Skip to main content

Advertisement

Log in

Oncobiology and treatment of breast cancer in young women

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Female breast cancer emerged as the leading cancer type in terms of incidence globally in 2020. Although mortality due to breast cancer has improved during the past three decades in many countries, this trend has reversed in women less than 40 years since the past decade. From the biological standpoint, there is consensus among experts regarding the clinically relevant definition of breast cancer in young women (BCYW), with an age cut-off of 40 years. The idea that breast cancer is an aging disease has apparently broken in the case of BCYW due to the young onset and an overall poor outcome of BCYW patients. In general, younger patients exhibit a worse prognosis than older pre- and postmenopausal patients due to the aggressive nature of cancer subtypes, a high percentage of cases with advanced stages at diagnosis, and a high risk of relapse and death in younger patients. Because of clinically and biologically unique features of BCYW, it is suspected to represent a distinct biologic entity. It is unclear why BCYW is more aggressive and has an inferior prognosis with factors that contribute to increased incidence. However, unique developmental features, adiposity and immune components of the mammary gland, hormonal interplay and crosstalk with growth factors, and a host of intrinsic and extrinsic risk factors and cellular regulatory interactions are considered to be the major contributing factors. In the present article, we discuss the status of BCYW oncobiology, therapeutic interventions and considerations, current limitations in fully understanding the basis and underlying cause(s) of BCYW, understudied areas of BCYW research, and postulated advances in the coming years for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA, 71(3), 209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Paluch-Shimon, S., Cardoso, F., Partridge, A. H., Abulkhair, O., Azim, H. A., Jr., Bianchi-Micheli, G., et al. (2020). ESO-ESMO 4th International Consensus Guidelines for Breast Cancer in Young Women (BCY4). Annals of Oncology, 31(6), 674–696. https://doi.org/10.1016/j.annonc.2020.03.284

    Article  CAS  PubMed  Google Scholar 

  3. Narod, S. A. (2012). Breast cancer in young women. Nature Review Clinical Oncology, 9(8), 460–470. https://doi.org/10.1038/nrclinonc.2012.102

    Article  CAS  Google Scholar 

  4. Daly, A. A., Rolph, R., Cutress, R. I., & Copson, E. R. (2021). A review of modifiable risk factors in young women for the prevention of breast cancer. Breast Cancer, 13, 241–257. https://doi.org/10.2147/BCTT.S268401

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hendrick, R. E., Helvie, M. A., & Monticciolo, D. L. (2021). Breast cancer mortality rates have stopped declining in US women younger than 40 Years. Radiology, 299(1), 143–149.

    Article  Google Scholar 

  6. Ghosh, J., Gupta, S., Desai, S., Shet, T., Radhakrishnan, S., Suryavanshi, P., … Badwe, R. A. (2011). Estrogen, progesterone and HER2 receptor expression in breast tumors of patients, and their usage of HER2-targeted therapy, in a tertiary care centre in India. Indian Journal of Cancer, 48(4), 391–396https://doi.org/10.4103/0019-509X.92245

  7. Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I. T., et al. (2019). Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Annals of Oncology, 30(8), 1194–1220. https://doi.org/10.1093/annonc/mdz173

    Article  CAS  PubMed  Google Scholar 

  8. Bajpai, J., Ventrapati, P., Joshi, S., Wadasadawala, T., Rath, S., Pathak, R., et al. (2021). Unique challenges and outcomes of young women with breast cancers from a tertiary care cancer centre in India. Breast (Edinburgh, Scotland), 60, 177–184. https://doi.org/10.1016/j.breast.2021.09.008

    Article  Google Scholar 

  9. Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer Statistics, 2017. CA, 67(1), 7–30.

    PubMed  Google Scholar 

  10. Breast cancer incidence (invasive) statistics | Cancer Research UK. (n.d.). Retrieved February 11, 2022, from https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/breast-cancer/incidence-invasive#heading-One

  11. Okazaki, M., Bando, H., Tohno, E., Kujiraoka, Y., Iguchi-Manaka, A., Ichioka, E., … Hara, H. (2021). Investigation of the significance of population-based breast cancer screening among women aged under 40 years. Breast Cancer, 28(1), 75–81https://doi.org/10.1007/s12282-020-01131-x

  12. Nakata, K., Hiyama, E., Katanoda, K., Matsuda, T., Tada, Y., Inoue, M., et al. (2022). Cancer in adolescents and young adults in Japan: Epidemiology and cancer strategy. International Journal of Clinical Oncology, 27(1), 7–15. https://doi.org/10.1007/s10147-021-02064-x

    Article  PubMed  Google Scholar 

  13. Hayashi, N., Kumamaru, H., Isozumi, U., Aogi, K., Asaga, S., Iijima, K., et al. (2020). Annual report of the Japanese Breast Cancer Registry for 2017. Breast Cancer (Tokyo, Japan), 27(5), 803–809. https://doi.org/10.1007/S12282-020-01139-3

    Article  Google Scholar 

  14. Alvarez-Bañuelos, M. T., Segura-Jaramillo, K. A., Gómez-Rivera, E. D. C., Alarcón-Rojas, C. A., Morales-Romero, J., Sampieri, C. L., et al. (2021). Age under 30 years as a predictor of poor survival in a cohort of mexican women with breast cancer. Cancer Control, 28, 10732748211047408. https://doi.org/10.1177/10732748211047408

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ntirenganya, F., Twagirumukiza, J. D., Bucyibaruta, G., Rugwizangoga, B., & Rulisa, S. (2021). Premenopausal breast cancer risk factors and associations with molecular subtypes: A case-control study. International Journal of Breast Cancer, 2021, 5560559. https://doi.org/10.1155/2021/5560559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, L.-J., Chang, Y.-J., & Chang, Y.-J. (2021). Treatment and long-term outcome of breast cancer in very young women: nationwide population-based study. BJS Open, 5(5). https://doi.org/10.1093/bjsopen/zrab087

  17. Conte, B., Soldato, D., Razeti, M. G., Fregatti, P., de Azambuja, E., Schettini, F., … Lambertini, M. (2022). De novo metastatic breast cancer arising in young women: review of the current evidence. Clinical Breast Cancer, 22(1), 78–87https://doi.org/10.1016/j.clbc.2021.10.001

  18. Szollár, A., Újhelyi, M., Polgár, C., Oláh, E., Pukancsik, D., Rubovszky, G., et al. (2019). A long-term retrospective comparative study of the oncological outcomes of 598 very young (≤35 years) and young (36–45 years) breast cancer patients. European Journal of Surgical Oncology, 45(11), 2009–2015. https://doi.org/10.1016/j.ejso.2019.06.007

    Article  PubMed  Google Scholar 

  19. Suter, M. B., & Pagani, O. (2018). Should age impact breast cancer management in young women? Fine tuning of treatment guidelines. Therapeutic Advances in Medical Oncology, 10, 1758835918776923. https://doi.org/10.1177/1758835918776923

    Article  PubMed  PubMed Central  Google Scholar 

  20. Azim, H. A. J., & Partridge, A. H. (2014). Biology of breast cancer in young women. Breast Cancer Research : BCR, 16(4), 427. https://doi.org/10.1186/s13058-014-0427-5

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer statistics, 2010. CA, 60(5), 277–300. https://doi.org/10.3322/caac.20073

    Article  PubMed  Google Scholar 

  22. Hassett, M. J., Hughes, M. E., Niland, J. C., Edge, S. B., Theriault, R. L., Wong, Y.-N., et al. (2008). Chemotherapy use for hormone receptor-positive, lymph node-negative breast cancer. Journal of Clinical Oncology, 26(34), 5553–5560. https://doi.org/10.1200/JCO.2008.17.9705

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhong, W., Tan, L., Jiang, W. G., Chen, K., You, N., Sanders, A. J., et al. (2019). Effect of younger age on survival outcomes in T1N0M0 breast cancer: A propensity score matching analysis. Journal of Surgical Oncology, 119(8), 1039–1046. https://doi.org/10.1002/jso.25457

    Article  PubMed  Google Scholar 

  24. Copson, E., Eccles, B., Maishman, T., Gerty, S., Stanton, L., Cutress, R. I., et al. (2013). Prospective observational study of breast cancer treatment outcomes for UK women aged 18–40 years at diagnosis: The POSH study. Journal of the National Cancer Institute, 105(13), 978–988. https://doi.org/10.1093/jnci/djt134

    Article  CAS  PubMed  Google Scholar 

  25. Eccles, D., Gerty, S., Simmonds, P., Hammond, V., Ennis, S., & Altman, D. G. (2007). Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH): Study protocol. BMC Cancer, 7, 160. https://doi.org/10.1186/1471-2407-7-160

    Article  PubMed  PubMed Central  Google Scholar 

  26. Melina Arnold, M., Morgan, E., O’Neill, C., Bardot, A., Walsh, P., Siesling, S., et al. (2021). From early to metastatic breast cancer: A systematic review and meta-analysis of distant recurrence rates. The Breast, 9, S61. https://doi.org/10.1016/S0960-9776(21)00576-2

    Article  Google Scholar 

  27. Lima, S. M., Kehm, R. D., Swett, K., Gonsalves, L., & Terry, M. B. (2020). Trends in parity and breast cancer incidence in US women younger than 40 years from 1935 to 2015. JAMA Network Open, 3(3), e200929. https://doi.org/10.1001/jamanetworkopen.2020.0929

    Article  PubMed  PubMed Central  Google Scholar 

  28. MacMahon, B., Cole, P., Lin, T. M., Lowe, C. R., Mirra, A. P., Ravnihar, B., et al. (1970). Age at first birth and breast cancer risk. Bulletin of the World Health Organization, 43(2), 209–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosner, B., Colditz, G. A., & Willett, W. C. (1994). Reproductive risk factors in a prospective study of breast cancer: The Nurses’ health study. American Journal of Epidemiology, 139(8), 819–835. https://doi.org/10.1093/oxfordjournals.aje.a117079

    Article  CAS  PubMed  Google Scholar 

  30. Russo, J., Rivera, R., & Russo, I. H. (1992). Influence of age and parity on the development of the human breast. Breast Cancer Research and Treatment, 23(3), 211–218. https://doi.org/10.1007/BF01833517

    Article  CAS  PubMed  Google Scholar 

  31. Bonnier, P., Romain, S., Dilhuydy, J. M., Bonichon, F., Julien, J. P., Charpin, C., et al. (1997). Influence of pregnancy on the outcome of breast cancer: A case-control study. Societe Francaise de Senologie et de Pathologie Mammaire Study Group. International Journal of Cancer, 72(5), 720–727. https://doi.org/10.1002/(sici)1097-0215(19970904)72:5<720::aid-ijc3>3.0.co;2-u

  32. Muenst, S., Mechera, R., Däster, S., Piscuoglio, S., Ng, C. K. Y., Meier-Abt, F., et al. (2017). Pregnancy at early age is associated with a reduction of progesterone-responsive cells and epithelial Wnt signaling in human breast tissue. Oncotarget, 8(14), 22353–22360. https://doi.org/10.18632/oncotarget.16023

    Article  PubMed  PubMed Central  Google Scholar 

  33. Brouckaert, O., Rudolph, A., Laenen, A., Keeman, R., Bolla, M. K., Wang, Q., et al. (2017). Reproductive profiles and risk of breast cancer subtypes: A multi-center case-only study. Breast Cancer Research, 19(1), 119. https://doi.org/10.1186/s13058-017-0909-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen, B., Venet, D., Lambertini, M., Desmedt, C., Salgado, R., Horlings, H. M., et al. (2019). Imprint of parity and age at first pregnancy on the genomic landscape of subsequent breast cancer. Breast Cancer Research, 21(1), 25. https://doi.org/10.1186/s13058-019-1111-6

    Article  PubMed  PubMed Central  Google Scholar 

  35. Asztalos, S., Gann, P. H., Hayes, M. K., Nonn, L., Beam, C. A., Dai, Y., et al. (2010). Gene expression patterns in the human breast after pregnancy. Cancer Prevention Research, 3(3), 301–311. https://doi.org/10.1158/1940-6207.CAPR-09-0069

    Article  CAS  PubMed  Google Scholar 

  36. Meier-Abt, F., Milani, E., Roloff, T., Brinkhaus, H., Duss, S., Meyer, D. S., et al. (2013). Parity induces differentiation and reduces Wnt/Notch signaling ratio and proliferation potential of basal stem/progenitor cells isolated from mouse mammary epithelium. Breast Cancer Research, 15(2), R36. https://doi.org/10.1186/bcr3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Russo, J., Balogh, G. A., & Russo, I. H. (2008). Full-term pregnancy induces a specific genomic signature in the human breast. Cancer Epidemiology, Biomarkers & Prevention, 17(1), 51–66. https://doi.org/10.1158/1055-9965.EPI-07-0678

    Article  CAS  Google Scholar 

  38. Mauvais-Jarvis, P., Sitruk-Ware, R., & Kuttenn, F. (1982). Luteal phase defect and breast cancer genesis. Breast Cancer Research and Treatment, 2(2), 139–150. https://doi.org/10.1007/BF01806450

    Article  CAS  PubMed  Google Scholar 

  39. Atashgaran, V., Wrin, J., Barry, S. C., Dasari, P., & Ingman, W. V. (2016). Dissecting the biology of menstrual cycle-associated breast cancer risk. Frontier in Oncology, 6, 267. https://doi.org/10.3389/fonc.2016.00267

    Article  Google Scholar 

  40. Ziegler, R. G., Fuhrman, B. J., Moore, S. C., & Matthews, C. E. (2015). Epidemiologic studies of estrogen metabolism and breast cancer. Steroids, 99(Pt A), 67–75. https://doi.org/10.1016/j.steroids.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Apter, D., Reinilä, M., & Vihko, R. (1989). Some endocrine characteristics of early menarche, a risk factor for breast cancer, are preserved into adulthood. Int J Can, 44(5), 783–787. https://doi.org/10.1002/ijc.2910440506

    Article  CAS  Google Scholar 

  42. Russo, J., Tay, L. K., & Russo, I. H. (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Can Res and Treat, 2(1), 5–73. https://doi.org/10.1007/BF01805718

    Article  CAS  Google Scholar 

  43. Emaus, A., Espetvedt, S., Veierød, M. B., Ballard-Barbash, R., Furberg, A.-S., Ellison, P. T., et al. (2008). 17-beta-estradiol in relation to age at menarche and adult obesity in premenopausal women. Human Rep, 23(4), 919–927. https://doi.org/10.1093/humrep/dem432

    Article  CAS  Google Scholar 

  44. Emaus, A., Veierød, M. B., Furberg, A.-S., Espetvedt, S., Friedenreich, C., Ellison, P. T., et al. (2008). Physical activity, heart rate, metabolic profile, and estradiol in premenopausal women. Med and Sci in Sports and Exercise, 40(6), 1022–1030. https://doi.org/10.1249/MSS.0b013e318167411f

    Article  CAS  Google Scholar 

  45. Jasienska, G., Ziomkiewicz, A., Lipson, S. F., Thune, I., & Ellison, P. T. (2006). High ponderal index at birth predicts high estradiol levels in adult women. American Journal of Human Biology, 18(1), 133–140. https://doi.org/10.1002/ajhb.20462

    Article  PubMed  Google Scholar 

  46. Finstad, S. E., Emaus, A., Potischman, N., Barrett, E., Furberg, A.-S., Ellison, P. T., et al. (2009). Influence of birth weight and adult body composition on 17beta-estradiol levels in young women. Cancer Causes & Control, 20(2), 233–242. https://doi.org/10.1007/s10552-008-9238-2

    Article  Google Scholar 

  47. Furberg, A.-S., Jasienska, G., Bjurstam, N., Torjesen, P. A., Emaus, A., Lipson, S. F., … Thune, I. (2005). Metabolic and hormonal profiles: HDL cholesterol as a plausible biomarker of breast cancer risk. The Norwegian EBBA Study. Cancer Epidemiology, Biomarkers & Prevention, 14(1), 33–40.

  48. Gómez-Flores-Ramos, L., Castro-Sánchez, A., Peña-Curiel, A., & Mohar-Betancourt, A. (2017). Molecular biology in young women with breast cancer: From tumor gene expression to DNA mutations. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion, 69(4), 181–192. https://doi.org/10.24875/ric.17002225

    Article  CAS  PubMed  Google Scholar 

  49. Copson, E. R., Maishman, T. C., Tapper, W. J., Cutress, R. I., Greville-Heygate, S., Altman, D. G., et al. (2018). Germline BRCA mutation and outcome in young-onset breast cancer (POSH): A prospective cohort study. Lancet Onc, 19(2), 169–180. https://doi.org/10.1016/S1470-2045(17)30891-4

    Article  CAS  Google Scholar 

  50. Kemp, Z., Turnbull, A., Yost, S., Seal, S., Mahamdallie, S., Poyastro-Pearson, E., et al. (2019). Evaluation of cancer-based criteria for use in mainstream BRCA1 and BRCA2 genetic testing in patients with breast cancer. JAMA Network Open, 2(5), e194428. https://doi.org/10.1001/jamanetworkopen.2019.4428

    Article  PubMed  PubMed Central  Google Scholar 

  51. Terry, M. B., Michels, K. B., Brody, J. G., Byrne, C., Chen, S., Jerry, D. J., et al. (2019). Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Can Res, 21(1), 96. https://doi.org/10.1186/s13058-019-1168-2

    Article  CAS  Google Scholar 

  52. Carey, L. A., Perou, C. M., Livasy, C. A., Dressler, L. G., Cowan, D., Conway, K., et al. (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA, 295(21), 2492–2502. https://doi.org/10.1001/jama.295.21.2492

    Article  CAS  PubMed  Google Scholar 

  53. Tao, L., Gomez, S. L., Keegan, T. H. M., Kurian, A. W., & Clarke, C. A. (2015). Breast cancer mortality in African-American and non-Hispanic White women by molecular subtype and satage at diagnosis: A population-based study. Cancer Epi Bio & Pre, 24(7), 1039–1045. https://doi.org/10.1158/1055-9965.EPI-15-0243

    Article  CAS  Google Scholar 

  54. Lorona, N. C., Malone, K. E., & Li, C. I. (2021). Racial/ethnic disparities in risk of breast cancer mortality by molecular subtype and stage at diagnosis. Breast Can Res and Treat, 190(3), 549–558. https://doi.org/10.1007/s10549-021-06311-7

    Article  Google Scholar 

  55. Romieu, I. I., Amadou, A., & Chajes, V. (2017). The role of diet, physical activity, body fatness, and breastfeeding in breast cancer in young women: Epidemiological evidence. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion, 69(4), 193–203. https://doi.org/10.24875/ric.17002263

    Article  CAS  PubMed  Google Scholar 

  56. Mørch, L. S., Skovlund, C. W., Hannaford, P. C., Iversen, L., Fielding, S., & Lidegaard, Ø. (2017). Contemporary hormonal contraception and the risk of breast cancer. New England J Med, 377(23), 2228–2239. https://doi.org/10.1056/NEJMoa1700732

    Article  Google Scholar 

  57. Lonard, D. M., Kumar, R., & O’Malley, B. W. (2010). Minireview: The SRC family of coactivators: An entrée to understanding a subset of polygenic diseases? Molecular Endocrinology, 24, 279–285. https://doi.org/10.1210/me.2009-0276

    Article  CAS  PubMed  Google Scholar 

  58. Eswaran, J., Cyanam, D., Mudvari, P., Divijendra, S., Reddy, N., Pakala, S. B., et al. (2012). Transcriptomic landscape of breast cancers through mRNA sequencing. Science and Reports, 2, 264. https://doi.org/10.1038/srep00264

    Article  CAS  Google Scholar 

  59. Shi, M., O’Brien, K. M., & Weinberg, C. R. (2020). Interactions between a polygenic risk score and non-genetic risk factors in young-onset breast cancer. Science and Reports, 10, 3242. https://doi.org/10.1038/s41598-020-60032-3

    Article  CAS  Google Scholar 

  60. Yanes, T., Bettina Meiser, B., Kaur, R., Young, M.-A., Mitchell, P. B., Scheepers-Joynt, M., et al. (2021). Breast cancer polygenic risk scores: A 12-month prospective study of patient reported outcomes and risk management behavior. Genetics in Medicine, 23(12), 2316–2323. https://doi.org/10.1038/s41436-021-01288-6

    Article  PubMed  Google Scholar 

  61. Mars, N., Widén, E., Kerminen, S., Meretoja, T., Pirinen, M., Parolo, D. B., P., et al. (2020). The role of polygenic risk and susceptibility genes in breast cancer over the course of life. Nature Communications, 11(1), 6383. https://doi.org/10.1038/s41467-020-19966-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Torkamani, A., Wineinger, N. E., & Topol, E. J. (2018). The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics, 19, 581–590. https://doi.org/10.1038/s41576-018-0018-x

    Article  CAS  PubMed  Google Scholar 

  63. Olsen, M., Fischer, K., Bossuyt, P. M., & Goetghebeur, E. (2021). Evaluating the prognostic performance of a polygenic risk score for breast cancer risk stratification. BMC Cancer, 21(1), 1351. https://doi.org/10.1186/s12885-021-08937-8

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sandiford, O. A., Donnelly, R. J., El-Far, M. H., Burgmeyer, L. M., Sinha, G., Pamarthi, S. H., et al. (2021). Mesenchymal stem cell-secreted extracellular vesicles instruct stepwise dedifferentiation of breast cancer cells into dormancy at the bone marrow perivascular region. Cancer Research, 81(6), 1567–1582. https://doi.org/10.1158/0008-5472.CAN-20-2434

    Article  CAS  PubMed  Google Scholar 

  65. Bliss, S. A., Sinha, G., Sandiford, O. A., Williams, L. M., Engelberth, D. J., Guiro, K., et al. (2016). Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow. Cancer Research, 76(19), 5832–5844. https://doi.org/10.1158/0008-5472.CAN-16-1092

    Article  CAS  PubMed  Google Scholar 

  66. Moore, C. A., Ferrer, A. I., Alonso, S., Pamarthi, S. H., Sandiford, O. A., & Rameshwar, P. (2021). Exosomes in the healthy and malignant bone marrow microenvironment. Advances in Experimental Medicine and Biology, 1350, 67–89. https://doi.org/10.1007/978-3-030-83282-7_3

    Article  PubMed  Google Scholar 

  67. Hartkopf, A. D., Brucker, S. Y., Taran, F. A., Harbeck, N., von Au, A., Naume, B., et al. (2021). Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. European Journal of Cancer, 154, 128–137. https://doi.org/10.1016/j.ejca.2021.06.028

    Article  CAS  PubMed  Google Scholar 

  68. Nassar, F. J., Chamandi, G., Tfaily, M. A., Zgheib, N. K., & Nasr, R. (2020). Peripheral blood-based biopsy for breast cancer risk prediction and early detection. Front Med (Lausanne), 7(28), 2020. https://doi.org/10.3389/fmed.2020.00028.eCollection

    Article  Google Scholar 

  69. Jordan, K. R., Hall, J. K., Schedin, T., Borakove, M., Xian, J. J., Dzieciatkowska, M., et al. (2020). Extracellular vesicles from young women’s breast cancer patients drive increased invasion of non-malignant cells via the focal adhesion kinase pathway: A proteomic approach. Breast Cancer Research, 22(1), 128. https://doi.org/10.1186/s13058-020-01363-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., et al. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer, 7(1), 66. https://doi.org/10.1038/s41523-021-00269-x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Patel, S. A., Ramkissoon, S. H., Bryan, M., Pliner, L. F., Dontu, G., Patel, P. S., et al. (2012). Delineation of breast cancer cell hierarchy identifies the subset responsible for dormancy. Science and Reports, 2, 906. https://doi.org/10.1038/srep00906

    Article  CAS  Google Scholar 

  72. Greco, S. J., Ayer, S., Guiro, K., Sinha, G., Donnelly, R. J., El-Far, M. H., et al. (2021). Restoration of aged hematopoietic cells by their young counterparts through instructive microvesicles release. Aging (Albany NY), 13(21), 23981–24016. https://doi.org/10.18632/aging.203689

    Article  CAS  Google Scholar 

  73. Kashiwagi, S., Yashiro, M., Takashima, T., Aomatsu, N., Kawajiri, H., Ogawa, Y., et al. (2013). c-Kit expression as a prognostic molecular marker in patients with basal-like breast cancer. The British Journal of Surgery, 100(4), 490–496. https://doi.org/10.1002/bjs.9021

    Article  CAS  PubMed  Google Scholar 

  74. Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. https://doi.org/10.1038/nm.2000

    Article  CAS  PubMed  Google Scholar 

  75. Smart, C. E., Wronski, A., French, J. D., Edwards, S. L., Asselin-Labat, M.-L., Waddell, N., et al. (2011). Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene, 30(13), 1597–1607. https://doi.org/10.1038/onc.2010.538

    Article  CAS  PubMed  Google Scholar 

  76. McCredie, M. R. E., Dite, G. S., Southey, M. C., Venter, D. J., Giles, G. G., & Hopper, J. L. (2003). Risk factors for breast cancer in young women by oestrogen receptor and progesterone receptor status. British Journal of Cancer, 89(9), 1661–1663. https://doi.org/10.1038/sj.bjc.6601293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Joshi, P. A., Jackson, H. W., Beristain, A. G., Di Grappa, M. A., Mote, P. A., Clarke, C. L., et al. (2010). Progesterone induces adult mammary stem cell expansion. Nature, 465(7299), 803–807. https://doi.org/10.1038/nature09091

    Article  CAS  PubMed  Google Scholar 

  78. Gonzalez-Suarez, E., Jacob, A. P., Jones, J., Miller, R., Roudier-Meyer, M. P., Erwert, R., et al. (2010). RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature, 468(7320), 103–107. https://doi.org/10.1038/nature09495

    Article  CAS  PubMed  Google Scholar 

  79. Schramek, D., Leibbrandt, A., Sigl, V., Kenner, L., Pospisilik, J. A., Lee, H. J., … Penninger, J. M. (2010). Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature, 468(7320), 98–102https://doi.org/10.1038/nature09387

  80. Azim, H. A., Jr., Michiels, S., Bedard, P. L., Singhal, S. K., Criscitiello, C., Ignatiadis, M., et al. (2012). Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clinical Cancer Research, 18(5), 1341–1351. https://doi.org/10.1158/1078-0432.CCR-11-2599

    Article  CAS  PubMed  Google Scholar 

  81. Haynes, B. P., Viale, G., Galimberti, V., Rotmensz, N., Gibelli, B., Smith, I. E., & Dowsett, M. (2014). Differences in expression of proliferation-associated genes and RANKL across the menstrual cycle in estrogen receptor-positive primary breast cancer. Breast cancer Research and Treatment, 148(2), 327–335. https://doi.org/10.1007/s10549-014-3181-6

    Article  CAS  PubMed  Google Scholar 

  82. Azim, H. A., Jr., Peccatori, F. A., Brohée, S., Branstetter, D., Loi, S., Viale, G., et al. (2015). RANK-ligand (RANKL) expression in young breast cancer patients and during pregnancy. Breast Cancer Research, 17, 24. https://doi.org/10.1186/s13058-015-0538-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Van Poznak, C., Cross, S. S., Saggese, M., Hudis, C., Panageas, K. S., Norton, L., et al. (2006). Expression of osteoprotegerin (OPG), TNF related apoptosis inducing ligand (TRAIL), and receptor activator of nuclear factor kappaB ligand (RANKL) in human breast tumours. Journal of Clinical Pathology, 59(1), 56–63. https://doi.org/10.1136/jcp.2005.026534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sarink, D., Schock, H., Johnson, T., Overvad, K., Holm, H., Tjønneland, A., et al. (2017). Circulating RANKL and RANKL/OPG and breast cancer risk by ER and PR subtype: results from the EPIC cohort. Cancer Prevention Research (Philadelphia, Pa.), 10(9), 525–534. https://doi.org/10.1158/1940-6207.CAPR-17-0125

    Article  CAS  Google Scholar 

  85. Gabrielson, M., Azam, S., Hardell, E., Holm, M., Ubhayasekera, K. A., Eriksson, M., … Hall, P. (2020). Hormonal determinants of mammographic density and density change. Breast Cancer Research, 22(1), 95https://doi.org/10.1186/s13058-020-01332-4

  86. Toriola, A. T., Appleton, C. M., Zong, X., Luo, J., Weilbaecher, K., Tamimi, R. M., & Colditz, G. A. (2018). Circulating receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and mammographic density in premenopausal women. Cancer Prevention Research (Philadelphia, Pa.), 11(12), 789–796. https://doi.org/10.1158/1940-6207.CAPR-18-0199

    Article  CAS  Google Scholar 

  87. Toriola, A. T., Dang, H. X., Hagemann, I. S., Appleton, C. M., Colditz, G. A., Luo, J., & Maher, C. A. (2017). Increased breast tissue receptor activator of nuclear factor-κB ligand (RANKL) gene expression is associated with higher mammographic density in premenopausal women. Oncotarget, 8(43), 73787–73792. https://doi.org/10.18632/oncotarget.17909

    Article  PubMed  PubMed Central  Google Scholar 

  88. Olsson, H. L., & Olsson, M. L. (2020). The menstrual cycle and risk of breast cancer: A review. Frontiers in Oncology, 10, 21. https://doi.org/10.3389/fonc.2020.00021

    Article  PubMed  PubMed Central  Google Scholar 

  89. Duncan, W. C. (2021). The inadequate corpus luteum. Reproduction & fertility, 2(1), C1–C7. https://doi.org/10.1530/RAF-20-0044

    Article  Google Scholar 

  90. Brisken, C., Hess, K., & Jeitziner, R. (2015). Progesterone and overlooked endocrine pathways in breast cancer pathogenesis. Endocrinology, 156(10), 3442–3450. https://doi.org/10.1210/en.2015-1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wilson, C., Brown, H., & Holen, I. (2016). The endocrine influence on the bone microenvironment in early breast cancer. Endocrine Related Cancer, 23(12), R567–R576. https://doi.org/10.1530/ERC-16-0238

    Article  CAS  PubMed  Google Scholar 

  92. Pardo, I., Lillemoe, H. A., Blosser, R. J., Choi, M., Sauder, C. A. M., Doxey, D. K., & a;. (2014). Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Breast Cancer Research, 16(2), R26. https://doi.org/10.1186/bcr3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Savolainen-Peltonen, H., Vihma, V., Wang, F., Turpeinen, U., Hämäläinen, E., Haanpää, M., et al. (2018). Estrogen biosynthesis in breast adipose tissue during menstrual cycle in women with and without breast cancer. Gynecological Endocrinology, 34(12), 1039–1043. https://doi.org/10.1080/09513590.2018.1474868

    Article  CAS  PubMed  Google Scholar 

  94. Hetemäki, N., Mikkola, T. S., Tikkanen, M. J., Wang, F., Hämäläinen, E., Turpeinen, U., et al. (2021). Adipose tissue estrogen production and metabolism in premenopausal women. J of Steroid Bio and Mol Bio, 209, 105849. https://doi.org/10.1016/j.jsbmb.2021.105849

    Article  CAS  Google Scholar 

  95. Zhang, Y., Nadeau, M., Faucher, F., Lescelleur, O., Biron, S., Daris, M., et al. (2009). Progesterone metabolism in adipose cells. Mol and Cell End, 298(1–2), 76–83. https://doi.org/10.1016/j.mce.2008.09.034

    Article  CAS  Google Scholar 

  96. Kershaw, E. E., & Flier, J. S. (2004). Adipose tissue as an endocrine organ. J Cli Endo and Met, 89(6), 2548–2556. https://doi.org/10.1210/jc.2004-0395

    Article  CAS  Google Scholar 

  97. Wiebe, J. P., Muzia, D., Hu, J., Szwajcer, D., Hill, S. A., & Seachrist, J. L. (2000). The 4-pregnene and 5alpha-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Research, 60(4), 936–943.

    CAS  PubMed  Google Scholar 

  98. Lee, W., Wang, Z., Saffern, M., Jun, T., & Huang, K.-L. (2021). Genomic and molecular features distinguish young adult cancer from later-onset cancer. Cell Reports, 37(7), 110005. https://doi.org/10.1016/j.celrep.2021.110005

    Article  CAS  PubMed  Google Scholar 

  99. Callihan, E. B., Gao, D., Jindal, S., Lyons, T. R., Manthey, E., Edgerton, S., et al. (2013). Postpartum diagnosis demonstrates a high risk for metastasis and merits an expanded definition of pregnancy-associated breast cancer. Breast Can Res & Treat, 138(2), 549–559. https://doi.org/10.1007/s10549-013-2437-x

    Article  Google Scholar 

  100. Goddard, E. T., Bassale, S., Schedin, T., Jindal, S., Johnston, J., Cabral, E., et al. (2019). Association between postpartum breast cancer diagnosis and metastasis and the clinical features underlying risk. JAMA Network Open, 2(1), e186997. https://doi.org/10.1001/jamanetworkopen.2018.6997

    Article  PubMed  PubMed Central  Google Scholar 

  101. Amant, F., von Minckwitz, G., Han, S. N., Bontenbal, M., Ring, A. E., Giermek, J., et al. (2013). Prognosis of women with primary breast cancer diagnosed during pregnancy: Results from an international collaborative study. J Cli Onc, 31(20), 2532–2539. https://doi.org/10.1200/JCO.2012.45.6335

    Article  Google Scholar 

  102. Johansson, A. L. V., Andersson, T.M.-L., Hsieh, C.-C., Cnattingius, S., & Lambe, M. (2011). Increased mortality in women with breast cancer detected during pregnancy and different periods postpartum. Cancer Epidemiology, Biomarkers & Prevention, 20(9), 1865–1872. https://doi.org/10.1158/1055-9965.EPI-11-0515

    Article  Google Scholar 

  103. Hartman, E. K., & Eslick, G. D. (2016). The prognosis of women diagnosed with breast cancer before, during and after pregnancy: A meta-analysis. Breast Can Res and Treat, 160(2), 347–360. https://doi.org/10.1007/s10549-016-3989-3

    Article  CAS  Google Scholar 

  104. Lyons, T. R., O’Brien, J., Borges, V. F., Conklin, M. W., Keely, P. J., Eliceiri, K. W., … Schedin, P. (2011). Postpartum mammary gland involution drives progression of ductal carcinoma in situ through collagen and COX-2. Nature Med, 17(9), 1109–1115https://doi.org/10.1038/nm.2416

  105. McDaniel, S. M., Rumer, K. K., Biroc, S. L., Metz, R. P., Singh, M., Porter, W., & Schedin, P. (2006). Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Path, 168(2), 608–620. https://doi.org/10.2353/ajpath.2006.050677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinson, H. A., Jindal, S., Durand-Rougely, C., Borges, V. F., & Schedin, P. (2015). Wound healing-like immune program facilitates postpartum mammary gland involution and tumor progression. Int J Can, 136(8), 1803–1813. https://doi.org/10.1002/ijc.29181

    Article  CAS  Google Scholar 

  107. Watson, C. J., & Kreuzaler, P. A. (2011). Remodeling mechanisms of the mammary gland during involution. Int J Dev Bio, 55(7–9), 757–762. https://doi.org/10.1387/ijdb.113414cw

    Article  Google Scholar 

  108. Lindahl, G., Rzepecka, A., & Dabrosin, C. (2019). Increased extracellular osteopontin levels in normal human breast tissue at high risk of developing cancer and its association with inflammatory biomarkers in situ. Frontiers in Oncology, 9, 746. https://doi.org/10.3389/fonc.2019.00746

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ferguson, J. E., Schor, A. M., Howell, A., & Ferguson, M. W. (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell and Tissue Res, 268(1), 167–177. https://doi.org/10.1007/BF00338066

    Article  CAS  Google Scholar 

  110. Lu, P., Weaver, V. M., & Werb, Z. (2012). The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Bio, 196(4), 395–406. https://doi.org/10.1083/jcb.201102147

    Article  CAS  Google Scholar 

  111. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guo, Q., Minnier, J., Burchard, J., Chiotti, K., Spellman, P., & Schedin, P. (2017). Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight, 2(6), e89206. https://doi.org/10.1172/jci.insight.89206

    Article  PubMed  PubMed Central  Google Scholar 

  113. Körner, A., Bernard, A., Fitzgerald, J. C., Alarcon-Barrera, J. C., Kostidis, S., Kaussen, T., … Mirakaj, V. (2021). Sema7A is crucial for resolution of severe inflammation. Proceedings of the National Academy of Sciences of the United States of America, 118(9). https://doi.org/10.1073/pnas.2017527118

  114. Tarullo, S. E., Hill, R. C., Hansen, K. C., Behbod, F., Borges, V. F., Nelson, A. C., & Lyons, T. R. (2020). Postpartum breast cancer progression is driven by semaphorin 7a-mediated invasion and survival. Oncogene, 39(13), 2772–2785. https://doi.org/10.1038/s41388-020-1192-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Borges, V. F., Hu, J., Young, C., Maggard, J., Parris, H. J., Gao, D., & Lyons, T. R. (2020). Semaphorin 7a is a biomarker for recurrence in postpartum breast cancer. NPJ Breast Can. https://doi.org/10.1038/s41523-020-00198-1

    Article  Google Scholar 

  116. Crump, L. S., Wyatt, G. L., Rutherford, T. R., Richer, J. K., Porter, W. W., & Lyons, T. R. (2021). Hormonal regulation of semaphorin 7a in ER(+) breast cancer drives therapeutic resistance. Cancer Research, 81(1), 187–198. https://doi.org/10.1158/0008-5472.CAN-20-1601

    Article  CAS  PubMed  Google Scholar 

  117. Park, C., Yoon, K.-A., Kim, J., Park, I. H., Park, S. J., Kim, M. K., et al. (2019). Integrative molecular profiling identifies a novel cluster of estrogen receptor-positive breast cancer in very young women. Cancer Science, 110(5), 1760–1770. https://doi.org/10.1111/cas.13982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yau, C., Fedele, V., Roydasgupta, R., Fridlyand, J., Hubbard, A., Gray, J. W., et al. (2007). Aging impacts transcriptomes but not genomes of hormone-dependent breast cancers. Breast Cancer Research, 9(5), R59. https://doi.org/10.1186/bcr1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Anders, C. K., Hsu, D. S., Broadwater, G., Acharya, C. R., Foekens, J. A., Zhang, Y., et al. (2008). Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. Journal of Clinical Oncology, 26(20), 3324–3330. https://doi.org/10.1200/JCO.2007.14.2471

    Article  PubMed  Google Scholar 

  120. Azim, H. A., Jr., Nguyen, B., Brohée, S., Zoppoli, G., & Sotiriou, C. (2015). Genomic aberrations in young and elderly breast cancer patients. BMC Medicine, 13, 266. https://doi.org/10.1186/s12916-015-0504-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Waks, A. G., Kim, D., Jain, E., Snow, C., Kirkner, G. J., Rosenberg, S. M., et al. (2022). Somatic and germline genomic alterations in very young women with breast cancer. Clinical Can Res. https://doi.org/10.1158/1078-0432.CCR-21-2572

    Article  Google Scholar 

  122. Gu, X., Wang, B., Zhu, H., Zhou, Y., Horning, A. M., Huang, T.H.-M., et al. (2020). Age-associated genes in human mammary gland drive human breast cancer progression. Breast Can Res, 22(1), 64. https://doi.org/10.1186/s13058-020-01299-2

    Article  CAS  Google Scholar 

  123. Colak, D., Nofal, A., Albakheet, A., Nirmal, M., Jeprel, H., Eldali, A., et al. (2013). Age-specific gene expression signatures for breast tumors and cross-species conserved potential cancer progression markers in young women. PLoS ONE, 8(5), e63204. https://doi.org/10.1371/journal.pone.0063204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kan, Z., Ding, Y., Kim, J., Jung, H. H., Chung, W., Lal, S., et al. (2018). Multi-omics profiling of younger Asian breast cancers reveals distinctive molecular signatures. Nature Communications, 9(1), 1725. https://doi.org/10.1038/s41467-018-04129-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jindal, S., Pennock, N. D., Sun, D., Horton, W., Ozaki, M. K., Narasimhan, J., et al. (2021). Postpartum breast cancer has a distinct molecular profile that predicts poor outcomes. Nature Communications, 12(1), 6341. https://doi.org/10.1038/s41467-021-26505-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pirone, J. R., D’Arcy, M., Stewart, D. A., Hines, W. C., Johnson, M., Gould, M. N., et al. (2012). Age-associated gene expression in normal breast tissue mirrors qualitative age-at-incidence patterns for breast cancer. Cancer Epidemiology, Biomarkers & Prevention, 21(10), 1735–1744. https://doi.org/10.1158/1055-9965.EPI-12-0451

    Article  CAS  Google Scholar 

  127. Wang, J., Peng, C., Guranich, C., Heng, Y. J., Baker, G. M., Rubadue, C. A., et al. (2021). Early-life body adiposity and the breast tumor transcriptome. Journal of the National Cancer Institute, 113(6), 778–784. https://doi.org/10.1093/jnci/djaa169

    Article  CAS  PubMed  Google Scholar 

  128. Kang, T., Yau, C., Wong, C. K., Sanborn, J. Z., Newton, Y., Vaske, C., et al. (2020). A risk-associated active transcriptome phenotype expressed by histologically normal human breast tissue and linked to a pro-tumorigenic adipocyte population. Breast Cancer Research : BCR, 22(1), 81. https://doi.org/10.1186/s13058-020-01322-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Osako, T., Lee, H., Turashvili, G., Chiu, D., McKinney, S., Joosten, S. E. P., et al. (2020). Age-correlated protein and transcript expression in breast cancer and normal breast tissues is dominated by host endocrine effects. Nature Cancer, 1(5), 518–532. https://doi.org/10.1038/s43018-020-0060-4

    Article  CAS  PubMed  Google Scholar 

  130. Deng, G., Lu, Y., Zlotnikov, G., Thor, A. D., & Smith, H. S. (1996). Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science (New York, N.Y.), 274(5295), 2057–2059. https://doi.org/10.1126/science.274.5295.2057

    Article  CAS  Google Scholar 

  131. Evans, A., Trimboli, R. M., Athanasiou, A., Balleyguier, C., Baltzer, P. A., Bick, U., et al. (2018). Breast ultrasound: Recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights into Imaging, 9(4), 449–461. https://doi.org/10.1007/s13244-018-0636-z

    Article  PubMed  PubMed Central  Google Scholar 

  132. Denduluri, N., Somerfield, M. R., Chavez-MacGregor, M., Comander, A. H., Dayao, Z., Eisen, A., … Giordano, S. H. (2021). Selection of optimal adjuvant chemotherapy and targeted therapy for early breast cancer: ASCO guideline update. Journal of Clinical Oncology, 39(6), 685–693https://doi.org/10.1200/JCO.20.02510

  133. Chaudhary, L. N. (2021). Clinical and psychosocial challenges of breast cancer in adolescent and young adult women under the age of 40 years. JCO Oncology Practice, 17(6), 317–319. https://doi.org/10.1200/OP.21.00111

    Article  PubMed  PubMed Central  Google Scholar 

  134. Sparano, J. A., Gray, R. J., Makower, D. F., Pritchard, K. I., Albain, K. S., Hayes, D. F., et al. (2018). Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer. New England Journal of Medicine, 379(2), 111–121. https://doi.org/10.1056/NEJMoa1804710

    Article  CAS  PubMed  Google Scholar 

  135. Sparano, J. A., Gray, R. J., Ravdin, P. M., Makower, D. F., Pritchard, K. I., Albain, K. S., et al. (2019). Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer. New England journal of medicine, 380(25), 2395–2405. https://doi.org/10.1056/NEJMoa1904819

    Article  CAS  PubMed  Google Scholar 

  136. Piccart, M., van ’t Veer, L. J., Poncet, C., Lopes Cardozo, J. M. N., Delaloge, S., Pierga, J. Y., et al. (2021). 70-gene signature as an aid for treatment decisions in early breast cancer: Updated results of the phase 3 randomised MINDACT trial with an exploratory analysis by age. Lancet Oncology, 22(4), 476–488. https://doi.org/10.1016/S1470-2045(21)00007-3

    Article  CAS  PubMed  Google Scholar 

  137. Kalinsky, K., Barlow, W. E., Gralow, J. R., Meric-Bernstam, F., Albain, K. S., Hayes, D. F., et al. (2021). 21-gene assay to inform chemotherapy benefit in node-positive breast cancer. New England Journal of Medicine, 385(25), 2336–2347. https://doi.org/10.1056/NEJMoa2108873

    Article  CAS  PubMed  Google Scholar 

  138. Schmid, P., Cortes, J., Pusztai, L., McArthur, H., Kümmel, S., Bergh, J., et al. (2020). Pembrolizumab for early triple-negative breast cancer. New England Journal of Medicine, 382(9), 810–821. https://doi.org/10.1056/NEJMoa1910549

    Article  CAS  PubMed  Google Scholar 

  139. Hahnen, E., Lederer, B., Hauke, J., Loibl, S., Kröber, S., Schneeweiss, A., et al. (2017). Germline mutation status, pathological complete response, and disease-free survival in triple-negative breast cancer: Secondary analysis of the GeparSixto randomized clinical trial. JAMA Oncology, 3(10), 1378–1385. https://doi.org/10.1001/jamaoncol.2017.1007

    Article  PubMed  PubMed Central  Google Scholar 

  140. Sikov, W. M., Berry, D. A., Perou, C. M., Singh, B., Cirrincione, C. T., Tolaney, S. M., et al. (2015). Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603. Journal of Clinical Oncology, 33(1), 13–21. https://doi.org/10.1200/JCO.2014.57.0572

    Article  CAS  PubMed  Google Scholar 

  141. Event-free survival (EFS), overall survival (OS), and safety of adding veliparib (V) plus carboplatin (Cb) or carboplatin alone to neoadjuvant chem... | OncologyPRO. (n.d.). Retrieved February 11, 2022, from https://oncologypro.esmo.org/meeting-resources/esmo-congress/event-free-survival-efs-overall-survival-os-and-safety-of-adding-veliparib-v-plus-carboplatin-cb-or-carboplatin-alone-to-neoadjuvant-chem

  142. Piccart, M., Procter, M., Fumagalli, D., de Azambuja, E., Clark, E., Ewer, M. S., et al. (2021). Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer in the APHINITY trial: 6 years’ follow-up. Journal of Clinical Oncology, 39(13), 1448–1457. https://doi.org/10.1200/JCO.20.01204

    Article  CAS  PubMed  Google Scholar 

  143. von Minckwitz, G., Huang, C.-S., Mano, M. S., Loibl, S., Mamounas, E. P., Untch, M., et al. (2019). Trastuzumab emtansine for residual invasive HER2-positive breast cancer. New England Journal of Medicine, 380(7), 617–628. https://doi.org/10.1056/NEJMoa1814017

    Article  Google Scholar 

  144. Gulia, S., Kannan, S., Badwe, R., & Gupta, S. (2020). Evaluation of 1-year vs shorter durations of adjuvant trastuzumab among patients with early breast cancer: An individual participant data and trial-level meta-analysis. JAMA Network Open, 3(8), e2011777. https://doi.org/10.1001/jamanetworkopen.2020.11777

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cathcart-Rake, E. J., Ruddy, K. J., Bleyer, A., & Johnson, R. H. (2021). Breast cancer in adolescent and young adult women under the age of 40 years. JCO Oncology Practice, 17(6), 305–313. https://doi.org/10.1200/OP.20.00793

    Article  PubMed  Google Scholar 

  146. Lu, Y.-S., Wong, A., Kim, H.-J. (2021). Ovarian function suppression with luteinizing hormone-releasing hormone agonists for the treatment of hormone receptor-positive early breast cancer in premenopausal women. Front. Oncol., Article 700722. https://doi.org/10.3389/fonc.2021.700722

  147. Partridge, A. H. (2013). Cancer survivorship and the young breast cancer patient: Addressing the important issues. The Oncologist, 18(8), e19-20. https://doi.org/10.1634/theoncologist.2013-0300

    Article  PubMed  PubMed Central  Google Scholar 

  148. Robson, M. E., Bradbury, A. R., Arun, B., Domchek, S. M., Ford, J. M., Hampel, H. L., … Lindor, N. M. (2015). American Society of Clinical Oncology policy statement update: Genetic and genomic testing for cancer susceptibility. Journal of Clinical Oncology, 33(31), 3660–3667https://doi.org/10.1200/JCO.2015.63.0996

  149. Moore, H. C. F., Unger, J. M., Phillips, K.-A., Boyle, F., Hitre, E., Moseley, A., et al. (2019). Final analysis of the prevention of early menopause study (POEMS)/SWOG intergroup S0230. Journal of the National Cancer Institute, 111(2), 210–213. https://doi.org/10.1093/jnci/djy185

    Article  PubMed  Google Scholar 

  150. Lambertini, M., Boni, L., Michelotti, A., Gamucci, T., Scotto, T., Gori, S., et al. (2015). Ovarian suppression with triptorelin during adjuvant breast cancer chemotherapy and long-term ovarian function, pregnancies, and disease-free survival: A randomized clinical trial. JAMA, 314(24), 2632–2640. https://doi.org/10.1001/jama.2015.17291

    Article  CAS  PubMed  Google Scholar 

  151. Leonard, R. C. F., Adamson, D. J. A., Bertelli, G., Mansi, J., Yellowlees, A., Dunlop, J., et al. (2017). GnRH agonist for protection against ovarian toxicity during chemotherapy for early breast cancer: The Anglo Celtic Group OPTION trial. Annals of Oncology, 28(8), 1811–1816. https://doi.org/10.1093/annonc/mdx184

    Article  CAS  PubMed  Google Scholar 

  152. Lambertini, M., Blondeaux, E., Bruzzone, M., Perachino, M., Anderson, R. A., de Azambuja, E., et al. (2021). Pregnancy sfter breast cancer: A systematic review and meta-Analysis. Journal of Clinical Oncology, 39(29), 3293–3305. https://doi.org/10.1200/JCO.21.00535

    Article  PubMed  Google Scholar 

  153. Lambertini, M., Ameye, L., Hamy, A.-S., Zingarello, A., Poorvu, P. D., Carrasco, E., et al. (2020). Pregnancy after breast cancer in patients with germline BRCA mutations. Journal of Clinical Oncology, 38(26), 3012–3023. https://doi.org/10.1200/JCO.19.02399

    Article  PubMed  Google Scholar 

  154. Regan, M. M., Francis, P. A., Pagani, O., Fleming, G. F., Walley, B. A., Viale, G., et al. (2016). Absolute benefit of adjuvant endocrine therapies for premenopausal women with hormone receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer: TEXT and SOFT trials. Journal of Clinical Oncology, 2016(34), 2221–2231. https://doi.org/10.1200/JCO.2015.64.3171

    Article  Google Scholar 

  155. Francis, P. A., Pagani, O., Fleming, G. F., Walley, B. A., Colleoni, M., Láng, I., et al. (2018). Tailoring adjuvant endocrine therapy for premenopausal breast cancer. New England Journal of Medicine, 379(2), 122–137. https://doi.org/10.1056/NEJMoa1803164

    Article  CAS  PubMed  Google Scholar 

  156. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). (2022). Aromatase inhibitors versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian suppression: A patient-level meta-analysis of 7030 women from four randomised trials. The lancet Oncology. https://doi.org/10.1016/S1470-2045(21)00758-0

    Article  Google Scholar 

  157. Coleman, R., Finkelstein, D. M., Barrios, C., Martin, M., Iwata, H., et al. (2020). Adjuvant denosumab in early breast cancer (D-CARE): An international, multicentre, randomised, controlled, phase 3 trial. The lancet Oncology, 21, 60–72. https://doi.org/10.1016/S1470-2045(19)30687-4

    Article  CAS  PubMed  Google Scholar 

  158. Francesco Perrone, F., Laurentiis, M. D., De Placido, S., Orditura, M., Cinieri, S., Riccardi, F., et al. (2019). Adjuvant zoledronic acid and letrozole plus ovarian function suppression in premenopausal breast cancer. The HOBOE phase 3 randomised trial. European Journal of Cancer, 118, 178–186. https://doi.org/10.1016/j.ejca.2019.05.004

    Article  CAS  PubMed  Google Scholar 

  159. Arlindo, R., Ferreira, J. R., Miranda, A., Mayer, A., Passos-Coelho, J. L., Brito, M., et al. (2019). Effectiveness of adjuvant ovarian function suppression in premenopausal women with early breast cancer: A multicenter cohort study. Clinical Breast Cancer, 19(5), 654–667. https://doi.org/10.1016/j.clbc.2019.06.003

    Article  Google Scholar 

  160. Early Breast Cancer Trialists’ Collaborative G. (2015). Adjuvant bisphosphonate treatment in early breast cancer: Meta-analyses of individual patient data from randomised trials. Lancet, 386, 1353–1361. https://doi.org/10.1016/S0140-6736(15)60908-4

    Article  CAS  Google Scholar 

  161. Coleman, R., Hall, A., Albanell, J., Hanby, A., Bell, R., Cameron, D., et al. (2017). Effect of MAF amplification on treatment outcomes with adjuvant zoledronic acid in early breast cancer: A secondary analysis of the international, open-label, randomised, controlled, phase 3 AZURE (BIG 01/04) trial. The lancet Oncology, 18, 1543–1552. https://doi.org/10.1016/S1470-2045(17)30603-4

    Article  CAS  PubMed  Google Scholar 

  162. Vila, J., Gandini, S., & Gentilini, O. (2015). Overall survival according to type of surgery in young (≤40 years) early breast cancer patients: A systematic meta-analysis comparing breast-conserving surgery versus mastectomy. Breast (Edinburgh, Scotland), 24(3), 175–181. https://doi.org/10.1016/j.breast.2015.02.002

    Article  Google Scholar 

  163. Tolaney, S. M., Guo, H., Pernas, S., Barry, W. T., Dillon, D. A., Ritterhouse, L., et al. (2019). Seven-year follow-up analysis of adjuvant paclitaxel and trastuzumab trial for node-negative, human epidermal growth factor receptor 2-positive breast cancer. Journal of Clinical Oncology, 37(22), 1868–1875. https://doi.org/10.1200/JCO.19.00066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Im, S.-A., Lu, Y.-S., Bardia, A., Harbeck, N., Colleoni, M., Franke, F., et al. (2019). Overall survival with ribociclib plus endocrine therapy in breast cancer. New England Journal of Medicine, 381(4), 307–316. https://doi.org/10.1056/NEJMoa1903765

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to apologize to many colleagues for not discussing their work due to the paucity of space in the present article. We thank Mr. Kim Leitzel from Prof. Allan Lipton’s group for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Abreu, C., Toi, M. et al. Oncobiology and treatment of breast cancer in young women. Cancer Metastasis Rev 41, 749–770 (2022). https://doi.org/10.1007/s10555-022-10034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-022-10034-6

Keywords

Navigation