Skip to main content

Advertisement

Log in

Visualizing cancer extravasation: from mechanistic studies to drug development

  • Non-Thematic Review
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis is a multistep process that accounts for the majority of cancer-related death. By the end of metastasize dissemination, circulating tumor cells (CTC) need to extravasate the blood vessels at metastatic sites to form new colonization. Although cancer cell extravasation is a crucial step in cancer metastasis, it has not been successfully targeted by current anti-metastasis strategies due to the lack of a thorough understanding of the molecular mechanisms that regulate this process. This review focuses on recent progress in cancer extravasation visualization techniques, including the development of both in vitro and in vivo cancer extravasation models, that shed light on the underlying mechanisms. Specifically, multiple cancer extravasation stages, such as the adhesion to the endothelium and transendothelial migration, are successfully probed using these technologies. Moreover, the roles of different cell adhesive molecules, chemokines, and growth factors, as well as the mechanical factors in these stages are well illustrated. Deeper understandings of cancer extravasation mechanisms offer us new opportunities to escalate the discovery of anti-extravasation drugs and therapies and improve the prognosis of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. The Lancet, 369(9574), 1742–1757.

    CAS  Google Scholar 

  2. Sahai, E. (2007). Illuminating the metastatic process. Nature Reviews Cancer, 7(10), 737–749.

    CAS  PubMed  Google Scholar 

  3. Steeg, P. S. (2016). Targeting metastasis. Nature Reviews Cancer, 16(4), 201–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Reymond, N., d’Agua, B. B., & Ridley, A. J. (2013). Crossing the endothelial barrier during metastasis. Nature Reviews Cancer, 13(12), 858–870.

    CAS  PubMed  Google Scholar 

  5. Strilic, B., & Offermanns, S. (2017). Intravascular survival and extravasation of tumor cells. Cancer Cell, 32(3), 282–293.

    CAS  PubMed  Google Scholar 

  6. Chakrabarti, R., Hwang, J., Blanco, M. A., Wei, Y., Lukačišin, M., Romano, R.-A., et al. (2012). Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nature Cell Biology, 14(11), 1212–1222.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C. S., & Sahai, E. (2009). Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 11(11), 1287–1296.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Xue, C., Wyckoff, J., Liang, F., Sidani, M., Violini, S., Tsai, K.-L., Zhang, Z. Y., Sahai, E., Condeelis, J., & Segall, J. E. (2006). Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Research, 66(1), 192–197.

    CAS  PubMed  Google Scholar 

  9. Allen, T. A., Asad, D., Amu, E., Hensley, M. T., Cores, J., Vandergriff, A., et al. (2019). Circulating tumor cells exit circulation while maintaining multicellularity, augmenting metastatic potential. J Cell Sci, 132(17), jcs231563.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bittner, K. R., Jiménez, J. M., & Peyton, S. R. (2020). Vascularized biomaterials to study cancer metastasis. Advanced Healthcare Materials, 9(8), 1901459.

    CAS  Google Scholar 

  11. Paku, S., Laszlo, V., Dezso, K., Nagy, P., Hoda, M. A., Klepetko, W., Renyi-Vamos, F., Timar, J., Reynolds, A. R., & Dome, B. (2017). The evidence for and against different modes of tumour cell extravasation in the lung: diapedesis, capillary destruction, necroptosis, and endothelialization. The Journal of Pathology, 241(4), 441–447.

    PubMed  Google Scholar 

  12. Follain, G., Osmani, N., Azevedo, A. S., Allio, G., Mercier, L., Karreman, M. A., et al. (2018). Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells. Dev Cell, 45(1), 33–52. e12.

    CAS  PubMed  Google Scholar 

  13. Strell, C., & Entschladen, F. (2008). Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal, 6(1), 10.

    PubMed  PubMed Central  Google Scholar 

  14. Cheng, K., Shen, D., Xie, Y., Cingolani, E., Malliaras, K., & Marbán, E. (2012). Brief report: mechanism of extravasation of infused stem cells. Stem Cells, 30(12), 2835–2842.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Allen, T. A., Gracieux, D., Talib, M., Tokarz, D. A., Hensley, M. T., Cores, J., Vandergriff, A., Tang, J., de Andrade, J. B. M., Dinh, P. U., Yoder, J. A., & Cheng, K. (2017). Angiopellosis as an alternative mechanism of cell extravasation. Stem Cells, 35(1), 170–180.

    PubMed  Google Scholar 

  16. Chen, M. B., Whisler, J. A., Fröse, J., Yu, C., Shin, Y., & Kamm, R. D. (2017). On-chip human microvasculature assay for visualization and quantification of tumor cell extravasation dynamics. Nature Protocols, 12(5), 865–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan, C., Schoppe, O., Parra-Damas, A., Cai, R., Todorov, M. I., Gondi, G., et al. (2019). Deep learning reveals cancer metastasis and therapeutic antibody targeting in the entire body. Cell, 179(7), 1661–1676. e1619.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Peng, F., Setyawati, M. I., Tee, J. K., Ding, X., Wang, J., Nga, M. E., Ho, H. K., & Leong, D. T. (2019). Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nature Nanotechnology, 14(3), 279–286.

    CAS  PubMed  Google Scholar 

  19. Kramer, R. H., & Nicolson, G. L. (1979). Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proceedings of the National Academy of Sciences, 76(11), 5704–5708.

    CAS  Google Scholar 

  20. Nicolson, G. L. (1982). Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers. Journal of Histochemistry & Cytochemistry, 30(3), 214–220.

    CAS  Google Scholar 

  21. Kramer, R. H., & Nicolson, G. L. (1981). Invasion of vascular endothelial cell monolayers and underlying matrix by metastatic human cancer cells. In H.G. Schweiger (Eds.), International Cell Biology 1980–1981 (pp. 794–799). Berlin, Heidelberg: Springer.

  22. Kang, S.-A., Bajana, S., & Tanaka, T. (2016). In vitro flow adhesion assay for analyzing shear-resistant adhesion of metastatic cancer cells to endothelial cells. Bio-protocol, 6(4), e1731.

  23. Spencer, A., Spruell, C., Nandi, S., Wong, M., Creixell, M., & Baker, A. B. (2016). A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis. Lab on a Chip, 16(1), 142–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pouliot, N., Pearson, H. B., & Burrows, A. (2013). Investigating metastasis using in vitro platforms. In R. Jandial (Ed.), Madame Curie Bioscience Database Georgetown: Landes Bioscience.

  25. Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., & Searson, P. C. (2016). In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology, 4, 12.

    PubMed  PubMed Central  Google Scholar 

  26. Jeon, J., Zervantonakis, I., Chung, S., Kamm, R., & Charest, J. (2013). In vitro model of tumor cell extravasation. PLoS One, 8, e56910.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ma, Y.-H. V., Middleton, K., You, L., & Sun, Y. (2018). A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsystems & Nanoengineering, 4(1), 1–13.

    Google Scholar 

  28. Mierke, C. T. (2011). Cancer cells regulate biomechanical properties of human microvascular endothelial cells. Journal of Biological Chemistry, 286(46), 40025–40037.

    CAS  Google Scholar 

  29. Li, Y.-H., & Zhu, C. (1999). A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clinical & Experimental Metastasis, 17(5), 423–429.

    CAS  Google Scholar 

  30. Laferrière, J., Houle, F., Taher, M. M., Valerie, K., & Huot, J. (2001). Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. Journal of Biological Chemistry, 276(36), 33762–33772.

    Google Scholar 

  31. Lee, W., Choong, L., Jin, T., Mon, N., Chong, S., Liew, C., et al. (2017). TRPV4 plays a role in breast cancer cell migration via Ca 2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis, 6(5), e338–e338.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pignatelli, J., Goswami, S., Jones, J. G., Rohan, T. E., Pieri, E., Chen, X., et al. (2014). Invasive breast carcinoma cells from patients exhibit MenaINV-and macrophage-dependent transendothelial migration. Science Signaling, 7(353), ra112.

    PubMed  PubMed Central  Google Scholar 

  33. Orellana, R., Kato, S., Erices, R., Bravo, M. L., Gonzalez, P., Oliva, B., Cubillos, S., Valdivia, A., Ibañez, C., Brañes, J., Barriga, M. I., Bravo, E., Alonso, C., Bustamente, E., Castellon, E., Hidalgo, P., Trigo, C., Panes, O., Pereira, J., Mezzano, D., Cuello, M. A., & Owen, G. I. (2015). Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer, 15(1), 290.

    PubMed  PubMed Central  Google Scholar 

  34. Carter, J. C., & Church, F. C. (2012). Mature breast adipocytes promote breast cancer cell motility. Experimental and Molecular Pathology, 92(3), 312–317.

    CAS  PubMed  Google Scholar 

  35. Gassmann, P., Haier, J., Schlüter, K., Domikowsky, B., Wendel, C., Wiesner, U., et al. (2009). CXCR4 regulates the early extravasation of metastatic tumor cells in vivo. Neoplasia (New York, NY), 11(7), 651.

    CAS  Google Scholar 

  36. Cao, Y., Hoeppner, L. H., Bach, S., Guangqi, E., Guo, Y., Wang, E., et al. (2013). Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin. Cancer Research, 73(14), 4579–4590.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chrobak, K. M., Potter, D. R., & Tien, J. (2006). Formation of perfused, functional microvascular tubes in vitro. Microvascular Research, 71(3), 185–196.

    CAS  PubMed  Google Scholar 

  38. Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D.-H. T., Cohen, D. M., Toro, E., Chen, A. A., Galie, P. A., Yu, X., Chaturvedi, R., Bhatia, S. N., & Chen, C. S. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature Materials, 11(9), 768–774.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, X.-Y., Pei, Y., Xie, M., Jin, Z.-H., Xiao, Y.-S., Wang, Y., Zhang, L. N., Li, Y., & Huang, W. H. (2015). An artificial blood vessel implanted three-dimensional microsystem for modeling transvascular migration of tumor cells. Lab on a Chip, 15(4), 1178–1187.

    CAS  PubMed  Google Scholar 

  40. Zheng, Y., Chen, J., Craven, M., Choi, N. W., Totorica, S., Diaz-Santana, A., Kermani, P., Hempstead, B., Fischbach-Teschl, C., Lopez, J. A., & Stroock, A. D. (2012). In vitro microvessels for the study of angiogenesis and thrombosis. Proceedings of the National Academy of Sciences, 109(24), 9342–9347.

    CAS  Google Scholar 

  41. Moya, M. L., Hsu, Y.-H., Lee, A. P., Hughes, C. C., & George, S. C. (2013). In vitro perfused human capillary networks. Tissue Engineering Part C: Methods, 19(9), 730–737.

    CAS  Google Scholar 

  42. Shirure, V. S., Bi, Y., Curtis, M. B., Lezia, A., Goedegebuure, M. M., Goedegebuure, S. P., Aft, R., Fields, R. C., & George, S. C. (2018). Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab on a Chip, 18(23), 3687–3702.

    CAS  PubMed  Google Scholar 

  43. Chen, X., Aledia, A. S., Ghajar, C. M., Griffith, C. K., Putnam, A. J., Hughes, C. C., et al. (2009). Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Engineering Part A, 15(6), 1363–1371.

    CAS  PubMed  Google Scholar 

  44. Chen, M. B., Whisler, J. A., Jeon, J. S., & Kamm, R. D. (2013). Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integrative Biology, 5(10), 1262–1271.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Paek, J., Park, S. E., Lu, Q., Park, K.-T., Cho, M., Oh, J. M., Kwon, K. W., Yi, Y. S., Song, J. W., Edelstein, H. I., Ishibashi, J., Yang, W., Myerson, J. W., Kiseleva, R. Y., Aprelev, P., Hood, E. D., Stambolian, D., Seale, P., Muzykantov, V. R., & Huh, D. (2019). Microphysiological engineering of self-assembled and Perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano, 13(7), 7627–7643.

    CAS  PubMed  Google Scholar 

  46. Kim, Y., Williams, K. C., Gavin, C. T., Jardine, E., Chambers, A. F., & Leong, H. S. (2016). Quantification of cancer cell extravasation in vivo. Nature Protocols, 11(5), 937–948.

    CAS  PubMed  Google Scholar 

  47. Heyder, C., Gloria-Maercker, E., Entschladen, F., Hatzmann, W., Niggemann, B., Zänker, K., & Dittmar, T. (2002). Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. Journal of Cancer Research and Clinical Oncology, 128(10), 533–538.

    CAS  PubMed  Google Scholar 

  48. Strilic, B., Yang, L., Albarrán-Juárez, J., Wachsmuth, L., Han, K., Müller, U. C., Pasparakis, M., & Offermanns, S. (2016). Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature, 536(7615), 215–218.

    CAS  PubMed  Google Scholar 

  49. Shin, M. K., Kim, S. K., & Jung, H. (2011). Integration of intra-and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab on a Chip, 11(22), 3880–3887.

    CAS  PubMed  Google Scholar 

  50. Cui, X., Guo, W., Sun, Y., Sun, B., Hu, S., Sun, D., & Lam, R. H. W. (2017). A microfluidic device for isolation and characterization of transendothelial migrating cancer cells. Biomicrofluidics, 11(1), 014105.

    PubMed  PubMed Central  Google Scholar 

  51. Song, J. W., Cavnar, S. P., Walker, A. C., Luker, K. E., Gupta, M., Tung, Y.-C., Luker, G. D., & Takayama, S. (2009). Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One. https://doi.org/10.1371/journal.pone.0005756

  52. Xu, H., Li, Z., Yu, Y., Sizdahkhani, S., Ho, W. S., Yin, F., Wang, L., Zhu, G., Zhang, M., Jiang, L., Zhuang, Z., & Qin, J. (2016). A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Scientific Reports, 6, 36670.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, M. B., Hajal, C., Benjamin, D. C., Yu, C., Azizgolshani, H., Hynes, R. O., et al. (2018). Inflamed neutrophils sequestered at entrapped tumor cells via chemotactic confinement promote tumor cell extravasation. Proceedings of the National Academy of Sciences, 115(27), 7022–7027.

    CAS  Google Scholar 

  54. Jeon, J. S., Bersini, S., Gilardi, M., Dubini, G., Charest, J. L., Moretti, M., & Kamm, R. D. (2015). Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proceedings of the National Academy of Sciences, 112(1), 214–219.

    CAS  Google Scholar 

  55. Coughlin, M. F., & Kamm, R. D. (2020). The use of microfluidic platforms to probe the mechanism of cancer cell extravasation. Advanced Healthcare Materials, 9(8), 1901410.

    CAS  Google Scholar 

  56. Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A., & Lewis, J. A. (2016). Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 113(12), 3179–3184.

    CAS  Google Scholar 

  57. Hinton, T. J., Jallerat, Q., Palchesko, R. N., Park, J. H., Grodzicki, M. S., Shue, H.-J., Ramadan, M. H., Hudson, A. R., & Feinberg, A. W. (2015). Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances, 1(9), e1500758.

    PubMed  PubMed Central  Google Scholar 

  58. Entenberg, D., Voiculescu, S., Guo, P., Borriello, L., Wang, Y., Karagiannis, G. S., Jones, J., Baccay, F., Oktay, M., & Condeelis, J. (2018). A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nature Methods, 15(1), 73–80.

    CAS  PubMed  Google Scholar 

  59. Kienast, Y., Von Baumgarten, L., Fuhrmann, M., Klinkert, W. E., Goldbrunner, R., Herms, J., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16(1), 116.

    CAS  PubMed  Google Scholar 

  60. Condeelis, J., & Segall, J. E. (2003). Intravital imaging of cell movement in tumours. Nature Reviews Cancer, 3(12), 921–930.

    CAS  PubMed  Google Scholar 

  61. Cao, J., Zhu, B., Zheng, K., He, S., Meng, L., Song, J., et al. (2019). Recent progress in NIR-II contrast agent for biological imaging. Frontiers in Bioengineering and Biotechnology, 7. 487.

  62. Smith, A. M., Mancini, M. C., & Nie, S. (2009). Second window for in vivo imaging. Nature Nanotechnology, 4(11), 710–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Welsher, K., Sherlock, S. P., & Dai, H. (2011). Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proceedings of the National Academy of Sciences, 108(22), 8943–8948.

    CAS  Google Scholar 

  64. Welsher, K., Liu, Z., Sherlock, S. P., Robinson, J. T., Chen, Z., Daranciang, D., & Dai, H. (2009). A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 4(11), 773–780.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hong, G., Lee, J. C., Robinson, J. T., Raaz, U., Xie, L., Huang, N. F., Cooke, J. P., & Dai, H. (2012). Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nature Medicine, 18(12), 1841–1846.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hong, G., Robinson, J. T., Zhang, Y., Diao, S., Antaris, A. L., Wang, Q., & Dai, H. (2012). In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angewandte Chemie International Edition, 51(39), 9818–9821.

    CAS  PubMed  Google Scholar 

  67. Tian, R., Ma, H., Zhu, S., Lau, J., Ma, R., Liu, Y., Lin, L., Chandra, S., Wang, S., Zhu, X., Deng, H., Niu, G., Zhang, M., Antaris, A. L., Hettie, K. S., Yang, B., Liang, Y., & Chen, X. (2020). Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Advanced Materials, 32(11), 1907365.

    CAS  Google Scholar 

  68. Antaris, A. L., Chen, H., Cheng, K., Sun, Y., Hong, G., Qu, C., Diao, S., Deng, Z., Hu, X., Zhang, B., Zhang, X., Yaghi, O. K., Alamparambil, Z. R., Hong, X., Cheng, Z., & Dai, H. (2016). A small-molecule dye for NIR-II imaging. Nature Materials, 15(2), 235–242.

    CAS  PubMed  Google Scholar 

  69. Zhang, Y., Hong, G., Zhang, Y., Chen, G., Li, F., Dai, H., & Wang, Q. (2012). Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano, 6(5), 3695–3702.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y., Zhang, Y., Hong, G., He, W., Zhou, K., Yang, K., Li, F., Chen, G., Liu, Z., Dai, H., & Wang, Q. (2013). Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials, 34(14), 3639–3646.

    CAS  PubMed  Google Scholar 

  71. Flusberg, B. A., Cocker, E. D., Piyawattanametha, W., Jung, J. C., Cheung, E. L., & Schnitzer, M. J. (2005). Fiber-optic fluorescence imaging. Nature Methods, 2(12), 941–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ritsma, L., Steller, E. J., Beerling, E., Loomans, C. J., Zomer, A., Gerlach, C., et al. (2012). Intravital microscopy through an abdominal imaging window reveals a pre-micrometastasis stage during liver metastasis. Science Translational Medicine, 4(158), 158ra145.

    PubMed  Google Scholar 

  73. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.

    CAS  PubMed  Google Scholar 

  74. Yamauchi, K., Yang, M., Jiang, P., Xu, M., Yamamoto, N., Tsuchiya, H., Tomita, K., Moossa, A. R., Bouvet, M., & Hoffman, R. M. (2006). Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Research, 66(8), 4208–4214.

    CAS  PubMed  Google Scholar 

  75. Cai, R., Pan, C., Ghasemigharagoz, A., Todorov, M. I., Förstera, B., Zhao, S., Bhatia, H. S., Parra-Damas, A., Mrowka, L., Theodorou, D., Rempfler, M., Xavier, A. L. R., Kress, B. T., Benakis, C., Steinke, H., Liebscher, S., Bechmann, I., Liesz, A., Menze, B., Kerschensteiner, M., Nedergaard, M., & Ertürk, A. (2019). Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nature Neuroscience, 22(2), 317–327.

    CAS  PubMed  Google Scholar 

  76. Nowak-Sliwinska, P., Segura, T., & Iruela-Arispe, M. L. (2014). The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis, 17(4), 779–804.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Leong, H. S., Robertson, A. E., Stoletov, K., Leith, S. J., Chin, C. A., Chien, A. E., Hague, M. N., Ablack, A., Carmine-Simmen, K., McPherson, V. A., Postenka, C. O., Turley, E. A., Courtneidge, S. A., Chambers, A. F., & Lewis, J. D. (2014). Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Reports, 8(5), 1558–1570.

    CAS  PubMed  Google Scholar 

  78. Stoletov, K., Kato, H., Zardouzian, E., Kelber, J., Yang, J., Shattil, S., & Klemke, R. (2010). Visualizing extravasation dynamics of metastatic tumor cells. Journal of Cell Science, 123(13), 2332–2341.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kanada, M., Zhang, J., Yan, L., Sakurai, T., & Terakawa, S. (2014). Endothelial cell-initiated extravasation of cancer cells visualized in zebrafish. PeerJ, 2, e688.

    PubMed  PubMed Central  Google Scholar 

  80. Baeten, J. T., & de Jong, J. L. (2018). Genetic models of leukemia in zebrafish. Frontiers in Cell and Developmental Biology, 6, 115.

    PubMed  PubMed Central  Google Scholar 

  81. Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M., & Weinstein, B. M. (2003). Angiogenic network formation in the developing vertebrate trunk. Development, 130(21), 5281–5290.

    CAS  PubMed  Google Scholar 

  82. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3), 253–310.

    CAS  PubMed  Google Scholar 

  83. Sökeland, G., & Schumacher, U. (2019). The functional role of integrins during intra-and extravasation within the metastatic cascade. Molecular Cancer, 18(1), 12.

    PubMed  PubMed Central  Google Scholar 

  84. Barthel, S. R., Gavino, J. D., Descheny, L., & Dimitroff, C. J. (2007). Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets, 11(11), 1473–1491.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Auguste, P., Fallavollita, L., Wang, N., Burnier, J., Bikfalvi, A., & Brodt, P. (2007). The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. The American Journal of Pathology, 170(5), 1781–1792.

    PubMed  PubMed Central  Google Scholar 

  86. Kansas, G. S. (1996). Selectins and their ligands: current concepts and controversies. Blood, 88(9), 3259–3287.

  87. Burdick, M. M., Chu, J. T., Godar, S., & Sackstein, R. (2006). HCELL is the major E-and L-selectin ligand expressed on LS174T colon carcinoma cells. Journal of Biological Chemistry, 281(20), 13899–13905.

    CAS  Google Scholar 

  88. Dimitroff, C. J., Lechpammer, M., Long-Woodward, D., & Kutok, J. L. (2004). Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Research, 64(15), 5261–5269.

    CAS  PubMed  Google Scholar 

  89. Läubli, H., & Borsig, L. (2019). Selectins promote tumor metastasis. Seminars in Cancer Biology. Vol. 20. No. 3. Academic Press, 2010. https://www.sciencedirect.com/science/article/pii/S1044579X1000026X?casa_token=9LeVS2NAVuwAAAAA:OU_wIL6dQfFpiKRSo3RoICKbBd_MevziJlhk42tzujCFJb-2I7yyr8KD7KGymOc_PSIQhBGvpg.

  90. Dimitroff, C. J., Descheny, L., Trujillo, N., Kim, R., Nguyen, V., Huang, W., Pienta, K. J., Kutok, J. L., & Rubin, M. A. (2005). Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Research, 65(13), 5750–5760.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Shenoy, A. K., & Lu, J. (2016). Cancer cells remodel themselves and vasculature to overcome the endothelial barrier. Cancer Letters, 380(2), 534–544.

    CAS  PubMed  Google Scholar 

  92. Li, G., Satyamoorthy, K., & Herlyn, M. (2001). N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Research, 61(9), 3819–3825.

    CAS  PubMed  Google Scholar 

  93. Garofalo, A., Chirivi, R. G., Foglieni, C., Pigott, R., Mortarini, R., Martin-Padura, I., Anichini, A., Gearing, A. J., Sanchez-Madrid, F., & Dejana, E. (1995). Involvement of the very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastases. Cancer Research, 55(2), 414–419.

    CAS  PubMed  Google Scholar 

  94. Kiefel, H., Bondong, S., Hazin, J., Ridinger, J., Schirmer, U., Riedle, S., & Altevogt, P. (2012). L1CAM: a major driver for tumor cell invasion and motility. Cell Adhesion & Migration, 6(4), 374–384.

    Google Scholar 

  95. Strell, C., Lang, K., Niggemann, B., Zaenker, K., & Entschladen, F. (2007). Surface molecules regulating rolling and adhesion to endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cellular and Molecular Life Sciences, 64(24), 3306–3316.

    CAS  PubMed  Google Scholar 

  96. Desgrosellier, J. S., & Cheresh, D. A. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer, 10(1), 9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen, M. B., Lamar, J. M., Li, R., Hynes, R. O., & Kamm, R. D. (2016). Elucidation of the roles of tumor integrin β1 in the extravasation stage of the metastasis cascade. Cancer Research, 76(9), 2513–2524.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, F., Redick, S. D., Erickson, H. P., & Moy, V. T. (2003). Force measurements of the α5β1 integrin–fibronectin interaction. Biophysical Journal, 84(2), 1252–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kai, F., Drain, A. P., & Weaver, V. M. (2019). The extracellular matrix modulates the metastatic journey. Developmental Cell, 49(3), 332–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. CHEN, W. T., & WANG, J. Y. (1999). Specialized surface protrusions of invasive cells, invadopodia and lamellipodia, have differential MT1-MMP, MMP-2, and TIMP-2 localization. Annals of the New York Academy of Sciences, 878(1), 361–371.

    CAS  PubMed  Google Scholar 

  101. Paz, H., Pathak, N., & Yang, J. (2014). Invading one step at a time: the role of invadopodia in tumor metastasis. Oncogene, 33(33), 4193–4202.

    CAS  PubMed  Google Scholar 

  102. Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D. W., & Simpson, R. J. (2018). Extracellular vesicles in cancer—implications for future improvements in cancer care. Nature Reviews Clinical Oncology, 15(10), 617–638.

    CAS  PubMed  Google Scholar 

  103. De Palma, M., Biziato, D., & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457–474.

    PubMed  Google Scholar 

  104. García-Román, J., & Zentella-Dehesa, A. (2013). Vascular permeability changes involved in tumor metastasis. Cancer Letters, 335(2), 259–269.

    PubMed  Google Scholar 

  105. Jain, R. K., Martin, J. D., & Stylianopoulos, T. (2014). The role of mechanical forces in tumor growth and therapy. Annual Review of Biomedical Engineering, 16, 321–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Stroka, K. M., & Aranda-Espinoza, H. (2010). A biophysical view of the interplay between mechanical forces and signaling pathways during transendothelial cell migration. The FEBS Journal, 277(5), 1145–1158.

    CAS  PubMed  Google Scholar 

  107. Weaver, A. M. (2006). Invadopodia: Specialized cell structures for cancer invasion. Clinical & Experimental Metastasis, 23(2), 97–105.

    Google Scholar 

  108. Yamaguchi, H., & Condeelis, J. (2007). Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1773(5), 642–652.

    CAS  Google Scholar 

  109. Jacob, A., & Prekeris, R. (2015). The regulation of MMP targeting to invadopodia during cancer metastasis. Frontiers in Cell and Developmental Biology, 3, 4.

    PubMed  PubMed Central  Google Scholar 

  110. Stoletov, K., Montel, V., Lester, R. D., Gonias, S. L., & Klemke, R. (2007). High-resolution imaging of the dynamic tumor cell–vascular interface in transparent zebrafish. Proceedings of the National Academy of Sciences, 104(44), 17406–17411.

    CAS  Google Scholar 

  111. Wang, S., Li, E., Gao, Y., Wang, Y., Guo, Z., He, J., et al. (2013). Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One, 8(2), e56448.

  112. Liu, T., Li, C., Li, H., Zeng, S., Qin, J., & Lin, B. (2009). A microfluidic device for characterizing the invasion of cancer cells in 3-D matrix. Electrophoresis, 30(24), 4285–4291.

    CAS  PubMed  Google Scholar 

  113. Eckert, M. A., & Yang, J. (2011). Targeting invadopodia to block breast cancer metastasis. Oncotarget, 2(7), 562–568.

    PubMed  PubMed Central  Google Scholar 

  114. Kaczmarek, A., Vandenabeele, P., & Krysko, D. V. (2013). Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity, 38(2), 209–223.

    CAS  PubMed  Google Scholar 

  115. Kim, H., Chung, H., Kim, J., Choi, D. H., Shin, Y., Kang, Y. G., et al. (2019). Macrophages-triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Advanced Science, 6(11), 1900195.

    PubMed  PubMed Central  Google Scholar 

  116. Lee, T.-H., Avraham, H. K., Jiang, S., & Avraham, S. (2003). Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. Journal of Biological Chemistry, 278(7), 5277–5284.

    CAS  Google Scholar 

  117. Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Anderberg, C., Cunha, S. I., Zhai, Z., Cortez, E., Pardali, E., Johnson, J. R., Franco, M., Páez-Ribes, M., Cordiner, R., Fuxe, J., Johansson, B. R., Goumans, M. J., Casanovas, O., ten Dijke, P., Arthur, H. M., & Pietras, K. (2013). Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. Journal of Experimental Medicine, 210(3), 563–579.

    CAS  Google Scholar 

  119. Roussos, E. T., Condeelis, J. S., & Patsialou, A. (2011). Chemotaxis in cancer. Nature Reviews Cancer, 11(8), 573–587.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Padua, D., Zhang, X. H.-F., Wang, Q., Nadal, C., Gerald, W. L., Gomis, R. R., & Massagué, J. (2008). TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell, 133(1), 66–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Wolf, M. J., Hoos, A., Bauer, J., Boettcher, S., Knust, M., Weber, A., Simonavicius, N., Schneider, C., Lang, M., Stürzl, M., Croner, R. S., Konrad, A., Manz, M. G., Moch, H., Aguzzi, A., van Loo, G., Pasparakis, M., Prinz, M., Borsig, L., & Heikenwalder, M. (2012). Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell, 22(1), 91–105.

    CAS  PubMed  Google Scholar 

  122. Wendel, C., Hemping-Bovenkerk, A., Krasnyanska, J., Mees, S. T., Kochetkova, M., Stoeppeler, S., & Haier, J. (2012). CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS One, 7(1), e30046.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Karki, P., & Birukov, K. G. (2018). Lipid mediators in the regulation of endothelial barriers. Tissue Barriers, 6(1), e1385573.

    PubMed  Google Scholar 

  124. Freyssinet, J.-M., & Toti, F. (2010). Formation of procoagulant microparticles and properties. Thrombosis Research, 125, S46–S48.

    CAS  PubMed  Google Scholar 

  125. Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews Cancer, 11(2), 123–134.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Takuwa, Y. (2002). Subtype-specific differential regulation of Rho family G proteins and cell migration by the Edg family sphingosine-1-phosphate receptors. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1582(1–3), 112–120.

    CAS  Google Scholar 

  127. McVerry, B. J., & Garcia, J. G. (2005). In vitro and in vivo modulation of vascular barrier integrity by sphingosine 1-phosphate: mechanistic insights. Cellular Signalling, 17(2), 131–139.

    CAS  PubMed  Google Scholar 

  128. Yin, F., & Watsky, M. A. (2005). LPA and S1P increase corneal epithelial and endothelial cell transcellular resistance. Investigative Ophthalmology & Visual Science, 46(6), 1927–1933.

    CAS  Google Scholar 

  129. Sarker, M. H., Hu, D. E., & Fraser, P. A. (2010). Regulation of cerebromicrovascular permeability by lysophosphatidic acid. Microcirculation, 17(1), 39–46.

    CAS  PubMed  Google Scholar 

  130. Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O’Connor, S. T. F., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., & Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4), 501–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lin, Y., Zhang, C., Xiang, P., Shen, J., Sun, W., & Yu, H. (2020). Exosomes derived from HeLa cells break down vascular integrity by triggering endoplasmic reticulum stress in endothelial cells. Journal of Extracellular Vesicles, 9(1), 1722385.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kikuchi, S., Yoshioka, Y., Prieto-Vila, M., & Ochiya, T. (2019). Involvement of extracellular vesicles in vascular-related functions in cancer progression and metastasis. International Journal of Molecular Sciences, 20(10), 2584.

    CAS  PubMed Central  Google Scholar 

  133. Zeng, Z., Li, Y., Pan, Y., Lan, X., Song, F., Sun, J., et al. (2018). Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nature Communications, 9(1), 1–14.

    Google Scholar 

  134. Hsu, Y., Hung, J., Chang, W., Lin, Y., Pan, Y., Tsai, P., et al. (2017). Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. Oncogene, 36(34), 4929–4942.

    CAS  PubMed  Google Scholar 

  135. Wirtz, D., Konstantopoulos, K., & Searson, P. C. (2011). The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nature Reviews Cancer, 11(7), 512–522.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Thomas, S. N., Zhu, F., Schnaar, R. L., Alves, C. S., & Konstantopoulos, K. (2008). Carcinoembryonic antigen and CD44 variant isoforms cooperate to mediate colon carcinoma cell adhesion to E-and L-selectin in shear flow. Journal of Biological Chemistry, 283(23), 15647–15655.

    CAS  Google Scholar 

  137. Wojciak-Stothard, B., & Ridley, A. J. (2003). Shear stress–induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. The Journal of Cell Biology, 161(2), 429–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lapis, K., Paku, S., & Liotta, L. (1988). Endothelialization of embolized tumor cells during metastasis formation. Clinical & Experimental Metastasis, 6(1), 73–89.

    CAS  Google Scholar 

  139. Paku, S., Döme, B., Tóth, R., & Timár, J. (2000). Organ-specificity of the extravasation process: an ultrastructural study. Clinical & Experimental Metastasis, 18(6), 481–492.

    CAS  Google Scholar 

  140. Krüger-Genge, A., Blocki, A., Franke, R.-P., & Jung, F. (2019). Vascular endothelial cell biology: an update. International Journal of Molecular Sciences, 20(18), 4411.

    PubMed Central  Google Scholar 

  141. Félétou, M. (2011) The endothelium, part I: multiple functions of the endothelial cells--focus on endothelium-derived vasoactive mediators. In Colloquium series on integrated systems physiology: From molecule to function (vol. 3–4, pp. 1–306). San Rafael: Morgan & Claypool Life Sciences.

  142. Stamatovic, S. M., Keep, R. F., & Andjelkovic, A. V. (2008). Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Current Neuropharmacology, 6(3), 179–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lam, C. K., Yoo, T., Hiner, B., Liu, Z., & Grutzendler, J. (2010). Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature, 465(7297), 478–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Grutzendler, J., Murikinati, S., Hiner, B., Ji, L., Lam, C. K., Yoo, T., et al. (2014). Angiophagy prevents early embolus washout but recanalizes microvessels through embolus extravasation. Science Translational Medicine, 6(226), 226ra231.

    Google Scholar 

  145. Zhou, T., Zheng, Y., Sun, L., Badea, S. R., Jin, Y., Liu, Y., Rolfe, A. J., Sun, H., Wang, X., Cheng, Z., Huang, Z., Zhao, N., Sun, X., Li, J., Fan, J., Lee, C., Megraw, T. L., Wu, W., Wang, G., & Ren, Y. (2019). Microvascular endothelial cells engulf myelin debris and promote macrophage recruitment and fibrosis after neural injury. Nature Neuroscience, 22(3), 421–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Dini, L., Lentini, A., Diez, G. D., Rocha, M., Falasca, L., Serafino, L., et al. (1995). Phagocytosis of apoptotic bodies by liver endothelial cells. Journal of Cell Science, 108(3), 967–973.

    CAS  PubMed  Google Scholar 

  147. Steffan, A. M., Gendrault, J. L., McCuskey, R. S., McCuskey, P. A., & Kirn, A. (1986). Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology, 6(5), 830–836.

    CAS  PubMed  Google Scholar 

  148. Rengarajan, M., Hayer, A., & Theriot, J. A. (2016). Endothelial cells use a formin-dependent phagocytosis-like process to internalize the bacterium Listeria monocytogenes. PLoS Pathogens, 12(5), e1005603.

    PubMed  PubMed Central  Google Scholar 

  149. Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe’er, J., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. The American Journal of Pathology, 155(3), 739–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hendrix, M. J., Seftor, E. A., Hess, A. R., & Seftor, R. E. (2003). Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nature Reviews Cancer, 3(6), 411–421.

    CAS  PubMed  Google Scholar 

  151. Cima, I., Kong, S. L., Sengupta, D., Tan, I. B., Phyo, W. M., Lee, D., et al. (2016). Tumor-derived circulating endothelial cell clusters in colorectal cancer. Science Translational Medicine, 8(345), 345ra389.

    Google Scholar 

  152. Esposito, M., Magnani, J. L., & Kang, Y. (2014). Exploration of a potent E-selectin antagonist (GMI-1271) as a potential novel therapeutic for treating breast cancer metastasis to the bone and lung. AACR. https://cancerres.aacrjournals.org/content/74/19_Supplement/4039.short.

  153. Steele, M. M., Radhakrishnan, P., Magnani, J. L., & Hollingsworth, M. A. (2014). A small molecule glycomimetic antagonist of E-selectin (GMI-1271) prevents pancreatic tumor metastasis and offers a novel treatment for improved efficacy of chemotherapy. pp. 4503–4503. https://cancerres.aacrjournals.org/content/74/19_Supplement/4503.short.

  154. Bendas, G., & Borsig, L. (2012). Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International Journal of Cell Biology, 2012, 676731. https://doi.org/10.1155/2012/676

  155. Hostettler, N., Naggi, A., Torri, G., Ishai-Michaeli, R., Casu, B., Vlodavsky, I., & Borsig, L. (2007). P-selectin-and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. The FASEB Journal, 21(13), 3562–3572.

    CAS  PubMed  Google Scholar 

  156. Fritzsche, J., Simonis, D., & Bendas, G. (2008). Melanoma cell adhesion can be blocked by heparin in vitro: suggestion of VLA-4 as a novel target for antimetastatic approaches. Thrombosis and Haemostasis, 100(12), 1166–1175.

    CAS  PubMed  Google Scholar 

  157. Zhang, C., Liu, Y., Gao, Y., Shen, J., Zheng, S., Wei, M., & Zeng, X. L. (2009). Modified heparins inhibit integrin αIIbβ3 mediated adhesion of melanoma cells to platelets in vitro and in vivo. International Journal of Cancer, 125(9), 2058–2065.

    CAS  PubMed  Google Scholar 

  158. Kakkar, A., & Macbeth, F. (2010). Antithrombotic therapy and survival in patients with malignant disease. British Journal of Cancer, 102(1), S24–S29.

    PubMed  PubMed Central  Google Scholar 

  159. Huang, H., Bhat, A., Woodnutt, G., & Lappe, R. (2010). Targeting the ANGPT–TIE2 pathway in malignancy. Nature Reviews Cancer, 10(8), 575–585.

    CAS  PubMed  Google Scholar 

  160. Biel, N. M., & Siemann, D. W. (2016). Targeting the Angiopoietin-2/Tie-2 axis in conjunction with VEGF signal interference. Cancer Letters, 380(2), 525–533.

    CAS  PubMed  Google Scholar 

  161. Wu, F. T., Lee, C. R., Bogdanovic, E., Prodeus, A., Gariépy, J., & Kerbel, R. S. (2015). Vasculotide reduces endothelial permeability and tumor cell extravasation in the absence of binding to or agonistic activation of Tie2. EMBO Molecular Medicine, 7(6), 770–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Zheng, N., Chen, J., Liu, W., Liu, J., Li, T., Chen, H., Wang, J., & Jia, L. (2017). Mifepristone inhibits ovarian cancer metastasis by intervening in SDF-1/CXCR4 chemokine axis. Oncotarget, 8(35), 59123–59135.

    PubMed  PubMed Central  Google Scholar 

  163. Uchida, D., Kuribayashi, N., Kinouchi, M., Sawatani, Y., Shimura, M., Mori, T., et al. (2018). Effect of a novel orally bioavailable CXCR4 inhibitor, AMD070, on the metastasis of oral cancer cells. Oncology Reports, 40(1), 303–308.

    CAS  PubMed  Google Scholar 

  164. Schlesinger, M. (2018). Role of platelets and platelet receptors in cancer metastasis. Journal of Hematology & Oncology, 11(1), 1–15.

    Google Scholar 

  165. Elaskalani, O., Berndt, M. C., Falasca, M., & Metharom, P. (2017). Targeting platelets for the treatment of cancer. Cancers, 9(7), 94.

    PubMed Central  Google Scholar 

  166. Rothwell, P. M., Wilson, M., Price, J. F., Belch, J. F., Meade, T. W., & Mehta, Z. (2012). Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet, 379(9826), 1591–1601.

    CAS  Google Scholar 

  167. Lieu, C. H., Tan, A.-C., Leong, S., Diamond, J. R., & Eckhardt, S. G. (2013). From bench to bedside: lessons learned in translating preclinical studies in cancer drug development. Journal of the National Cancer Institute, 105(19), 1441–1456.

    PubMed  PubMed Central  Google Scholar 

  168. Gould, S. E., Junttila, M. R., & de Sauvage, F. J. (2015). Translational value of mouse models in oncology drug development. Nature Medicine, 21(5), 431–439.

    CAS  PubMed  Google Scholar 

  169. Ozsvári, B., Lamb, R., & Lisanti, M. P. (2016). Repurposing of FDA-approved drugs against cancer–focus on metastasis. Aging (Albany NY), 8(4), 567–568.

    Google Scholar 

  170. Klangjorhor, J., Chaiyawat, P., Teeyakasem, P., Sirikaew, N., Phanphaisarn, A., Settakorn, J., Lirdprapamongkol, K., Yama, S., Svasti, J., & Pruksakorn, D. (2020). Mycophenolic acid is a drug with the potential to be repurposed for suppressing tumor growth and metastasis in osteosarcoma treatment. International Journal of Cancer, 146(12), 3397–3409.

    CAS  PubMed  Google Scholar 

  171. Hachey, S. J., & Hughes, C. C. (2018). Applications of tumor chip technology. Lab on a Chip, 18(19), 2893–2912.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (HL137093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Cheng, K. Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Rev 40, 71–88 (2021). https://doi.org/10.1007/s10555-020-09942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09942-2

Keywords

Navigation