu, D., & Ferreira, J. J. (2017). Clinical trials in palliative care: A systematic review of their methodological characteristics and of the quality of their reporting. BMC Palliative Care, 16, 10. https://doi.org/10.1186/s12904-016-0181-9
Ferrell, B., Borneman, T., Williams, A., Scardina, A., Fischer, P., & Smith, T. (2020). Integrating palliative care for patients on clinical trials: Opportunities for oncology nurses. Asia-Pacific Journal of Oncology Nursing, 7(3), 243–249. https://doi.org/10.4103/apjon.apjon_2_20
Singh, B. N., Shankar, S., & Srivastava, R. K. (2011). Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology, 82(12), 1807–1821. https://doi.org/10.1016/j.bcp.2011.07.093
Singh, B. N., Prateeksha, Rawat, A. K. S., Bhagat, R. M., & Singh, B. R. (2017). Black tea: Phytochemicals, cancer chemoprevention, and clinical studies. Critical Reviews in Food Science and Nutrition, 57(7), 1394–1410. https://doi.org/10.1080/10408398.2014.994700
Singh, B. N., Singh, H. B., Singh, A., Naqvi, A. H., & Singh, B. R. (2014). Dietary phytochemicals alter epigenetic events and signaling pathways for inhibition of metastasis cascade. Cancer and Metastasis Reviews, 33(1), 41–85. https://doi.org/10.1007/s10555-013-9457-1
Singh, B. R., Singh, B. N., Khan, W., Singh, H. B., & Naqvi, A. H. (2012). ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials, 33(23), 5753–5767. https://doi.org/10.1016/j.biomaterials.2012.04.045
Singh, B. N., Fu, J. S., Srivastava, R. K., & Shankar, S. (2011). Hedgehog signaling antagonist GDC-0449 (Vismodegib) inhibits pancreatic cancer stem cell characteristics: Molecular mechanisms. Plos One, 6(11), e27306. https://doi.org/10.1371/journal.pone.0027306
Bakshi, H. A., Faruck, H. L., Ravesh, Z., Ansari, P., Hannan, J. M. A., Hashimoto, R., Takayama, K., Farzand, R., Nasef, M. M., Mensah, A., Aljabali, A. A. A., Mishra, V., Charbe, N. B., Goyal, R., Negi, P., Serrano-Aroca, Á., Bahar, B., El-Tanani, M., Courtenay, A. J., et al. (2022). Therapeutic potential of cannabinoids on tumor microenvironment: A molecular switch in neoplasia transformation. Integrative Cancer Therapies, 21, 15347354221096766. https://doi.org/10.1177/15347354221096766
Guzman, M., Galve-Roperh, I., & Sanchez, C. (2001). Ceramide: A new second messenger of cannabinoid action. Trends in Pharmacological Sciences, 22(1), 19–22. https://doi.org/10.1016/S0165-6147(00)01586-8
Mc Allister, S. D., Chan, C., Taft, R. J., Luu, T., Abood, M. E., Moore, D. H., Aldape, K., & Yount, G. (2005). Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. Journal of Neuro-Oncology, 74(1), 31–40. https://doi.org/10.1007/s11060-004-5950-2
Galve-Roperh, I., Sanchez, C., Cortes, M. L., del Pulgar, T. G., Izquierdo, M., & Guzman, M. (2000). Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nature Medicine, 6(3), 313–319. https://doi.org/10.1038/73171
Carracedo, A., Gironella, M., Lorente, M., Garcia, S., Guzman, M., Velasco, G., & Iovanna, J. L. (2006). Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Research, 66(13), 6748–6755. https://doi.org/10.1158/0008-5472.CAN-06-0169
Caffarel, M. M., Sarrió, D., Palacios, J., Guzmán, M., & Sánchez, C. (2006). Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Research, 66(13), 6615–6621. https://doi.org/10.1158/0008-5472.can-05-4566
Greenhough, A., Patsos, H. A., Williams, A. C., & Paraskeva, C. (2007). The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Internation Journal of Cancer, 121(10), 2172–2180. https://doi.org/10.1002/ijc.22917
Powles, T., te Poele, R., Shamash, J., Chaplin, T., Propper, D., Joel, S., et al. (2005). Cannabis-induced cytotoxicity in leukemic cell lines: The role of the cannabinoid receptors and the MAPK pathway. Blood, 105(3), 1214–1221. https://doi.org/10.1182/blood-2004-03-1182
Tomko, A., Whynot, E., & Dupré, D. (2021). Anti-cancer properties of cannabidiol and Δ9-tetrahydrocannabinol and potential synergistic effects with gemcitabine, cisplatin and other cannabinoids in bladder cancer. Journal of Cannabis Research, 4(1), 41. https://doi.org/10.1186/s42238-022-00151-y
Sanchez, C., Galve-Roperh, I., Canova, C., Brachet, P., & Guzman, M. (1998). Delta(9)-tetrahydrocannabinol induces apoptosis in C6 glioma cells. FEBS Letters, 436(1), 6–10. https://doi.org/10.1016/S0014-5793(98)01085-0
Semlali, A., Beji, S., Ajala, I., & Rouabhia, M. (2021). Effects of tetrahydrocannabinols on human oral cancer cell proliferation, apoptosis, autophagy, oxidative stress, and DNA damage. Archives of Oral Biology, 129, 105200. https://doi.org/10.1016/j.archoralbio.2021.105200
Galanti, G., Fisher, T., Kventsel, I., Shoham, J., Gallily, R., Mechoulam, R., Lavie, G., Amariglio, N., Rechavi, G., & Toren, A. (2008). Delta 9-tetrahydrocannabinol inhibits cell cycle progression by downregulation of E2F1 in human glioblastoma multiforme cells. Acta Oncologica, 47(6), 1062–1070. https://doi.org/10.1080/02841860701678787
Śledziński, P., Nowak-Terpiłowska, A., & Zeyland, J. (2020). Cannabinoids in medicine: Cancer, immunity, and microbial diseases. International Journal of Molecular Sciences, 22(1), 263. https://doi.org/10.3390/ijms22010263
Preet, A., Ganju, R. K., & Groopman, J. E. (2008). Delta(9)-tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo. Oncogene, 27(3), 339–346. https://doi.org/10.1038/sj.onc.1210641
Anis, O., Vinayaka, A. C., Shalev, N., Namdar, D., Nadarajan, S., Anil, S. M., Cohen, O., Belausov, E., Ramon, J., Gati, E. M., & Koltai, H. (2021). Cannabis-derived compounds cannabichromene and Δ9-tetrahydrocannabinol interact and exhibit cytotoxic activity against urothelial cell carcinoma correlated with inhibition of cell migration and cytoskeleton organization. Molecules, 26(2), 465. https://doi.org/10.3390/molecules26020465
Mechta-Grigoriou, F., Gerald, D., & Yaniv, M. (2001). The mammalian Jun proteins: Redundancy and specificity. Oncogene, 20(19), 2378–2389. https://doi.org/10.1038/sj.onc.1204381
Eferl, R., & Wagner, E. F. (2003). AP-1: A double-edged sword in tumorigenesis. Nature Reviews Cancer, 3(11), 859–868. https://doi.org/10.1038/nrc1209
Caffarel, M. M., Moreno-Bueno, G., Cerutti, C., Palacios, J., Guzman, M., Mechta-Grigoriou, F., et al. (2008). JunD is involved in the antiproliferative effect of delta9-tetrahydrocannabinol on human breast cancer cells. Oncogene, 27(37), 5033–5044. https://doi.org/10.1038/onc.2008.145
Zhang, Y. Z., Zheng, W., Shen, K. W., & Shen, W. W. (2018). Delta 9-tetrahydrocannabinol inhibits epithelial-mesenchymal transition and metastasis by targeting matrix metalloproteinase-9 in endometrial cancer. Oncology Letters, 15(6), 8527–8535. https://doi.org/10.3892/ol.2018.8407
Carracedo, A., Lorente, M., Egia, A., Blázquez, C., García, S., Giroux, V., Malicet, C., Villuendas, R., Gironella, M., González-Feria, L., Piris, M. Á., Iovanna, J. L., Guzmán, M., & Velasco, G. (2006). The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell, 9(4), 301–312. https://doi.org/10.1016/j.ccr.2006.03.005
Peeri, H., & Koltai, H. (2022). Cannabis biomolecule effects on cancer cells and cancer stem cells: Cytotoxic, anti-proliferative, and anti-migratory activities. Biomolecules, 12(4), 491. https://doi.org/10.3390/Biom12040491
Ramer, R., Schwarz, R., & Hinz, B. (2019). Modulation of the endocannabinoid system as a potential anticancer strategy. Frontiers in Pharmacology, 10:430. https://doi.org/10.3389/Fphar.2019.00430
Haustein, M., Ramer, R., Linnebacher, M., Manda, K., & Hinz, B. (2014). Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochemical Pharmacology, 92(2), 312–325. https://doi.org/10.1016/j.bcp.2014.07.014
Schoeman, R., de la Harpe, A., Beukes, N., & Frost, C. L. (2022). Cannabis with breast cancer treatment: Propitious or pernicious? 3 Biotech, 12(2):54. https://doi.org/10.1007/S13205-021-03102-1
Liu, W. M., Scott, K. A., Shamash, J., Joel, S., & Powles, T. B. (2008). Enhancing the in vitro cytotoxic activity of delta9-tetrahydrocannabinol in leukemic cells through a combinatorial approach. Leuk Lymphoma, 49(9), 1800–1809. https://doi.org/10.1080/10428190802239188
Oesch, S., & Gertsch, J. (2009). Cannabinoid receptor ligands as potential anticancer agents - High hopes for new therapies? Journal of Pharmacy and Pharmacology, 61(7), 839–853. https://doi.org/10.1211/jpp/61.07.0002
Torres, S., Lorente, M., Rodríguez-Fornés, F., Hernández-Tiedra, S., Salazar, M., García-Taboada, E., Barcia, J., Guzmán, M., & Velasco, G. (2011). A combined preclinical therapy of cannabinoids and temozolomide against glioma. Molecular Cancer Therapeutics, 10(1), 90–103. https://doi.org/10.1158/1535-7163.MCT-10-0688
Yang, Y., Huynh, N., Dumesny, C., Wang, K., He, H., & Nikfarjam, M. (2020). Cannabinoids inhibited pancreatic cancer via P-21 activated kinase 1 mediated pathway. International Journal of Molecular Sciences, 21(21), 8035. https://doi.org/10.3390/Ijms21218035
McKallip, R. J., Nagarkatti, M., & Nagarkatti, P. S. (2005). Delta-9-tetrahydrocannabinol enhances breast cancer growth and metastasis by suppression of the antitumor immune response. Journal of Immunology, 174(6), 3281–3289. https://doi.org/10.4049/jimmunol.174.6.3281
Luo, C. K., Chou, P. H., Ng, S. K., Lin, W. Y., & Wei, T. T. (2022). Cannabinoids orchestrate cross-talk between cancer cells and endothelial cells in colorectal cancer. Cancer Gene Therapy, 29(5), 597–611. https://doi.org/10.1038/s41417-021-00346-0
Tucci, S. A., Rogers, E. K., Korbonits, M., & Kirkham, T. C. (2004). The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. British Journal of Pharmacology, 143(5), 520–523. https://doi.org/10.1038/sj.bjp.0705968
Vasquez, N. A., & Nielsen, D. E. (2022). The Endocannabinoid system and eating behaviours: A review of the current state of the evidence. Current Nutrition Reports, 11(4), 665–674. https://doi.org/10.1007/s13668-022-00436-x
Nelson, K., Walsh, D., Deeter, P., & Sheehan, F. (1994). A phase II study of delta-9-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. Journal of Palliative Care, 10(1), 14–18.
Strasser, F., Luftner, D., Possinger, K., Ernst, G., Ruhstaller, T., Meissner, W., Ko, Y.-D., Schnelle, M., Reif, M., & Cerny, T. (2006). Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: A multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the cannabis-in-cachexia-study-group. Journal of Clinical Oncology, 24(21), 3394–3400. https://doi.org/10.1200/Jco.2005.05.1847
Zutt, M., Hanssle, H., Emmert, S., Neumann, C., & Kretschmer, L. (2006). Dronabinol for supportive therapy in patients with malignant melanoma and liver metastases. Hautarzt, 57(5), 423–427. https://doi.org/10.1007/s00105-005-1063-x
Jatoi, A., Windschitl, H. E., Loprinzi, C. L., Sloan, J. A., Dakhil, S. R., Mailliard, J. A., Pundaleeka, S., Kardinal, C. G., Fitch, T. R., Krook, J. E., Novotny, P. J., & Christensen, B. (2002). Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: A north central cancer treatment group study. Journal of Clinical Oncology, 20(2), 567–573. https://doi.org/10.1200/jco.2002.20.2.567
Turcott, J., Guillen- Núñez, M. D. R., Flores, D., Oñate, L., Zatarain-Barrón, Z., Barrón, F., & Arrieta, O. (2018). The effect of Nabilone on appetite, nutritional status, and quality of life in lung cancer patients: A randomized, double-blind clinical trial. Journal of Thoracic Oncology, 13(10), S360–S361. https://doi.org/10.1016/j.jtho.2018.08.328
Brisbois, T. D., de Kock, I. H., Watanabe, S. M., Mirhosseini, M., Lamoureux, D. C., Chasen, M., MacDonald, N., Baracos, V. E., & Wismer, W. V. (2011). Delta-9-tetrahydrocannabinol may palliate altered chemosensory perception in cancer patients: Results of a randomized, double-blind, placebo-controlled pilot trial. Annals of Oncology, 22(9), 2086–2093. https://doi.org/10.1093/annonc/mdq727
Costa, B. (2007). On the pharmacological properties of delta9-tetrahydrocannabinol (THC). Chemistry & Biodiversity, 4(8), 1664–1677. https://doi.org/10.1002/cbdv.200790146
Mlost, J., Bryk, M., & Starowicz, K. (2020). Cannabidiol for pain treatment: Focus on pharmacology and mechanism of action. International Journal of Molecular Sciences, 21(22), 8870. https://doi.org/10.3390/Ijms21228870
Mitchell, V. A., Harley, J., Casey, S. L., Vaughan, A. C., Winters, B. L., & Vaughan, C. W. (2021). Oral efficacy of delta(9)-tetrahydrocannabinol and cannabidiol in a mouse neuropathic pain model. Neuropharmacology, 189, 108529. https://doi.org/10.1016/j.neuropharm.2021.108529
Noyes Jr., R., Brunk, S. F., Avery, D. A., & Canter, A. C. (1975). The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clinical Pharmacology and Therapy, 18(1), 84–89. https://doi.org/10.1002/cpt197518184
Johnson, J. R., Burnell-Nugent, M., Lossignol, D., Ganae-Motan, E. D., Potts, R., & Fallon, M. T. (2010). Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and thc extract in patients with intractable cancer-related pain. Journal of Pain and Symptom Management, 39(2), 167–179. https://doi.org/10.1016/j.jpainsymman.2009.06.008
Portenoy, R. K., Ganae-Motan, E. D., Allende, S., Yanagihara, R., Shaiova, L., Weinstein, S., McQuade, R., Wright, S., & Fallon, M. T. (2012). Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: A randomized, placebo-controlled, graded-dose trial. Journal of Pain, 13(5), 438–449. https://doi.org/10.1016/j.jpain.2012.01.003
Johnson, J. R., Lossignol, D., Burnell-Nugent, M., & Fallon, M. T. (2013). An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal thc spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. Journal of Pain and Symptom Management, 46(2), 207–218. https://doi.org/10.1016/j.jpainsymman.2012.07.014
Lynch, M. E., Cesar-Rittenberg, P., & Hohmann, A. G. (2014). A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain. Journal of Pain and Symptom Management, 47(1), 166–173. https://doi.org/10.1016/j.jpainsymman.2013.02.018
Fallon, M. T., Lux, E. A., McQuade, R., Rossetti, S., Sanchez, R., Sun, W., Wright, S., Lichtman, A. H., & Kornyeyeva, E. (2017). Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: Two double-blind, randomized, placebo-controlled phase 3 studies. British Journal of Pain, 11(3), 119–133. https://doi.org/10.1177/2049463717710042
Staquet, M., Gantt, C., & Machin, D. (1978). Effect of a nitrogen analog of tetrahydrocannabinol on cancer pain. Clinical Pharmacology and Therapy, 23(4), 397–401. https://doi.org/10.1002/cpt1978234397
Benredjem, B., & Pineyro, G. (2021). Are (THC:CBD) ratios good descriptors of the analgesic potential of cannabinoids? Canadian Journal of Physiology and Pharmacology, 99(11), S2–S2.
Janelsins, M. C., Kesler, S. R., Ahles, T. A., & Morrow, G. R. (2014). Prevalence, mechanisms, and management of cancer-related cognitive impairment. International Review of Psychiatry, 26(1), 102–113. https://doi.org/10.3109/09540261.2013.864260
Darmani, N. A. (2001). Delta(9)-tetrahydrocannabinol and synthetic cannabinoids prevent emesis produced by the cannabinoid CB1 receptor antagonist/inverse agonist SR 141716A. Neuropsychopharmacology, 24(2), 198–203. https://doi.org/10.1016/S0893-133x(00)00197-4
Meiri, E., Jhangiani, H., Vredenburgh, J. J., Barbato, L. M., Carter, F. J., Yang, H.-M., & Baranowski, V. (2007). Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Current Medical Research and Opinion, 23(3), 533–543. https://doi.org/10.1185/030079907X167525
Machado Rocha, F. C., Stéfano, S. C., De Cássia Haiek, R., Rosa Oliveira, L. M., & Da Silveira, D. X. (2008). Therapeutic use of Cannabis sativa on chemotherapy-induced nausea and vomiting among cancer patients: Systematic review and meta-analysis. European Journal of Cancer Care (Engl), 17(5), 431–443. https://doi.org/10.1111/j.1365-2354.2008.00917.x
Kesner, A. J., & Lovinger, D. M. (2020). Cannabinoids, endocannabinoids and sleep. Frontiers in Molecular Neuroscience, 13, 125. https://doi.org/10.3389/Fnmol.2020.00125
Kaul, M., Zee, P. C., & Sahni, A. S. (2021). Effects of cannabinoids on sleep and their therapeutic potential for sleep disorders. Neurotherapeutics, 18(1), 217–227. https://doi.org/10.1007/s13311-021-01013-w
Martin-Willett, R., Master, A., Bidwell, L. C., & Sznitman, S. R. (2021). Cannabis use and sleep. In V. B. Patel & V. R. Preedy (Eds.), Handbook of substance misuse and addictions: from biology to public health (pp. 1–30). Springer International Publishing.
Guzmán, M., Duarte, M. J., Blázquez, C., Ravina, J., Rosa, M. C., Galve-Roperh, I., Sánchez, C., Velasco, G., & González-Feria, L. (2006). A pilot clinical study of delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. British Journal of Cancer, 95(2), 197–203. https://doi.org/10.1038/sj.bjc.6603236
Cote, M., Trudel, M., Wang, C. S., & Fortin, A. (2016). Improving quality of life with nabilone during radiotherapy treatments for head and neck cancers: A randomized double-blind placebo-controlled trial. Annals of Otology Rhinology and Laryngology, 125(4), 317–324. https://doi.org/10.1177/0003489415612801
Fabre, L. F., & Mclendon, D. (1981). The efficacy and safety of nabilone (a synthetic cannabinoid) in the treatment of anxiety. Journal of Clinical Pharmacology, 21(8-9), S377–S382. https://doi.org/10.1002/j.1552-4604.1981.tb02617.x.
Shannon, S., Lewis, N., Lee, H., & Hughes, S. (2019). Cannabidiol in anxiety and sleep: A large case series. The Permanente Journal, 23, 18–041. https://doi.org/10.7812/TPP/18-041
Scott, K. A., Dalgleish, A. G., & Liu, W. M. (2017). Anticancer effects of phytocannabinoids used with chemotherapy in leukaemia cells can be improved by altering the sequence of their administration. International Journal of Oncology, 51(1), 369–377. https://doi.org/10.3892/ijo.2017.4022
Nabissi, M., Morelli, M. B., Offidani, M., Amantini, C., Gentili, S., Soriani, A., Cardinali, C., Leoni, P., & Santoni, G. (2016). Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration. Oncotarget, 7(47), 77543–77557. https://doi.org/10.18632/oncotarget.12721
Soto-Mercado, V., Mendivil-Perez, M., Jimenez-Del-Rio, M., Fox, J. E., & Velez-Pardo, C. (2020). Cannabinoid CP55940 selectively induces apoptosis in Jurkat cells and in ex vivo T-cell acute lymphoblastic leukemia through H2O2 signaling mechanism. Leukemia Research, 95, 106389. https://doi.org/10.1016/j.leukres.2020.106389
Munson, A. E., Harris, L. S., Friedman, M. A., Dewey, W. L., & Carchman, R. A. (1975). Antineoplastic activity of cannabinoids. The Journal of the National Cancer Institute, 55(3), 597–602. https://doi.org/10.1093/jnci/55.3.597
Zhu, L. X., Sharma, S., Stolina, M., Gardner, B., Roth, M. D., Tashkin, D. P., et al. (2000). Delta-9-tetrahydrocannabinol inhibits antitumor immunity by a CB2 receptor-mediated, cytokine-dependent pathway. Journal of Immunology, 165(1), 373–380. https://doi.org/10.4049/jimmunol.165.1.373
Müller, L., Radtke, A., Decker, J., Koch, M., & Belge, G. (2017). The synthetic cannabinoid WIN 55,212-2 elicits death in human cancer cell lines. Anticancer Research, 37, 6341–6345. https://doi.org/10.21873/anticanres.12086
Milian, L., Mata, M., Alcacer, J., Oliver, M., Sancho-Tello, M., de Llano, J. J. M., Camps, C., Galbis, J., Carretero, J., & Carda, C. (2020). Cannabinoid receptor expression in non-small cell lung cancer. Effectiveness of tetrahydrocannabinol and cannabidiol inhibiting cell proliferation and epithelial-mesenchymal transition in vitro. Plos One, 15(2), e0228909. https://doi.org/10.1371/journal.pone.0228909
Milián, L., Monleón-Guinot, I., Sancho-Tello, M., Galbis, J. M., Cremades, A., Almenar-Ordaz, M., Peñaroja-Martinez, J., Farras, R., de Llano, J. J. M., Carda, C., & Mata, M. (2022). In vitro effect of Δ9-tetrahydrocannabinol and cannabidiol on cancer-associated fibroblasts isolated from lung cancer. International Journal of Molecular Sciences, 23(12), 6766. https://doi.org/10.3390/ijms23126766
Blasco-Benito, S., Moreno, E., Seijo-Vila, M., Tundidor, I., Andradas, C., Caffarel, M. M., et al. (2019). Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer (vol 116, pg 3863, 2019). Proceedings of the National Academy of Sciences of the United States of America, 116(13), 6505–6505. https://doi.org/10.1073/pnas.1903209116
Marcu, J. P., Christian, R. T., Lau, D., Zielinski, A. J., Horowitz, M. P., Lee, J., Pakdel, A., Allison, J., Limbad, C., Moore, D. H., Yount, G. L., Desprez, P.-Y., & McAllister, S. D. (2010). Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Molecular Cancer Therapeutics, 9(1), 180–189. https://doi.org/10.1158/1535-7163.mct-09-0407
Ellert-Miklaszewska, C., & I. A., & Kaminska, B. (2021). Synthetic cannabinoids induce autophagy and mitochondrial apoptotic pathways in human glioblastoma cells independently of deficiency in TP53 or PTEN tumor suppressors. Cancers, 13(3). https://doi.org/10.3390/cancers13030419
Blázquez, C., Casanova, M. L., Planas, A., del Pulgar, T. G., Villanueva, C., Fernández‐Aceñero, M. J., Aragonés, J., Huffman, J. W., Jorcano, J. L., & Guzmán, M. (2003). Inhibition of tumor angiogenesis by cannabinoids. FASEB Journal, 17(3), 1–16. https://doi.org/10.1096/fj.02-0795fje
López-Valero, I., Saiz-Ladera, C., Torres, S., Hernández-Tiedra, S., García-Taboada, E., Rodríguez-Fornés, F., Barba, M., Dávila, D., Salvador-Tormo, N., Guzmán, M., Sepúlveda, J. M., Sánchez-Gómez, P., Lorente, M., & Velasco, G. (2018). Targeting glioma initiating cells with a combined therapy of cannabinoids and temozolomide. Biochemical Pharmacology, 157, 266–274. https://doi.org/10.1016/j.bcp.2018.09.007
Soroceanu, L., Singer, E., Dighe, P., Sidorov, M., Limbad, C., Rodriquez-Brotons, A., Rix, P., Woo, R. W. L., Dickinson, L., Desprez, P.-Y., & McAllister, S. D. (2022). Cannabidiol inhibits RAD51 and sensitizes glioblastoma to temozolomide in multiple orthotopic tumor models. Neurooncology. Neuro-Oncology Advances, 4(1):vdac019. https://doi.org/10.1093/noajnl/vdac019
Wasik, A. M., Almestrand, S., Wang, X., Hultenby, K., Dackland, Å.-L., Andersson, P., Kimby, E., Christensson, B., & Sander, B. (2011). WIN55,212-2 induces cytoplasmic vacuolation in apoptosis-resistant MCL cells. Cell Death & Disease, 2, e225. https://doi.org/10.1038/cddis.2011.106
Fisher, T., Golan, H., Schiby, G., PriChen, S., Smoum, R., Moshe, I., Peshes-Yaloz, N., Castiel, A., Waldman, D., Gallily, R., Mechoulam, R., & Toren, A. (2016). In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma. Current Oncology, 23(2), 15–22. https://doi.org/10.3747/co.23.2893
Ruiz, L., Miguel, A., & Diaz-Laviada, I. (1999). Delta(9)-tetrahydrocannabinol induces apoptosis in human prostate PC-3 cells via a receptor-independent mechanism. FEBS Letters, 458(3), 400–404. https://doi.org/10.1016/S0014-5793(99)01073-X
Morell, C., Bort, A., Vara, D., Ramos-Torres, A., Rodriguez-Henche, N., & Diaz-Laviada, I. (2016). The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells. Prostate Cancer and Prostatic Diseases, 19(3), 248–257. https://doi.org/10.1038/pcan.2016.19
Armstrong, J. L., Hill, D. S., McKee, C. S., Hernandez-Tiedra, S., Lorente, M., Lopez-Valero, I., Anagnostou, M. E., Babatunde, F., Corazzari, M., Redfern, C. P. F., Velasco, G., & Lovat, P. E. (2015). Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death. Journal of Investigative Dermatology, 135(6), 1629–1637. https://doi.org/10.1038/jid.2015.45
Glodde, N., Jakobs, M., Bald, T., Tuting, T., & Gaffal, E. (2015). Differential role of cannabinoids in the pathogenesis of skin cancer. Life Sciences, 138, 35–40. https://doi.org/10.1016/j.lfs.2015.04.003
Whyte, D. A., Al-Hammadi, S., Balhaj, G., Brown, O. M., Penefsky, H. S., & Souid, A. K. (2010). Cannabinoids inhibit cellular respiration of human oral cancer cells. Pharmacology, 85(6), 328–335. https://doi.org/10.1159/000312686
Lichtman, A. H., Lux, E. A., McQuade, R., Rossetti, S., Sanchez, R., Sun, W., Wright, S., Kornyeyeva, E., & Fallon, M. T. (2018). Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain. Journal of Pain and Symptom Management, 55(2), 179–188.e1. https://doi.org/10.1016/j.jpainsymman.2017.09.001
Maida, V., Ennis, M., Irani, S., Corbo, M., & Dolzhykov, M. (2008). Adjunctive nabilone in cancer pain and symptom management: A prospective observational study using propensity scoring. The Journal of Supportive Oncology, 6(3), 119–124.
Walsh, D., Kirkova, J., & Davis, M. P. (2005). The efficacy and tolerability of long-term use of dronabinol in cancer-related anorexia: A case series. Journal of Pain and Symptom Management, 30(6), 493–495. https://doi.org/10.1016/j.jpainsymman.2005.11.007
Ofir, R., Bar-Sela, G., Ben-Arush, M. W., & Postovsky, S. (2019). Medical marijuana use for pediatric oncology patients: Single institution experience. Pediatric Hematology and Oncology, 36(5), 225–266.
Duran, M., Pérez, E., Abanades, S., Vidal, X., Saura, C., Majem, M., Arriola, E., Rabanal, M., Pastor, A., Farré, M., Rams, N., Laporte, J.-R., & Capellà, D. (2010). Preliminary efficacy and safety of an oromucosal standardized cannabis extract in chemotherapy-induced nausea and vomiting. British Journal of Clinical Pharmacology, 70(5), 656–663. https://doi.org/10.1111/j.1365-2125.2010.03743.x
Chang, A. E., Shiling, D. J., Stillman, R. C., Goldberg, N. H., Seipp, C. A., Barofsky, I., et al. (1979). Delata-9-tetrahydrocannabinol as an antiemetic in cancer patients receiving high-dose methotrexate. A prospective, randomized evaluation. Annals of Internal Medicine, 91(6), 819–824. https://doi.org/10.7326/0003-4819-91-6-819
Sallan, S. E., Cronin, C., Zelen, M., & Zinberg, N. E. (1980). Antiemetics in patients receiving chemotherapy for cancer: A randomized comparison of delta-9-tetrahydrocannabinol and prochlorperazine. The New England Journal of Medicine, 302(3), 135–138. https://doi.org/10.1056/nejm198001173020302
Shiling, D. J., Stillman, R. C., Chang, A. E., Goldberg, N. H., Seipp, C. A., Barofsky, I., & Rosenberg, S. A. (1981). A prospective evaluation of delta-9-tetrahydrocannabinol as an antiemetic in patients receiving adriamycin and cytoxan chemotherapy. Cancer, 47(7), 1746–1751. https://doi.org/10.1002/1097-0142(19810401)47:7<1746::aid-cncr2820470704>3.0.co;2-4
Sallan, S. E., Zinberg, N. E., & Frei 3rd, E. (1975). Antiemetic effect of delta-9-tetrahydrocannabinol in patients receiving cancer chemotherapy. The New England Journal of Medicine, 293(16), 795–797. https://doi.org/10.1056/nejm197510162931603
Twelves, C., Short, S., & Wright, S. (2017). A two-part safety and exploratory efficacy randomized double-blind, placebo-controlled study of a 1:1 ratio of the cannabinoids cannabidiol and delta-9-tetrahydrocannabinol (CBD:THC) plus dose-intense temozolomide in patients with recurrent glioblastoma multiforme (GBM). Journal of Clinical Oncology, 35. https://doi.org/10.1200/Jco.2017.35.15_Suppl.2046
Acknowledgements
The authors would like to acknowledge the Council of Scientific and Industrial Research, India (OLP-0106). The institutional manuscript number is CSIR-NBRI_MS/2022/09/02.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Prateeksha, P., Sharma, V.K., Singh, S.M. et al. Tetrahydrocannabinols: potential cannabimimetic agents for cancer therapy. Cancer Metastasis Rev (2023). https://doi.org/10.1007/s10555-023-10078-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10555-023-10078-2
Keywords
- Tetrahydrocannabinols
- Cannabis
- Cannabinoid receptors
- Cannabimimetic properties
- Metastasis
- Angiogenesis
- Antitumor