Skip to main content

Advertisement

Log in

MicroRNA dysregulation interplay with childhood abdominal tumors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Yates, L. A. A., Norbury, C. J. J., & Gilbert, R. J. C. J. C. (2013). The long and short of microRNA. Cell, 153(3), 516–519. https://doi.org/10.1016/j.cell.2013.04.003

    CAS  PubMed  Google Scholar 

  2. Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis, 15(8). https://doi.org/10.1038/nrm3838

    CAS  PubMed  Google Scholar 

  3. Eulalio, A., Huntzinger, E., & Izaurralde, E. (2008). Getting to the root of miRNA-mediated gene silencing. Cell, 132(1), 9–14. https://doi.org/10.1016/j.cell.2007.12.024

    CAS  PubMed  Google Scholar 

  4. Friedman, R. C., Farh, K. K.-H., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105. https://doi.org/10.1101/gr.082701.108

    PubMed  Google Scholar 

  5. Wu, J., Bao, J., Kim, M., Yuan, S., Tang, C., Zheng, H., … Yan, W. (2014). Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis, 111(28). https://doi.org/10.1073/pnas.1407777111

    CAS  Google Scholar 

  6. Chen, C.-Z., Schaffert, S., Fragoso, R., & Loh, C. (2013). Regulation of immune responses and tolerance: the microRNA perspective, 253(1). https://doi.org/10.1111/imr.12060

    PubMed  PubMed Central  Google Scholar 

  7. Papaioannou, G., Mirzamohammadi, F., & Kobayashi, T. (2014). MicroRNAs involved in bone formation, 71(24). https://doi.org/10.1007/s00018-014-1700-6

    CAS  PubMed  Google Scholar 

  8. Follert, P., Cremer, H., & Béclin, C. (2014). MicroRNAs in brain development and function: a matter of flexibility and stability, 7, 5. https://doi.org/10.3389/fnmol.2014.00005

  9. Hodgkinson, C. P., Kang, M. H., Dal-Pra, S., Mirotsou, M., & Dzau, V. J. (2015). MicroRNAs and cardiac regeneration, 116(10). https://doi.org/10.1161/CIRCRESAHA.116.304377

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lujambio, A., & Lowe, S. W. (2012). The microcosmos of cancer. Nature, 482(7385). https://doi.org/10.1038/nature10888

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allen-Rhoades, W., Whittle, S. B., & Rainusso, N. (2018). Pediatric solid tumors of infancy: an overview. Pediatrics in Review, 39(2), 57–67. https://doi.org/10.1542/PIR.2017-0057

    PubMed  Google Scholar 

  12. Amodeo, I., Cavallaro, G., Raffaeli, G., Colombo, L., Fumagalli, M., Cavalli, R., … Mosca, F. (2017). Abdominal cystic lymphangioma in a term newborn: a case report and update of new treatments. Medicine, 96(8), e5984. https://doi.org/10.1097/MD.0000000000005984

    PubMed  PubMed Central  Google Scholar 

  13. Chiorean, L. (2015). Benign liver tumors in pediatric patients - review with emphasis on imaging features. World Journal of Gastroenterology, 21(28), 8541. https://doi.org/10.3748/wjg.v21.i28.8541

    PubMed  PubMed Central  Google Scholar 

  14. Debnath, J., Pandit, A., Roy, S., & Sahoo, S. (2013). Congenital giant hydronephrosis: a rare cause for upper abdominal mass in the newborn. Journal of Clinical Neonatology, 2(1), 33. https://doi.org/10.4103/2249-4847.109246

    PubMed  PubMed Central  Google Scholar 

  15. Brodeur, A. E., & Brodeur, G. M. (1991). Abdominal masses in children: neuroblastoma, Wilms tumor, and other considerations. Pediatrics in review, 12(7), 196–207. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1846958

  16. Kwok, G. T., Zhao, J. T., Weiss, J., Mugridge, N., Brahmbhatt, H., MacDiarmid, J. A., … Sidhu, S. B. (2017). Translational applications of microRNAs in cancer, and therapeutic implications. Non-coding RNA Research, 2(3–4), 143–150. https://doi.org/10.1016/j.ncrna.2017.12.002

    PubMed  PubMed Central  Google Scholar 

  17. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., … Zhang, C.-Y. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, 18(10), 997–1006. https://doi.org/10.1038/cr.2008.282

    CAS  PubMed  Google Scholar 

  18. Mraz, M., Malinova, K., Mayer, J., & Pospisilova, S. (2009). MicroRNA isolation and stability in stored RNA samples, 390(1), 1–4. https://doi.org/10.1016/j.bbrc.2009.09.061

    CAS  PubMed  Google Scholar 

  19. Lu, M., Zhang, Q., Deng, M., Miao, J., Guo, Y., Gao, W., & Cui, Q. (2008). An analysis of human microRNA and disease associations. PLoS ONE, 3(10), e3420. https://doi.org/10.1371/journal.pone.0003420

    PubMed  PubMed Central  Google Scholar 

  20. Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., … Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers, 101(9), 2999–3004. https://doi.org/10.1073/pnas.0307323101

    CAS  Google Scholar 

  21. Chen, C.-Z. (2005). MicroRNAs as oncogenes and tumor suppressors. New England Journal of Medicine, 353(17), 1768–1771. https://doi.org/10.1056/NEJMp058190

    CAS  Google Scholar 

  22. Wang, L. Q., & Chim, C. S. (2015). DNA methylation of tumor-suppressor miRNA genes in chronic lymphocytic leukemia. Epigenomics, 7(3), 461–473. https://doi.org/10.2217/epi.15.6

    CAS  PubMed  Google Scholar 

  23. Kian, R., Moradi, S., & Ghorbian, S. (2018). Role of components of microRNA machinery in carcinogenesis. Experimental oncology, 40(1), 2–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/29600985

  24. Wu, M., Sabbaghian, N., Xu, B., Addidou-Kalucki, S., Bernard, C., Zou, D., … Foulkes, W. (2013). Biallelic DICER1mutations occur in Wilms tumours. The Journal of Pathology, 230(2), 154–164. https://doi.org/10.1002/path.4196

    CAS  PubMed  Google Scholar 

  25. Foulkes, W. D., Priest, J. R., & Duchaine, T. F. (2014). DICER1: mutations, microRNAs and mechanisms, 14(10). https://doi.org/10.1038/nrc3802

    CAS  PubMed  Google Scholar 

  26. Solarski, M., Rotondo, F., Foulkes, W. D., Priest, J. R., Syro, L. V, Butz, H., … Kovacs, K. (2018). DICER1 gene mutations in endocrine tumors. Endocrine-Related Cancer, 25(3), R197–R208. https://doi.org/10.1530/ERC-17-0509

    CAS  PubMed  Google Scholar 

  27. Mathew, P., Valentine, M. B., Bowman, L. C., Rowe, S. T., Nash, M. B., Valentine, V. A., … Look, A. T. (2001). Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: a pediatric oncology group study. Neoplasia (New York, N.Y.), 3(2), 105–9. https://doi.org/10.1038/sj/neo/7900146

  28. Brodeur, G. M. (2003). Neuroblastoma: biological insights into a clinical enigma, 3(3). https://doi.org/10.1038/nrc1014

    CAS  PubMed  Google Scholar 

  29. Cole, K. A., Attiyeh, E. F., Mosse, Y. P., Laquaglia, M. J., Diskin, S. J., Brodeur, G. M., & Maris, J. M. (2008). A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Molecular cancer research: MCR, 6(5), 735–42. https://doi.org/10.1158/1541-7786.MCR-07-2102

    CAS  PubMed  Google Scholar 

  30. Welch, C., Chen, Y., & Stallings, R. L. (2007). MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene, 26(34). https://doi.org/10.1038/sj.onc.1210293

    CAS  PubMed  Google Scholar 

  31. Wei, J. S., Song, Y. K., Durinck, S., Chen, Q.-R., Cheuk, A. T. C., Tsang, P., … Khan, J. (2008). The MYCN oncogene is a direct target of miR-34a. Oncogene, 27(39). https://doi.org/10.1038/onc.2008.154

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buechner, J., Tømte, E., Haug, B. H., Henriksen, J. R., Løkke, C., Flægstad, T., & Einvik, C. (2011). Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. British Journal of Cancer, 105(2), 296–303. https://doi.org/10.1038/bjc.2011.220

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, L., Che, X.-J., Wang, N., Li, J., & Zhu, M.-H. (2014). Regulatory network analysis of microRNAs and genes in neuroblastoma. Asian Pacific journal of cancer prevention: APJCP, 15(18), 7645–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25292042

  34. Tivnan, A., Tracey, L., Buckley, P. G., Alcock, L. C., Davidoff, A. M., & Stallings, R. L. (2011). MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma, 11(1), 33. https://doi.org/10.1186/1471-2407-11-33

  35. De Antonellis, P., Carotenuto, M., Vandenbussche, J., De Vita, G., Ferrucci, V., Medaglia, C., … Zollo, M. (2014). Early targets of miR-34a in neuroblastoma, 13(8). https://doi.org/10.1074/mcp.M113.035808

    CAS  Google Scholar 

  36. Cheng, X., Xu, Q., Zhang, Y., Shen, M., Zhang, S., Mao, F., … Zhang, Q. (2019). miR-34a inhibits progression of neuroblastoma by targeting autophagy-related gene 5. European Journal of Pharmacology, 53–63. https://doi.org/10.1016/j.ejphar.2019.01.071

    CAS  PubMed  Google Scholar 

  37. He, X.-Y., Tan, Z.-L., Mou, Q., Liu, F.-J., Liu, S., Yu, C., … Zou, L. (2017). microRNA-221 enhances MYCN via targeting Nemo-like kinase and functions as an oncogene related to poor prognosis in neuroblastoma, 23(11), 2905–2918. https://doi.org/10.1158/1078-0432.CCR-16-1591

    PubMed  Google Scholar 

  38. Teitz, T., Inoue, M., Valentine, M. B., Zhu, K., Rehg, J. E., Zhao, W., … Lahti, J. M. (2013). Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis. Cancer Research, 73(13), 4086–4097. https://doi.org/10.1158/0008-5472.CAN-12-2681

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xin, C., Buhe, B., Hongting, L., Chuanmin, Y., Xiwei, H., Hong, Z., … Renjie, W. (2013). MicroRNA-15a promotes neuroblastoma migration by targeting reversion-inducing cysteine-rich protein with Kazal motifs (RECK) and regulating matrix metalloproteinase-9 expression, 280(3). https://doi.org/10.1111/febs.12074

  40. Zhang, H., Qi, M., Li, S., Qi, T., Mei, H., Huang, K., … Tong, Q. (2012). microRNA-9 targets matrix metalloproteinase 14 to inhibit invasion, metastasis, and angiogenesis of neuroblastoma cells. Molecular cancer therapeutics, 11(7), 1454–66. https://doi.org/10.1158/1535-7163.MCT-12-0001

    PubMed  Google Scholar 

  41. Xiang, X., Mei, H., Qu, H., Zhao, X., Li, D., Song, H., … Tong, Q. (2015). miRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1852(9), 1743–1754. Retrieved from https://www.sciencedirect.com/science/article/pii/S0925443915001660

    CAS  Google Scholar 

  42. Mestdagh, P., Boström, A.-K., Impens, F., Fredlund, E., Van Peer, G., De Antonellis, P., … Vandesompele, J. (2010). The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Molecular Cell, 40(5), 762–773. https://doi.org/10.1016/j.molcel.2010.11.038

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fontana, L., Fiori, M. E., Albini, S., Cifaldi, L., Giovinazzi, S., Forloni, M., … Fruci, D. (2008). Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM, 3(5), e2236. https://doi.org/10.1371/journal.pone.0002236

    PubMed  PubMed Central  Google Scholar 

  44. Schulte, J. H., Marschall, T., Martin, M., Rosenstiel, P., Mestdagh, P., Schlierf, S., … Schramm, A. (2010). Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Research, 38(17), 5919–5928. https://doi.org/10.1093/nar/gkq342

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bray, I., Bryan, K., Prenter, S., Buckley, P. G., Foley, N. H., Murphy, D. M., … Stallings, R. L. (2009). Widespread dysregulation of miRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS ONE, 4(11), e7850. https://doi.org/10.1371/journal.pone.0007850

    PubMed  PubMed Central  Google Scholar 

  46. Ribeiro, D., Klarqvist, M. D. R., Westermark, U. K., Oliynyk, G., Dzieran, J., Kock, A., … Arsenian Henriksson, M. (2016). Regulation of nuclear hormone receptors by MYCN-driven miRNAs impacts neural differentiation and survival in neuroblastoma patients. Cell Reports, 16(4), 979–993. https://doi.org/10.1016/j.celrep.2016.06.052

    CAS  PubMed  Google Scholar 

  47. De Brouwer, S., Mestdagh, P., Lambertz, I., Pattyn, F., De Paepe, A., Westermann, F., Speleman, F. (2012). Dickkopf-3 is regulated by the MYCN-induced miR-17-92 cluster in neuroblastoma, 130(11). https://doi.org/10.1002/ijc.26295

    PubMed  Google Scholar 

  48. Haug, B. H., Henriksen, J. R., Buechner, J., Geerts, D., Tømte, E., Kogner, P., … Einvik, C. (2011). MYCN-regulated miRNA-92 inhibits secretion of the tumor suppressor DICKKOPF-3 (DKK3) in neuroblastoma. Carcinogenesis, 32(7), 1005–1012. https://doi.org/10.1093/carcin/bgr073

    CAS  PubMed  Google Scholar 

  49. Lovén, J., Zinin, N., Wahlström, T., Müller, I., Brodin, P., Fredlund, E., … Henriksson, M. (2010). MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 107(4), 1553–8. https://doi.org/10.1073/pnas.0913517107

    CAS  Google Scholar 

  50. Bienertova-Vasku, J., Mazanek, P., Hezova, R., Curdova, A., Nekvindova, J., Kren, L., Slaby, O. (2013). Extension of microRNA expression pattern associated with high-risk neuroblastoma. Tumor Biology, 34(4), 2315–2319. https://doi.org/10.1007/s13277-013-0777-0

    CAS  PubMed  Google Scholar 

  51. Naraparaju, K., Kolla, V., Zhuang, T., Higashi, M., Iyer, R., Kolla, S., … Brodeur, G. M. (2016). Role of microRNAs in epigenetic silencing of the CHD5 tumor suppressor gene in neuroblastomas. Oncotarget, 7(13), 15977–85. https://doi.org/10.18632/oncotarget.7434

  52. Zhou, Y., & Sheng, B. (2016). Association of microRNA 21 with biological features and prognosis of neuroblastoma. Cancer control: journal of the Moffitt Cancer Center, 23(1), 78–84. https://doi.org/10.1177/107327481602300113

    PubMed  Google Scholar 

  53. Chen, Y., Tsai, Y.-H., Fang, Y., & Tseng, S.-H. (2012). Micro-RNA-21 regulates the sensitivity to cisplatin in human neuroblastoma cells, 47(10). https://doi.org/10.1016/j.jpedsurg.2012.05.013

    PubMed  Google Scholar 

  54. Gumbiner, B. M. (2005). Regulation of cadherin-mediated adhesion in morphogenesis. Nature Reviews Molecular Cell Biology, 6(8), 622–634. https://doi.org/10.1038/nrm1699

    CAS  PubMed  Google Scholar 

  55. Cheng, L., Yang, T., Kuang, Y., Kong, B., Yu, S., Shu, H., … Gu, J. (2014). MicroRNA-23a promotes neuroblastoma cell metastasis by targeting CDH1. Oncology letters, 7(3), 839–845. https://doi.org/10.3892/ol.2014.1794

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Khan, F. H., Pandian, V., Ramraj, S., Aravindan, S., Herman, T. S., & Aravindan, N. (2015). Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics, 16(1), 501. https://doi.org/10.1186/s12864-015-1642-x

  57. Maugeri, M., Barbagallo, D., Barbagallo, C., Banelli, B., Di Mauro, S., Purrello, F., … Purrello, M. (2016). Altered expression of miRNAs and methylation of their promoters are correlated in neuroblastoma. Oncotarget, 7(50), 83330–83341. https://doi.org/10.18632/oncotarget.13090

  58. Cheung, I. Y., Farazi, T. A., Ostrovnaya, I., Xu, H., Tran, H., Mihailovic, A., … Cheung, N.-K. V. (2014). Deep microRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis, 53(10). https://doi.org/10.1002/gcc.22189

    CAS  PubMed  Google Scholar 

  59. Parodi, F., Carosio, R., Ragusa, M., Di Pietro, C., Maugeri, M., Barbagallo, D., … Banelli, B. (2016). Epigenetic dysregulation in neuroblastoma: A tale of miRNAs and DNA methylation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1859(12), 1502–1514. https://doi.org/10.1016/j.bbagrm.2016.10.006

    CAS  Google Scholar 

  60. Huang, T.-C., Chang, H.-Y., Chen, C.-Y., Wu, P.-Y., Lee, H., Liao, Y.-F., … Juan, H.-F. (2011). Silencing of miR-124 induces neuroblastoma SK-N-SH cell differentiation, cell cycle arrest and apoptosis through promoting AHR, 585(22). https://doi.org/10.1016/j.febslet.2011.10.025

    CAS  PubMed  Google Scholar 

  61. Zhao, Z., Ma, X., Shelton, S. D., Sung, D. C., Li, M., Hernandez, D., … Du, L. (2016). A combined gene expression and functional study reveals the crosstalk between N-Myc and differentiation-inducing microRNAs in neuroblastoma cells. Oncotarget, 7(48), 79372–79387. https://doi.org/10.18632/oncotarget.12676

  62. Ayers, D., Mestdagh, P., Van Maerken, T., & Vandesompele, J. (2015). Identification of miRNAs contributing to neuroblastoma chemoresistance, 13. https://doi.org/10.1016/j.csbj.2015.04.003

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Takwi, A. A., Wang, Y.-M., Wu, J., Michaelis, M., Cinatl, J., & Chen, T. (2014). miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells. Oncogene, 33(28). https://doi.org/10.1038/onc.2013.330

    PubMed  PubMed Central  Google Scholar 

  64. Zhao, G., Wang, G., Bai, H., Li, T., Gong, F., Yang, H., … Wang, W. (2017). Targeted inhibition of HDAC8 increases the doxorubicin sensitivity of neuroblastoma cells via up regulation of miR-137. European journal of pharmacology, 802, 20–26. https://doi.org/10.1016/j.ejphar.2017.02.035

    CAS  PubMed  Google Scholar 

  65. Chakrabarti, M., Banik, N. L., & Ray, S. K. (2013). miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo, 319(10). https://doi.org/10.1016/j.yexcr.2013.02.025

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yamagata, T., Yoshizawa, J., Ohashi, S., Yanaga, K., & Ohki, T. (2010). Expression patterns of microRNAs are altered in hypoxic human neuroblastoma cells, 26(12). https://doi.org/10.1007/s00383-010-2700-8

    PubMed  Google Scholar 

  67. Zhang, H., Pu, J., Qi, T., Qi, M., Yang, C., Li, S., … Tong, Q. (2014). MicroRNA-145 inhibits the growth, invasion, metastasis and angiogenesis of neuroblastoma cells through targeting hypoxia-inducible factor 2 alpha. Oncogene, 33(3). https://doi.org/10.1038/onc.2012.574

    PubMed  Google Scholar 

  68. Xu, Y., Chen, X., Lin, L., Chen, H., Yu, S., & Li, D. (2017). MicroRNA-149 is associated with clinical outcome in human neuroblastoma and modulates cancer cell proliferation through Rap1 independent of MYCN amplification. Biochimie, 139, 1–8. https://doi.org/10.1016/j.biochi.2017.04.011

    CAS  PubMed  Google Scholar 

  69. Lin, R.-J., Lin, Y.-C., & Yu, A. L. (2010). miR-149* induces apoptosis by inhibiting Akt1 and E2F1 in human cancer cells, 49(8). https://doi.org/10.1002/mc.20647

  70. Das, S., Foley, N., Bryan, K., Watters, K. M., Bray, I., Murphy, D. M., … Stallings, R. L. (2010). MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Research, 70(20), 7874–7881. https://doi.org/10.1158/0008-5472.CAN-10-1534

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Gibert, B., Delloye-Bourgeois, C., Gattolliat, C.-H., Meurette, O., Le Guernevel, S., Fombonne, J., … Mehlen, P. (2014). Regulation by miR181 family of the dependence receptor CDON tumor suppressive activity in neuroblastoma. JNCI: Journal of the National Cancer Institute, 106(11). https://doi.org/10.1093/jnci/dju318

  72. Li, Y., Wang, H., Li, J., & Yue, W. (2014). MiR-181c modulates the proliferation, migration, and invasion of neuroblastoma cells by targeting Smad7. Acta Biochimica et Biophysica Sinica, 46(1), 48–55. https://doi.org/10.1093/abbs/gmt124

    CAS  PubMed  Google Scholar 

  73. Lodrini, M., Poschmann, G., Schmidt, V., Wünschel, J., Dreidax, D., Witt, O., … Deubzer, H. E. (2016). Minichromosome maintenance complex is a critical node in the miR-183 signaling network of MYCN -amplified neuroblastoma cells. Journal of Proteome Research, 15(7), 2178–2186. https://doi.org/10.1021/acs.jproteome.6b00134

    CAS  PubMed  Google Scholar 

  74. Lodrini, M., Oehme, I., Schroeder, C., Milde, T., Schier, M. C., Kopp-Schneider, A., … Deubzer, H. E. (2013). MYCN and HDAC2 cooperate to repress miR-183 signaling in neuroblastoma, 41(12). https://doi.org/10.1093/nar/gkt346

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Foley, N. H., Bray, I. M., Tivnan, A., Bryan, K., Murphy, D. M., Buckley, P. G., … Stallings, R. L. (2010). MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Molecular Cancer, 9(1), 83. https://doi.org/10.1186/1476-4598-9-83

    PubMed  PubMed Central  Google Scholar 

  76. Slaby, O. (2013). MiR-190 leads to aggressive phenotype of neuroblastoma through indirect activation of TrkB pathway, 80(3). https://doi.org/10.1016/j.mehy.2012.11.033

    CAS  PubMed  Google Scholar 

  77. Feinberg-Gorenshtein, G., Guedj, A., Shichrur, K., Jeison, M., Luria, D., Kodman, Y., … Avigad, S. (2013). miR-192 directly binds and regulates Dicer1 expression in neuroblastoma. PLoS ONE, 8(11), e78713. https://doi.org/10.1371/journal.pone.0078713

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Roth, S. A., Hald, Ø. H., Fuchs, S., Løkke, C., Mikkola, I., Flægstad, T., … Einvik, C. (2018). MicroRNA-193b-3p represses neuroblastoma cell growth via downregulation of Cyclin D1, MCL-1 and MYCN. Oncotarget, 9(26), 18160–18179. https://doi.org/10.18632/oncotarget.24793

  79. Das, S., Bryan, K., Buckley, P. G., Piskareva, O., Bray, I. M., Foley, N., … Stallings, R. L. (2013). Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene, 32(24). https://doi.org/10.1038/onc.2012.311

    PubMed  PubMed Central  Google Scholar 

  80. Gao, S.-L., Wang, L.-Z., Liu, H.-Y., Liu, D.-L., Xie, L.-M., & Zhang, Z.-W. (2014). miR-200a inhibits tumor proliferation by targeting AP-2γ in neuroblastoma cells. Asian Pacific journal of cancer prevention: APJCP, 15(11), 4671–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24969902

  81. Ryan, J., Tivnan, A., Fay, J., Bryan, K., Meehan, M., Creevey, L., … Stallings, R. L. (2012). MicroRNA-204 increases sensitivity of neuroblastoma cells to cisplatin and is associated with a favourable clinical outcome, 107(6). https://doi.org/10.1038/bjc.2012.356

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ooi, C. Y., Carter, D. R., Liu, B., Mayoh, C., Beckers, A., Lalwani, A., … Marshall, G. M. (2018). Network modeling of microRNA–mRNA interactions in neuroblastoma tumorigenesis identifies miR-204 as a direct inhibitor of MYCN. Cancer Research, 78(12), 3122–3134. https://doi.org/10.1158/0008-5472.CAN-17-3034

  83. Yang, H., Li, Q., Zhao, W., Yuan, D., Zhao, H., & Zhou, Y. (2014). miR-329 suppresses the growth and motility of neuroblastoma by targeting KDM1A, 588(1). https://doi.org/10.1016/j.febslet.2013.11.036

    PubMed  Google Scholar 

  84. Lynch, J., Meehan, M. H., Crean, J., Copeland, J., Stallings, R. L., & Bray, I. M. (2013). Metastasis suppressor microRNA-335 targets the formin family of actin nucleators, 8(11), e78428. https://doi.org/10.1371/journal.pone.0078428

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, X., Pan, M., Han, L., Lu, H., Hao, X., & Dong, Q. (2013). miR-338-3p suppresses neuroblastoma proliferation, invasion and migration through targeting PREX2a. FEBS Letters, 587(22), 3729–3737. https://doi.org/10.1016/j.febslet.2013.09.044

    CAS  PubMed  Google Scholar 

  86. Wu, K., Yang, L., Chen, J., Zhao, H., Wang, J., Xu, S., & Huang, Z. (2015). miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β. FEBS Letters, 589(15), 1911–1919. https://doi.org/10.1016/J.FEBSLET.2015.05.056

    CAS  PubMed  Google Scholar 

  87. Li, Y.-G., He, J.-H., YU, L., Hang, Z.-P., LI, W., Shun, W.-H., & HUANG, G. X. (2014). microRNA-202 suppresses MYCN expression under the control of E2F1 in the neuroblastoma cell line LAN-5, 9(2). https://doi.org/10.3892/mmr.2013.1845

    PubMed  Google Scholar 

  88. Cui, C., Yu, J., Huang, S., Zhu, H., & Huang, Z. (2014). Transcriptional regulation of gene expression by microRNAs as endogenous decoys of transcription factors, 33(6). https://doi.org/10.1159/000362952

    CAS  PubMed  Google Scholar 

  89. Swarbrick, A., Woods, S. L., Shaw, A., Balakrishnan, A., Phua, Y., Nguyen, A., … Goga, A. (2010). miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma, 16(10). https://doi.org/10.1038/nm.2227

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, Y.-M. Y., Li, W., Zhang, J.-G., Li, H.-Y., & Li, Y.-M. Y. (2014). Downregulation of tumor suppressor menin by miR-421 promotes proliferation and migration of neuroblastoma. Tumor Biology, 35(10), 10011–10017. https://doi.org/10.1007/s13277-014-1921-1

    CAS  PubMed  Google Scholar 

  91. Hu, H., Du, L., Nagabayashi, G., Seeger, R. C., & Gatti, R. A. (2010). ATM is down-regulated by N-Myc–regulated microRNA-421, 107(4). https://doi.org/10.1073/pnas.0907763107

    CAS  Google Scholar 

  92. Zhao, Z., Ma, X., Sung, D., Li, M., Kosti, A., Lin, G., … Du, L. (2015). microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest. RNA biology, 12(5), 538–54. https://doi.org/10.1080/15476286.2015.1023495

    PubMed  PubMed Central  Google Scholar 

  93. Liu, G., Xu, Z., & Hao, D. (2016). MicroRNA-451 inhibits neuroblastoma proliferation, invasion and migration by targeting macrophage migration inhibitory factor. Molecular medicine reports, 13(3), 2253–60. https://doi.org/10.3892/mmr.2016.4770

    PubMed  Google Scholar 

  94. Gattolliat, C.-H., Le Teuff, G., Combaret, V., Mussard, E., Valteau-Couanet, D., Busson, P., … Douc-Rasy, S. (2014). Expression of two parental imprinted miRNAs improves the risk stratification of neuroblastoma patients, 3(4), 998–1009. https://doi.org/10.1002/cam4.264

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Creevey, L., Ryan, J., Harvey, H., Bray, I. M., Meehan, M., Khan, A. R., & Stallings, R. L. (2013). MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Molecular Cancer, 12(1), 23. https://doi.org/10.1186/1476-4598-12-23

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Soriano, A., París-Coderch, L., Jubierre, L., Martínez, A., Zhou, X., Piskareva, O., … Segura, M. F. (2016). MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget, 7(8), 9271–87. https://doi.org/10.18632/oncotarget.7005

  97. Li, D., Cao, Y., Li, J., Xu, J., Liu, Q., & Sun, X. (2017). miR-506 suppresses neuroblastoma metastasis by targeting ROCK1. Oncology letters, 13(1), 417–422. https://doi.org/10.3892/ol.2016.5442

    PubMed  PubMed Central  Google Scholar 

  98. Harvey, H., Piskareva, O., Creevey, L., Alcock, L. C., Buckley, P. G., O’Sullivan, M. J., … Bray, I. M. (2015). Modulation of chemotherapeutic drug resistance in neuroblastoma SK-N-AS cells by the neural apoptosis inhibitory protein and miR-520f, 136(7). https://doi.org/10.1002/ijc.29144

    PubMed  Google Scholar 

  99. Althoff, K., Lindner, S., Odersky, A., Mestdagh, P., Beckers, A., Karczewski, S., … Schulte, J. H. (2015). miR-542-3p exerts tumor suppressive functions in neuroblastoma by downregulating Survivin, 136(6). https://doi.org/10.1002/ijc.29091

    PubMed  Google Scholar 

  100. Bray, I., Tivnan, A., Bryan, K., Foley, N. H., Watters, K. M., Tracey, L., … Stallings, R. L. (2011). MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Letters, 303(1), 56–64. https://doi.org/10.1016/j.canlet.2011.01.016

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shohet, J. M., Ghosh, R., Coarfa, C., Ludwig, A., Benham, A. L., Chen, Z., … Gunaratne, P. H. (2011). A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma, 71(11). https://doi.org/10.1158/0008-5472.CAN-10-4391

    CAS  PubMed  Google Scholar 

  102. Buckley, P. G., Alcock, L., Bryan, K., Bray, I., Schulte, J. H., Schramm, A., … Stallings, R. L. (2010). Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clinical Cancer Research, 16(11), 2971–2978. https://doi.org/10.1158/1078-0432.CCR-09-3215

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Megiorni, F., Colaiacovo, M., Cialfi, S., McDowell, H. P., Guffanti, A., Camero, S., … Dominici, C. (2017). A sketch of known and novel MYCN-associated miRNA networks in neuroblastoma, 38(1), 3–20. https://doi.org/10.3892/or.2017.5701

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Stigliani, S., Scaruffi, P., Lagazio, C., Persico, L., Carlini, B., Varesio, L., … Corrias, M. V. (2015). Deregulation of focal adhesion pathway mediated by miR-659-3p is implicated in bone marrow infiltration of stage M neuroblastoma patients. Oncotarget, 6(15), 13295–13308. https://doi.org/10.18632/oncotarget.3745

  105. Afanasyeva, E. A., Mestdagh, P., Kumps, C., Vandesompele, J., Ehemann, V., Theissen, J., … Westermann, F. (2011). MicroRNA miR-885-5p targets CDK2 and MCM5, activates p53 and inhibits proliferation and survival, 18(6). https://doi.org/10.1038/cdd.2010.164

    CAS  Google Scholar 

  106. Wu, T., Lin, Y., & Xie, Z. (2018). MicroRNA-1247 inhibits cell proliferation by directly targeting ZNF346 in childhood neuroblastoma. Biological research, 51(1), 13. https://doi.org/10.1186/s40659-018-0162-y

  107. Beveridge, N. J., Tooney, P. A., Carroll, A. P., Tran, N., & Cairns, M. J. (2009). Down-regulation of miR-17 family expression in response to retinoic acid induced neuronal differentiation, 21(12). https://doi.org/10.1016/j.cellsig.2009.07.019

    CAS  PubMed  Google Scholar 

  108. Das, E., & Bhattacharyya, N. P. (2014). MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes, 588(9). https://doi.org/10.1016/j.febslet.2014.03.015

    CAS  PubMed  Google Scholar 

  109. Watanabe, K., Yamaji, R., & Ohtsuki, T. (2018). MicroRNA-664a-5p promotes neuronal differentiation of SH-SY5Y cells. Genes to cells: devoted to molecular & cellular mechanisms, 23(3), 225–233. https://doi.org/10.1111/gtc.12559

    CAS  PubMed  Google Scholar 

  110. Zhao, Z., Ma, X., Hsiao, T.-H., Lin, G., Kosti, A., Yu, X., … Du, L. (2014). A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget, 5(9), 2499–512. https://doi.org/10.18632/oncotarget.1703

  111. Foley, N. H., Bray, I., Watters, K. M., Das, S., Bryan, K., Bernas, T., … Stallings, R. L. (2011). MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell death and differentiation, 18(7), 1089–98. https://doi.org/10.1038/cdd.2010.172

    CAS  Google Scholar 

  112. Chen, H., Shalom-Feuerstein, R., Riley, J., Zhang, S.-D., Tucci, P., Agostini, M., … Vasa-Nicotera, M. (2010). miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro, 394(4). https://doi.org/10.1016/j.bbrc.2010.03.076

    CAS  PubMed  Google Scholar 

  113. Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews Molecular Cell Biology, 6(8), 635–645. https://doi.org/10.1038/nrm1703

    CAS  PubMed  Google Scholar 

  114. Mestdagh, P., Fredlund, E., Pattyn, F., Schulte, J. H., Muth, D., Vermeulen, J., … Vandesompele, J. (2010). MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene, 29(9). https://doi.org/10.1038/onc.2009.429

    PubMed  Google Scholar 

  115. Tanzer, A., & Stadler, P. F. (2004). Molecular evolution of a microRNA cluster. Journal of molecular biology, 339(2), 327–35. https://doi.org/10.1016/j.jmb.2004.03.065

    CAS  PubMed  Google Scholar 

  116. Li, Z., Xu, Z., Xie, Q., Gao, W., Xie, J., & Zhou, L. (2016). miR-1303 promotes the proliferation of neuroblastoma cell SH-SY5Y by targeting GSK3β and SFRP1. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 83, 508–513. https://doi.org/10.1016/j.biopha.2016.07.010

    CAS  Google Scholar 

  117. Qu, H., Zheng, L., Pu, J., Mei, H., Xiang, X., Zhao, X., … Tong, Q. (2015). miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase, 24(9). https://doi.org/10.1093/hmg/ddv018

    CAS  PubMed  Google Scholar 

  118. Soriano, A., Masanas, M., Boloix, A., Masiá, N., París-Coderch, L., Piskareva, O., … Segura, M. F. (2019). Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cellular and Molecular Life Sciences, 76(11), 2231–2243. https://doi.org/10.1007/s00018-019-03041-4

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhu, K., Su, Y., Xu, B., Wang, Z., Sun, H., Wang, L., … He, X. (2019). MicroRNA-186-5p represses neuroblastoma cell growth via downregulation of Eg5. American journal of translational research, 11(4), 2245–2256. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/31105832

  120. Zhao, Z., Partridge, V., Sousares, M., Shelton, S. D., Holland, C. L., Pertsemlidis, A., & Du, L. (2018). MicroRNA-2110 functions as an onco-suppressor in neuroblastoma by directly targeting Tsukushi. PLoS ONE, 13(12). https://doi.org/10.1371/journal.pone.0208777

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cao, X. Y., Sun, Z. Y., Zhang, L. J., Chen, M. K., & Yuan, B. (2019). MicroRNA-144-3p suppresses human neuroblastoma cell proliferation by targeting HOXA7. European Review for Medical and Pharmacological Sciences, 23(2), 716–723. https://doi.org/10.26355/eurrev_201901_16885

  122. Schulte, J. H., Schowe, B., Mestdagh, P., Kaderali, L., Kalaghatgi, P., Schlierf, S., … Schramm, A. (2010). Accurate prediction of neuroblastoma outcome based on miRNA expression profiles, 127(10). https://doi.org/10.1002/ijc.25436

    CAS  PubMed  Google Scholar 

  123. Chen, Y., & Stallings, R. L. (2007). Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis, 67(3). https://doi.org/10.1158/0008-5472.CAN-06-3667

    CAS  PubMed  Google Scholar 

  124. Zhao, L.-L., Jin, F., Ye, X., Zhu, L., Yang, J.-S., & Yang, W.-J. (2015). Expression profiles of miRNAs and involvement of miR-100 and miR-34 in regulation of cell cycle arrest in Artemia. The Biochemical journal, 470(2), 223–31. https://doi.org/10.1042/BJ20150116

    CAS  Google Scholar 

  125. Stigliani, S., Scaruffi, P., Lagazio, C., Persico, L., Carlini, B., Varesio, L., … Corrias, M. V. (2015). Deregulation of focal adhesion pathway mediated by miR-659-3p is implicated in bone marrow infiltration of stage M neuroblastoma patients. Oncotarget, 6(15), 13295–308. https://doi.org/10.18632/oncotarget.3745

  126. Fabbri, E., Montagner, G., Bianchi, N., Finotti, A., Borgatti, M., Lampronti, I., … Gambari, R. (2016). MicroRNA miR-93-5p regulates expression of IL-8 and VEGF in neuroblastoma SK-N-AS cells. Oncology reports, 35(5), 2866–72. https://doi.org/10.3892/or.2016.4676

    CAS  PubMed  Google Scholar 

  127. Chakrabarti, M., Khandkar, M., Banik, N. L., & Ray, S. K. (2012). Alterations in expression of specific microRNAs by combination of 4-HPR and EGCG inhibited growth of human malignant neuroblastoma cells, 1454, 1–13. https://doi.org/10.1016/j.brainres.2012.03.017

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Chakrabarti, M., Ai, W., Banik, N. L., & Ray, S. K. (2013). Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochemical research, 38(2), 420–32. https://doi.org/10.1007/s11064-012-0936-5

    PubMed  Google Scholar 

  129. Breslow, N., Olshan, A., Beckwith, J. B., & Green, D. M. (1993). Epidemiology of Wilms tumor. Medical and pediatric oncology, 21(3), 172–81. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7680412

  130. Green, D. M., Beckwith, J. B., Breslow, N. E., Faria, P., Moksness, J., Finklestein, J. Z., … Shochat, S. (1994). Treatment of children with stages II to IV anaplastic Wilms’ tumor: a report from the National Wilms’ Tumor Study Group., 12(10). https://doi.org/10.1200/JCO.1994.12.10.2126

    CAS  PubMed  Google Scholar 

  131. Malkin, D., Sexsmith, E., Yeger, H., Williams, B. R., & Coppes, M. J. (1994). Mutations of the p53 tumor suppressor gene occur infrequently in Wilms’ tumor. Cancer research, 54(8), 2077–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8174107

  132. Hawthorn, L., & Cowell, J. K. (2011). Analysis of Wilms tumors using SNP mapping array-based comparative genomic hybridization, 6(4), e18941. https://doi.org/10.1371/journal.pone.0018941

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Major, M. B., Camp, N. D., Berndt, J. D., Yi, X., Goldenberg, S. J., Hubbert, C., … Moon, R. T. (2007). Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science (New York, N.Y.), 316(5827), 1043–6. https://doi.org/10.1126/science/1141515

    CAS  PubMed  Google Scholar 

  134. Kort, E. J., Farber, L., Tretiakova, M., Petillo, D., Furge, K. A., Yang, X. J., … Teh, B. T. (2008). The E2F3-oncomir-1 axis is activated in Wilms’ tumor, 68(11). https://doi.org/10.1158/0008-5472.CAN-08-0592

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hayashita, Y., Osada, H., Tatematsu, Y., Yamada, H., Yanagisawa, K., Tomida, S., … Takahashi, T. (2005). A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, 65(21). https://doi.org/10.1158/0008-5472.CAN-05-2352

    CAS  PubMed  Google Scholar 

  136. Yu, H., & Jove, R. (2004). The STATs of cancer — new molecular targets come of age. Nature Reviews Cancer, 4(2), 97–105. https://doi.org/10.1038/nrc1275

    CAS  PubMed  Google Scholar 

  137. Veronese, A., Lupini, L., Consiglio, J., Visone, R., Ferracin, M., Fornari, F., … Negrini, M. (2010). Oncogenic role of miR-483-3p at the IGF2/483 locus, 70(8). https://doi.org/10.1158/0008-5472.CAN-09-4456

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hong, L., Zhao, X., Shao, X., & Zhu, H. (2017). miR-590 regulates WT1 during proliferation of G401 cells. Molecular medicine reports, 16(1), 247–253. https://doi.org/10.3892/mmr.2017.6561

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cui, M., Liu, W., Zhang, L., Guo, F., Liu, Y., Chen, F., … Wu, R. (2017). Clinicopathological parameters and prognostic relevance of miR-21 and PTEN expression in Wilms’ tumor. Journal of pediatric surgery, 52(8), 1348–1354. https://doi.org/10.1016/j.jpedsurg.2016.12.005

    PubMed  Google Scholar 

  140. Cui, M., Liu, W., Zhang, L., Guo, F., Liu, Y., Chen, F., … Wu, R. (2017). Over-expression of miR-21 and lower PTEN levels in Wilms’ tumor with aggressive behavior. The Tohoku journal of experimental medicine, 242(1), 43–52. https://doi.org/10.1620/tjem.242.43

    CAS  PubMed  Google Scholar 

  141. Liu, G.-L., Yang, H.-J., Liu, B., & Liu, T. (2017). Effects of microRNA-19b on the proliferation, apoptosis, and migration of Wilms’ tumor cells via the PTEN/PI3K/AKT signaling pathway. Journal of cellular biochemistry, 118(10), 3424–3434. https://doi.org/10.1002/jcb.25999

    CAS  PubMed  Google Scholar 

  142. Zhang, C., Lv, G. Q., Cui, L. F., Guo, C. C., & Liu, Q. E. (2019). MicroRNA-572 targets CDH1 to promote metastasis of Wilms’ tumor. European Review for Medical and Pharmacological Sciences, 23(9), 3709–3717. https://doi.org/10.26355/eurrev_201905_17794

  143. Gong, Y., Zou, B., Chen, J., Ding, L., Li, P., Chen, J., … Li, J. (2019). Potential five-microRNA signature model for the prediction of prognosis in patients with Wilms tumor. Medical Science Monitor, 25, 5435–5444. https://doi.org/10.12659/msm.916230

    PubMed  PubMed Central  Google Scholar 

  144. Wang, H.-F., Zhang, Y.-Y., Zhuang, H.-W., & Xu, M. (2017). MicroRNA-613 attenuates the proliferation, migration and invasion of Wilms’ tumor via targeting FRS2. European review for medical and pharmacological sciences, 21(15), 3360–3369. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28829507

  145. Liu, Z., He, F., Ouyang, S., Li, Y., Ma, F., Chang, H., … Wu, J. (2019). MiR-140-5p could suppress tumor proliferation and progression by targeting TGFBRI/SMAD2/3 and IGF-1R/AKT signaling pathways in Wilms’ tumor. BMC Cancer, 19(1). https://doi.org/10.1186/s12885-019-5609-1

  146. Imam, J. S., Buddavarapu, K., Lee-Chang, J. S., Ganapathy, S., Camosy, C., Chen, Y., & Rao, M. K. (2010). MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene, 29(35), 4971–9. https://doi.org/10.1038/onc.2010.233

    CAS  PubMed  Google Scholar 

  147. Newman, M. A., Thomson, J. M., & Hammond, S. M. (2008). Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA (New York, N.Y.), 14(8), 1539–49. https://doi.org/10.1261/rna.1155108

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Rakheja, D., Chen, K. S., Liu, Y., Shukla, A. A., Schmid, V., Chang, T.-C., … Amatruda, J. F. (2014). Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours, (1), 4802. https://doi.org/10.1038/ncomms5802

  149. Viswanathan, S. R., Powers, J. T., Einhorn, W., Hoshida, Y., Ng, T. L., Toffanin, S., … Daley, G. Q. (2009). Lin28 promotes transformation and is associated with advanced human malignancies. Nature genetics, 41(7), 843–8. https://doi.org/10.1038/ng.392

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Urbach, A., Yermalovich, A., Zhang, J., Spina, C. S., Zhu, H., Perez-Atayde, A. R., … Daley, G. Q. (2014). Lin28 sustains early renal progenitors and induces Wilms tumor. Genes & Development, 28(9), 971–982. https://doi.org/10.1101/gad.237149.113

    CAS  Google Scholar 

  151. Koller, K., Das, S., Leuschner, I., Korbelius, M., Hoefler, G., & Guertl, B. (2013). Identification of the transcription factor HOXB4 as a novel target of miR-23a. Genes, chromosomes & cancer, 52(8), 709–15. https://doi.org/10.1002/gcc.22066

    CAS  PubMed  Google Scholar 

  152. Koller, K., Pichler, M., Koch, K., Zandl, M., Stiegelbauer, V., Leuschner, I., … Guertl, B. (2014). Nephroblastomas show low expression of microR-204 and high expression of its target, the oncogenic transcription factor MEIS1. Pediatric and developmental pathology: the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society, 17(3), 169–75. https://doi.org/10.2350/13-01-1288-OA.1

    PubMed  Google Scholar 

  153. Jiang, X., & Li, H. (2018). MiR-1180-5p regulates apoptosis of Wilms’ tumor by targeting<em> p</em>73. OncoTargets and Therapy, Volume 11, 823–831. https://doi.org/10.2147/OTT.S148684

  154. Senanayake, U., Das, S., Vesely, P., Alzoughbi, W., Frohlich, L. F., Chowdhury, P., … Guertl, B. (2012). miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis, 33(5), 1014–1021. https://doi.org/10.1093/carcin/bgs126

    CAS  PubMed  Google Scholar 

  155. Liu, K., He, B., Xu, J., Li, Y., Guo, C., Cai, Q., & Wang, S. (2019). MiR-483-5p targets MKNK1 to suppress Wilms’ tumor cell proliferation and apoptosis in vitro and in vivo. Medical Science Monitor, 25, 1459–1468. https://doi.org/10.12659/MSM.913005

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Allen, K. E., & Weiss, G. J. (2010). Resistance may not be futile: microRNA biomarkers for chemoresistance and potential therapeutics, 9(12). https://doi.org/10.1158/1535-7163.MCT-10-0397

    CAS  PubMed  Google Scholar 

  157. Schmitt, J., Backes, C., Nourkami-Tutdibi, N., Leidinger, P., Deutscher, S., Beier, M., … Meese, E. (2012). Treatment-independent miRNA signature in blood of wilms tumor patients, 13(1), 379. https://doi.org/10.1186/1471-2164-13-379

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Watson, J. A., Bryan, K., Williams, R., Popov, S., Vujanic, G., Coulomb, A., … O’Sullivan, M. (2013). miRNA profiles as a predictor of chemoresponsiveness in Wilms’ tumor blastema. PLoS ONE, 8(1), e53417. https://doi.org/10.1371/journal.pone.0053417

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Torrezan, G. T., Ferreira, E. N., Nakahata, A. M., Barros, B. D. F., Castro, M. T. M., Correa, B. R., … Carraro, D. M. (2014). Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour, 5(1), 4039. https://doi.org/10.1038/ncomms5039

  160. Wegert, J., Ishaque, N., Vardapour, R., Geörg, C., Gu, Z., Bieg, M., … Gessler, M. (2015). Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer cell, 27(2), 298–311. https://doi.org/10.1016/j.ccell.2015.01.002

    CAS  PubMed  Google Scholar 

  161. Spreafico, F., Ciceri, S., Gamba, B., Torri, F., Terenziani, M., Collini, P., … Perotti, D. (2016). Chromosomal anomalies at 1q, 3, 16q, and mutations of SIX1 and DROSHA genes underlie Wilms tumor recurrences. Oncotarget, 7(8), 8908–15. https://doi.org/10.18632/oncotarget.6950

  162. Lam, A. K.-Y. (2017). Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours, 28(3), 213–227. https://doi.org/10.1007/s12022-017-9484-5

    PubMed  Google Scholar 

  163. Khanna, S., Priya, R., Bhartiya, S. K., Basu, S., & Shukla, V. K. (2015). Adrenal tumors: an experience of 10 years in a single surgical unit, 52(3). https://doi.org/10.4103/0019-509X.176749

    CAS  PubMed  Google Scholar 

  164. Igaz, P., Igaz, I., Nagy, Z., Nyírő, G., Szabó, P. M., Falus, A., … Rácz, K. (2015). MicroRNAs in adrenal tumors: relevance for pathogenesis, diagnosis, and therapy. Cellular and Molecular Life Sciences, 72(3), 417–428. https://doi.org/10.1007/s00018-014-1752-7

    PubMed  Google Scholar 

  165. Feinmesser, M., Benbassat, C., Meiri, E., Benjamin, H., Lebanony, D., Lebenthal, Y., … Spector, Y. (2015). Specific microRNAs differentiate adrenocortical adenomas from carcinomas and correlate with weiss histopathologic system. Applied Immunohistochemistry & Molecular Morphology, 23(7), 522–531. https://doi.org/10.1097/PAI.0000000000000117

    CAS  Google Scholar 

  166. Bimpaki, E. I., Iliopoulos, D., Moraitis, A., & Stratakis, C. A. (2009). MicroRNA signature in massive macronodular adrenocortical disease and implications for adrenocortical tumourigenesis. Clinical Endocrinology, 72(6), 744–751. https://doi.org/10.1111/j.1365-2265.2009.03725.x

    PubMed  PubMed Central  Google Scholar 

  167. Koduru, S. V., Leberfinger, A. N., & Ravnic, D. J. (2017). Small non-coding RNA abundance in adrenocortical carcinoma: a footprint of a rare cancer. Journal of Genomics, 5, 99–118. https://doi.org/10.7150/jgen.22060

    PubMed  PubMed Central  Google Scholar 

  168. Agosta, C., Laugier, J., Guyon, L., Denis, J., Bertherat, J., Libé, R., … Cherradi, N. (2018). MiR-483-5p and miR-139-5p promote aggressiveness by targeting N-myc downstream-regulated gene family members in adrenocortical cancer. International Journal of Cancer, 143(4), 944–957. https://doi.org/10.1002/ijc.31363

    CAS  PubMed  Google Scholar 

  169. Robertson, S., MacKenzie, S. M., Alvarez-Madrazo, S., Diver, L. A., Lin, J., Stewart, P. M., … Davies, E. (2013). MicroRNA-24 is a novel regulator of aldosterone and cortisol production in the human adrenal cortex. Hypertension, 62(3), 572–578. https://doi.org/10.1161/HYPERTENSIONAHA.113.01102

    CAS  PubMed  Google Scholar 

  170. Robertson, S., Diver, L. A., Alvarez-Madrazo, S., Livie, C., Ejaz, A., Fraser, R., … Davies, E. (2017). Regulation of corticosteroidogenic genes by microRNAs, 2017. https://doi.org/10.1155/2017/2021903

    Google Scholar 

  171. Nusrin, S., Tong, S. K. H. H., Chaturvedi, G., Wu, R. S. S. S., Giesy, J. P., & Kong, R. Y. C. C. (2014). Regulation of CYP11B1 and CYP11B2 steroidogenic genes by hypoxia-inducible miR-10b in H295R cells, 85(2). https://doi.org/10.1016/j.marpolbul.2014.04.002

    CAS  PubMed  Google Scholar 

  172. Kwok, G. T. Y., Zhao, J. T., Glover, A. R., Gill, A. J., Clifton-Bligh, R., Robinson, B. G., … Sidhu, S. B. (2019). microRNA-431 as a chemosensitizer and potentiator of drug activity in adrenocortical carcinoma. The Oncologist, 24(6), e241–e250. https://doi.org/10.1634/theoncologist.2018-0849

    CAS  PubMed  PubMed Central  Google Scholar 

  173. El Wakil, A., Doghman, M., Latre De Late, P., Zambetti, G. P., Figueiredo, B. C., & Lalli, E. (2011). Genetics and genomics of childhood adrenocortical tumors. Molecular and Cellular Endocrinology, 336(1–2), 169–173. https://doi.org/10.1016/j.mce.2010.11.008

    CAS  PubMed  Google Scholar 

  174. Faria, A. M., & Almeida, M. Q. (2012). Differences in the molecular mechanisms of adrenocortical tumorigenesis between children and adults. Molecular and Cellular Endocrinology, 351(1), 52–57. https://doi.org/10.1016/j.mce.2011.09.040

    CAS  PubMed  Google Scholar 

  175. Doghman, M., Wakil, A. El, Cardinaud, B., Thomas, E., Wang, J., Zhao, W., … Lalli, E. (2010). Regulation of insulin-like growth factor–mammalian target of rapamycin signaling by microRNA in childhood adrenocortical tumors, 70(11). https://doi.org/10.1158/0008-5472.CAN-09-3970

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Almeida, M. Q., Fragoso, M. C. B. V., Lotfi, C. F. P., Santos, M. G., Nishi, M. Y., Costa, M. H. S., … Latronico, A. C. (2008). Expression of insulin-like growth factor-II and its receptor in pediatric and adult adrenocortical tumors, 93(9). https://doi.org/10.1210/jc.2008-0065

    CAS  Google Scholar 

  177. Ribeiro, T. C., Jorge, A. A., Almeida, M. Q., Mariani, B. M. de P., Nishi, M. Y., Mendonca, B. B., … Latronico, A. C. (2014). Amplification of the insulin-like growth factor 1 receptor gene is a rare event in adrenocortical adenocarcinomas: searching for potential mechanisms of overexpression, 2014. https://doi.org/10.1155/2014/936031

    Google Scholar 

  178. Finegold, M. J., Lopez-Terrada, D. H., Bowen, J., Washington, M. K., Qualman, S. J., & College of American Pathologists. (2007). Protocol for the examination of specimens from pediatric patients with hepatoblastoma. Archives of pathology & laboratory medicine, 131(4), 520–9. https://doi.org/10.1043/1543-2165(2007)131[520:PFTEOS]2.0.CO;2

  179. Spector, L. G., & Birch, J. (2012). The epidemiology of hepatoblastoma. Pediatric blood & cancer, 59(5), 776–9. https://doi.org/10.1002/pbc.24215

    Google Scholar 

  180. Purcell, R., Childs, M., Maibach, R., Miles, C., Turner, C., Zimmermann, A., … Sullivan, M. (2012). Potential biomarkers for hepatoblastoma: results from the SIOPEL-3 study. European journal of cancer (Oxford, England: 1990), 48(12), 1853–9. https://doi.org/10.1016/j.ejca.2011.10.019

    CAS  PubMed  Google Scholar 

  181. Rodriguez-Galindo, C., Krailo, M., Frazier, L., Chintagumpala, M., Amatruda, J., Katzenstein, H., … COG Rare Tumors Disease Committee. (2013). Children’s Oncology Group’s 2013 blueprint for research: rare tumors. Pediatric blood & cancer, 60(6), 1016–21. https://doi.org/10.1002/pbc.24428

    Google Scholar 

  182. Linabery, A. M., & Ross, J. A. (2008). Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer, 112(2), 416–32. https://doi.org/10.1002/cncr.23169

    PubMed  Google Scholar 

  183. Anna, C. H., Sills, R. C., Foley, J. F., Stockton, P. S., Ton, T.-V., & Devereux, T. R. (2000). Catenin mutations and protein accumulation in all hepatoblastomas examined from B6C3F1 mice treated with anthraquinone or oxazepam. CANCER RESEARCH (Vol. 60). Retrieved from http://cancerres.aacrjournals.org/content/canres/60/11/2864.full.pdf

  184. Armengol, C., Cairo, S., Fabre, M., & Buendia, M. A. (2011). Wnt signaling and hepatocarcinogenesis: the hepatoblastoma model. The international journal of biochemistry & cell biology, 43(2), 265–70. https://doi.org/10.1016/j.biocel.2009.07.012

    CAS  Google Scholar 

  185. Czauderna, P., Lopez-Terrada, D., Hiyama, E., Häberle, B., Malogolowkin, M. H., & Meyers, R. L. (2014). Hepatoblastoma state of the art. Current Opinion in Pediatrics, 26(1), 19–28. https://doi.org/10.1097/MOP.0000000000000046

    CAS  PubMed  Google Scholar 

  186. López-Terrada, D., Alaggio, R., de Dávila, M. T., Czauderna, P., Hiyama, E., Katzenstein, H., … Children’s Oncology Group Liver Tumor Committee. (2014). Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc, 27(3), 472–91. https://doi.org/10.1038/modpathol.2013.80

    PubMed  Google Scholar 

  187. Maibach, R., Roebuck, D., Brugieres, L., Capra, M., Brock, P., Dall’Igna, P., … Perilongo, G. (2012). Prognostic stratification for children with hepatoblastoma: the SIOPEL experience. European journal of cancer (Oxford, England: 1990), 48(10), 1543–9. https://doi.org/10.1016/j.ejca.2011.12.011

    PubMed  Google Scholar 

  188. Darbari, A., Sabin, K. M., Shapiro, C. N., & Schwarz, K. B. (2003). Epidemiology of primary hepatic malignancies in U.S. children. https://doi.org/10.1053/jhep.2003.50375

    PubMed  Google Scholar 

  189. Heck, J. E., Meyers, T. J., Lombardi, C., Park, A. S., Cockburn, M., Reynolds, P., & Ritz, B. (2013). Case-control study of birth characteristics and the risk of hepatoblastoma. Cancer epidemiology, 37(4), 390–5. https://doi.org/10.1016/j.canep.2013.03.004

    PubMed  PubMed Central  Google Scholar 

  190. Ries, L., Harkins, D., Krapcho, M., Mariotto, A., Miller, B., Feuer, E., … Edwards, B. (2006). SEER Cancer Statistics Review, 1975–2003. Public Health Faculty Publications. Retrieved from https://scholarworks.gsu.edu/iph_facpub/132

  191. Hughes, L. J., & Michels, V. V. (1992). Risk of hepatoblastoma in familial adenomatous polyposis. American Journal of Medical Genetics, 43(6), 1023–1025. https://doi.org/10.1002/ajmg.1320430621

    CAS  PubMed  Google Scholar 

  192. Johnson, K. J., Williams, K. S., Ross, J. A., Krailo, M. D., Tomlinson, G. E., Malogolowkin, M. H., … Spector, L. G. (2013). Parental tobacco and alcohol use and risk of hepatoblastoma in offspring: a report from the Children’s Oncology Group. Cancer Epidemiology Biomarkers & Prevention, 22(10), 1837–1843. https://doi.org/10.1158/1055-9965.EPI-13-0432

    Google Scholar 

  193. DeBaun, M. R., & Tucker, M. A. (1998). Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry. The Journal of Pediatrics, 132(3), 398–400. https://doi.org/10.1016/S0022-3476(98)70008-3

    CAS  PubMed  Google Scholar 

  194. Ansell, P., Mitchell, C. D., Roman, E., Simpson, J., Birch, J. M., & Eden, T. O. B. (2005). Relationships between perinatal and maternal characteristics and hepatoblastoma: a report from the UKCCS. European journal of cancer (Oxford, England: 1990), 41(5), 741–8. https://doi.org/10.1016/j.ejca.2004.10.024

    CAS  PubMed  Google Scholar 

  195. Williams, C. L., Bunch, K. J., Stiller, C. A., Murphy, M. F. G., Botting, B. J., Wallace, W. H., … Sutcliffe, A. G. (2013). Cancer risk among children born after assisted conception. New England Journal of Medicine, 369(19), 1819–1827. https://doi.org/10.1056/NEJMoa1301675

    CAS  Google Scholar 

  196. Ortega, J. A., Douglass, E. C., Feusner, J. H., Reynolds, M., Quinn, J. J., Finegold, M. J., … Krailo, M. D. (2000). Randomized comparison of cisplatin/vincristine/fluorouracil and cisplatin/continuous infusion doxorubicin for treatment of pediatric hepatoblastoma: a report from the Children’s Cancer Group and the Pediatric Oncology Group. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 18(14), 2665–75. https://doi.org/10.1200/JCO.2000.18.14.2665

    CAS  PubMed  Google Scholar 

  197. Kremer, N., Walther, A. E., & Tiao, G. M. (2014). Management of hepatoblastoma. Current Opinion in Pediatrics, 26(3), 362–369. https://doi.org/10.1097/MOP.0000000000000081

    PubMed  Google Scholar 

  198. Czauderna, P., & Garnier, H. (2018). Hepatoblastoma: current understanding, recent advances, and controversies. F1000Research, 7, 53. https://doi.org/10.12688/f1000research.12239.1

    PubMed  PubMed Central  Google Scholar 

  199. Haeberle, B., & Schweinitz, D. von. (2012). Treatment of hepatoblastoma in the German cooperative pediatric liver tumor studies. Frontiers in bioscience (Elite edition), 4, 493–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22201890

  200. Magrelli, A., Azzalin, G., Salvatore, M., Viganotti, M., Tosto, F., Colombo, T., … Taruscio, D. (2009). Altered microRNA expression patterns in hepatoblastoma patients. Translational oncology, 2(3), 157–63. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19701500

    PubMed  PubMed Central  Google Scholar 

  201. Cairo, S., Wang, Y., de Reynies, A., Duroure, K., Dahan, J., Redon, M.-J., … Buendia, M.-A. (2010). Stem cell-like micro-RNA signature driven by Myc in aggressive liver cancer. Proceedings of the National Academy of Sciences, 107(47), 20471–20476. https://doi.org/10.1073/pnas.1009009107

    CAS  Google Scholar 

  202. He, J., Guo, X., Sun, L., Wang, N., & Bao, J. (2016). Regulatory network analysis of genes and microRNAs in human hepatoblastoma. Oncology Letters, 12(5), 4099–4106. https://doi.org/10.3892/ol.2016.5196

    CAS  PubMed  PubMed Central  Google Scholar 

  203. von Frowein, J., Pagel, P., Kappler, R., von Schweinitz, D., Roscher, A., & Schmid, I. (2011). MicroRNA-492 is processed from the keratin 19 gene and up-regulated in metastatic hepatoblastoma. Hepatology, 53(3), 833–842. https://doi.org/10.1002/hep.24125

    CAS  PubMed  Google Scholar 

  204. von Frowein, J., Hauck, S. M., Kappler, R., Pagel, P., Fleischmann, K. K., Magg, T., … Schmid, I. (2018). MiR-492 regulates metastatic properties of hepatoblastoma via CD44. Liver International, 38(7), 1280–1291. https://doi.org/10.1111/liv.13687

    CAS  PubMed  Google Scholar 

  205. Indersie, E., Lesjean, S., Hooks, K. B., Sagliocco, F., Ernault, T., Cairo, S., … Grosset, C. F. (2017). MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting β-catenin and Wnt signaling. Hepatology communications, 1(2), 168–183. https://doi.org/10.1002/hep4.1029

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Ecevit, Ç. O., Aktaş, S., Tosun Yildirim, H., Demiraǧ, B., Erbay, A., Karaca, I., … Olgun, N. (2019). MicroRNA-17, microRNA-19b, microRNA-146a, microRNA-302d expressions in hepatoblastoma and clinical importance. Journal of Pediatric Hematology/Oncology, 41(1), 7–12. https://doi.org/10.1097/MPH.0000000000001234

    CAS  PubMed  Google Scholar 

  207. Gyugos, M., Lendvai, G., Kenessey, I., Schlachter, K., Halász, J., Nagy, P., … Kiss, A. (2014). MicroRNA expression might predict prognosis of epithelial hepatoblastoma. Virchows Archiv: an international journal of pathology, 464(4), 419–27. https://doi.org/10.1007/s00428-014-1549-y

    CAS  PubMed  Google Scholar 

  208. Jiao, C., Zhu, A., Jiao, X., Ge, J., & Xu, X. (2016). Combined low miR-34s are associated with unfavorable prognosis in children with hepatoblastoma: a Chinese population-based study. Journal of pediatric surgery, 51(8), 1355–61. https://doi.org/10.1016/j.jpedsurg.2016.02.091

    PubMed  Google Scholar 

  209. Liu, S., Xie, F., Xiang, X., Liu, S., Dong, S., Qu, K., & Lin, T. (2017). Identification of differentially expressed genes, lncRNAs and miRNAs which are associated with tumor malignant phenotypes in hepatoblastoma patients. Oncotarget, 8(57), 97554–97564. https://doi.org/10.18632/oncotarget.22181

  210. Kelly, D., Sharif, K., Brown, R. M., & Morland, B. (2015). Hepatocellular carcinoma in children. Clinics in Liver Disease, 19(2), 433–447. https://doi.org/10.1016/j.cld.2015.01.010

    PubMed  Google Scholar 

  211. Schmid, I., & von Schweinitz, D. (2017). Pediatric hepatocellular carcinoma: challenges and solutions. Journal of hepatocellular carcinoma, 4, 15–21. https://doi.org/10.2147/JHC.S94008

    Google Scholar 

  212. Chen, E., Xu, X., Liu, R., & Liu, T. (2018). Small but heavy role: microRNAs in hepatocellular carcinoma progression. BioMed Research International, 2018, 1–9. https://doi.org/10.1155/2018/6784607

    Google Scholar 

  213. ATCC: The Global Bioresource Center. (n.d.). 2018. Retrieved October 10, 2018, from https://www.atcc.org/

  214. Gramantieri, L., Ferracin, M., Fornari, F., Veronese, A., Sabbioni, S., Liu, C.-G., … Negrini, M. (2007). Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Research, 67(13), 6092–6099. https://doi.org/10.1158/0008-5472.CAN-06-4607

    CAS  PubMed  Google Scholar 

  215. Lin, C. J.-F., Gong, H.-Y., Tseng, H.-C., Wang, W.-L., & Wu, J.-L. (2008). miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochemical and biophysical research communications, 375(3), 315–20. https://doi.org/10.1016/j.bbrc.2008.07.154

    CAS  PubMed  Google Scholar 

  216. Xu, Q., Zhang, M., Tu, J., Pang, L., Cai, W., & LIU, X. (2015). MicroRNA-122 affects cell aggressiveness and apoptosis by targeting PKM2 in human hepatocellular carcinoma, 34(4). https://doi.org/10.3892/or.2015.4175

    CAS  PubMed  Google Scholar 

  217. Xu, J., Zhu, X., Wu, L., Yang, R., Yang, Z., Wang, Q., & Wu, F. (2012). MicroRNA-122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/β-catenin pathway, 32(5). https://doi.org/10.1111/j.1478-3231.2011.02750.x

    CAS  PubMed  Google Scholar 

  218. Kumar, S., Batra, A., Kanthaje, S., Ghosh, S., & Chakraborti, A. (2017). Crosstalk between microRNA-122 and FOX family genes in HepG2 cells, 242(4), 436–440. https://doi.org/10.1177/1535370216681548

    PubMed  PubMed Central  Google Scholar 

  219. Huang, H., Zhu, Y., & Li, S. (2015). MicroRNA-122 mimic transfection contributes to apoptosis in HepG2 cells. Molecular medicine reports, 12(5), 6918–24. https://doi.org/10.3892/mmr.2015.4254

    CAS  PubMed  Google Scholar 

  220. Shu, X.-L., Fan, C.-B., Long, B., Zhou, X., & Wang, Y. (2016). The anti-cancer effects of cisplatin on hepatic cancer are associated with modulation of miRNA-21 and miRNA-122 expression. European review for medical and pharmacological sciences, 20(21), 4459–4465. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27874954

  221. Yahya, S. M. M., Fathy, S. A., El-Khayat, Z. A., El-Toukhy, S. E., Hamed, A. R., Hegazy, M. G. A., & Nabih, H. K. (2018). Possible role of microRNA-122 in modulating multidrug resistance of hepatocellular carcinoma. Indian journal of clinical biochemistry: IJCB, 33(1), 21–30. https://doi.org/10.1007/s12291-017-0651-8

    PubMed  PubMed Central  Google Scholar 

  222. Zeng, X., Yuan, Y., Wang, T., Wang, H., Hu, X., Fu, Z., … Lu, G. (2017). Targeted imaging and induction of apoptosis of drug-resistant hepatoma cells by miR-122-loaded graphene-InP nanocompounds. Journal of Nanobiotechnology, 15(1), 9. https://doi.org/10.1186/s12951-016-0237-2

  223. LI, A., QIAN, J., HE, J., ZHANG, Q., ZHAI, A., SONG, W., … ZHANG, F. (2013). Modulation of miR-122 expression affects the interferon response in human hepatoma cells. Molecular Medicine Reports, 7(2), 585–590. https://doi.org/10.3892/mmr.2012.1233

    PubMed  Google Scholar 

  224. Najafi, Z., Sharifi, M., & Javadi, G. (2015). Degradation of miR-21 induces apoptosis and inhibits cell proliferation in human hepatocellular carcinoma. Cancer gene therapy, 22(11), 530–5. https://doi.org/10.1038/cgt.2015.51

    CAS  PubMed  Google Scholar 

  225. Connolly, E. C., Van Doorslaer, K., Rogler, L. E., & Rogler, C. E. (2010). Overexpression of miR-21 promotes an in vitro metastatic phenotype by targeting the tumor suppressor RHOB. Molecular cancer research: MCR, 8(5), 691–700. https://doi.org/10.1158/1541-7786.MCR-09-0465

    CAS  PubMed  Google Scholar 

  226. Hu, S., Tao, R., Wang, S., Wang, C., Zhao, X., Zhao, H., … Gao, Y. (2015). MicroRNA-21 promotes cell proliferation in human hepatocellular carcinoma partly by targeting HEPN1, 36(7). https://doi.org/10.1007/s13277-015-3213-9

    CAS  PubMed  Google Scholar 

  227. Yin, D., Wang, Y., Sai, W., Zhang, L., Miao, Y., Cao, L., … Yang, L. (2016). HBx-induced miR-21 suppresses cell apoptosis in hepatocellular carcinoma by targeting interleukin-12. Oncology reports, 36(4), 2305–12. https://doi.org/10.3892/or.2016.5026

    CAS  PubMed  Google Scholar 

  228. Xu, G., Zhang, Y., Wei, J., Jia, W., Ge, Z., Zhang, Z., & Liu, X. (2013). MicroRNA-21 promotes hepatocellular carcinoma HepG2 cell proliferation through repression of mitogen-activated protein kinase-kinase 3. BMC cancer, 13(1), 469. https://doi.org/10.1186/1471-2407-13-469

  229. Zhu, Q., Wang, Z., Hu, Y., Li, J., Li, X., Zhou, L., & Huang, Y. (2012). miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncology reports, 27(5), 1660–8. https://doi.org/10.3892/or.2012.1682

  230. Tomimaru, Y., Eguchi, H., Nagano, H., Wada, H., Tomokuni, A., Kobayashi, S., … Mori, M. (2010). MicroRNA-21 induces resistance to the anti-tumour effect of interferon-α/5-fluorouracil in hepatocellular carcinoma cells, 103(10). https://doi.org/10.1038/sj.bjc.6605958

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhu, X., Wu, L., Yao, J., Jiang, H., Wang, Q., Yang, Z., & Wu, F. (2015). MicroRNA let-7c inhibits cell proliferation and induces cell cycle arrest by targeting CDC25A in human hepatocellular carcinoma. PloS one, 10(4), e0124266. https://doi.org/10.1371/journal.pone.0124266

    PubMed  PubMed Central  Google Scholar 

  232. Long, J., Jiang, C., Liu, B., Fang, S., & Kuang, M. (2016). MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(5), 5821–8. https://doi.org/10.1007/s13277-015-4427-6

    PubMed  Google Scholar 

  233. Wang, Y., Zhao, Y.-R., Zhang, A.-Y., Ma, J., Wang, Z.-Z., & Zhang, X. (2017). Targeting of miR-20a against CFLAR to potentiate TRAIL-induced apoptotic sensitivity in HepG2 cells. European review for medical and pharmacological sciences, 21(9), 2087–2097. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28537677

  234. Fan, M.-Q., Huang, C.-B., Gu, Y., Xiao, Y., Sheng, J.-X., & Zhong, L. (2013). Decrease expression of microRNA-20a promotes cancer cell proliferation and predicts poor survival of hepatocellular carcinoma. Journal of experimental & clinical cancer research: CR, 32(1), 21. https://doi.org/10.1186/1756-9966-32-21

    CAS  Google Scholar 

  235. Li, S., Li, J., Fei, B.-Y., Shao, D., Pan, Y., Mo, Z.-H., … Chen, L. (2015). MiR-27a promotes hepatocellular carcinoma cell proliferation through suppression of its target gene peroxisome proliferator-activated receptor γ. Chinese medical journal, 128(7), 941–7. https://doi.org/10.4103/0366-6999.154302

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Zhao, N., Sun, H., Sun, B., Zhu, D., Zhao, X., Wang, Y., … Li, X. (2016). miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC, 6(1), 23091. https://doi.org/10.1038/srep23091

  237. Li, J.-M., Zhou, J., Xu, Z., Huang, H.-J., Chen, M.-J., & Ji, J.-S. (2018). MicroRNA-27a-3p inhibits cell viability and migration through down-regulating DUSP16 in hepatocellular carcinoma, 119(7), 5143–5152. https://doi.org/10.1002/jcb.26526

    CAS  PubMed  Google Scholar 

  238. Wu, X.-J., Li, Y., Liu, D., Zhao, L.-D., Bai, B., & Xue, M.-H. (2013). miR-27a as an oncogenic microRNA of hepatitis B virus- related hepatocellular carcinoma. Asian Pacific journal of cancer prevention: APJCP, 14(2), 885–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23621256

  239. Wang, C.-M., Wang, Y., Fan, C.-G., Xu, F.-F., Sun, W.-S., Liu, Y.-G., & Jia, J.-H. (2011). miR-29c targets TNFAIP3, inhibits cell proliferation and induces apoptosis in hepatitis B virus-related hepatocellular carcinoma. Biochemical and biophysical research communications, 411(3), 586–92. https://doi.org/10.1016/j.bbrc.2011.06.191

    CAS  PubMed  Google Scholar 

  240. He, R., Yang, L., Lin, X., Chen, X., Lin, X., Wei, F., … Chen, G. (2015). MiR-30a-5p suppresses cell growth and enhances apoptosis of hepatocellular carcinoma cells via targeting AEG-1. International journal of clinical and experimental pathology, 8(12), 15632–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26884832

  241. Li, W.-F., Dai, H., Ou, Q., Zuo, G.-Q., & Liu, C.-A. (2016). Overexpression of microRNA-30a-5p inhibits liver cancer cell proliferation and induces apoptosis by targeting MTDH/PTEN/AKT pathway. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(5), 5885–95. https://doi.org/10.1007/s13277-015-4456-1

    PubMed  Google Scholar 

  242. Zhou, K., Luo, X., Wang, Y., Cao, D., & Sun, G. (2017). MicroRNA-30a suppresses tumor progression by blocking Ras/Raf/MEK/ERK signaling pathway in hepatocellular carcinoma. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 93, 1025–1032. https://doi.org/10.1016/j.biopha.2017.07.029

    CAS  Google Scholar 

  243. Jiang, T., Li, M., Li, Q., Guo, Z., Sun, X., Zhang, X., … Xiao, P. (2017). MicroRNA-98-5p inhibits cell proliferation and induces cell apoptosis in hepatocellular carcinoma via targeting IGF2BP1. Oncology research, 25(7), 1117–1127. https://doi.org/10.3727/096504016X14821952695683

    Google Scholar 

  244. Zhao, C., Li, Y., Zhang, M., Yang, Y., & Chang, L. (2015). miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Human cell, 28(2), 91–9. https://doi.org/10.1007/s13577-014-0105-z

    CAS  PubMed  Google Scholar 

  245. Zheng, C., Li, J., Wang, Q., Liu, W., Zhou, J., Liu, R., … Cao, K. (2015). MicroRNA-195 functions as a tumor suppressor by inhibiting CBX4 in hepatocellular carcinoma. Oncology reports, 33(3), 1115–22. https://doi.org/10.3892/or.2015.3734

    CAS  PubMed  Google Scholar 

  246. Lin, L., Liang, H., Wang, Y., Yin, X., Hu, Y., Huang, J., … Chen, X. (2014). microRNA-141 inhibits cell proliferation and invasion and promotes apoptosis by targeting hepatocyte nuclear factor-3β in hepatocellular carcinoma cells. BMC cancer, 14(1), 879. https://doi.org/10.1186/1471-2407-14-879

  247. Shi, L., Wu, L., Chen, Z., Yang, J., Chen, X., Yu, F., … Lin, X. (2015). MiR-141 activates Nrf2-dependent antioxidant pathway via down-regulating the expression of Keap1 conferring the resistance of hepatocellular carcinoma cells to 5-fluorouracil. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 35(6), 2333–48. https://doi.org/10.1159/000374036

    CAS  PubMed  Google Scholar 

  248. Lou, K., Chen, N., Li, Z., Zhang, B., Wang, X., Chen, Y., … Wang, H. (2017). MicroRNA-142-5p overexpression inhibits cell growth and induces apoptosis by regulating FOXO in hepatocellular carcinoma cells. Oncology research, 25(1), 65–73. https://doi.org/10.3727/096504016X14719078133366

    Google Scholar 

  249. Zhang, J., Shi, Y., Hong, D., Song, M., Huang, D., Wang, C., & Zhao, G. (2015). MiR-148b suppresses cell proliferation and invasion in hepatocellular carcinoma by targeting WNT1/β-catenin pathway. Scientific reports, 5(1), 8087. https://doi.org/10.1038/srep08087

  250. Zhao, Y., Li, F., Zhang, X., Liu, A., Qi, J., Cui, H., & Zhao, P. (2015). MicroRNA-194 acts as a prognostic marker and inhibits proliferation in hepatocellular carcinoma by targeting MAP4K4. International journal of clinical and experimental pathology, 8(10), 12446–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26722431

  251. Yang, Y., Li, M., Chang, S., Wang, L., Song, T., Gao, L., … Huang, C. (2014). MicroRNA-195 acts as a tumor suppressor by directly targeting Wnt3a in HepG2 hepatocellular carcinoma cells. Molecular medicine reports, 10(5), 2643–8. https://doi.org/10.3892/mmr.2014.2526

    CAS  PubMed  Google Scholar 

  252. Rebucci, M., Sermeus, A., Leonard, E., Delaive, E., Dieu, M., Fransolet, M., … Michiels, C. (2015). miRNA-196b inhibits cell proliferation and induces apoptosis in HepG2 cells by targeting IGF2BP1. Molecular cancer, 14(1), 79. https://doi.org/10.1186/s12943-015-0349-6

  253. Gui, R., Huang, R., Zhang, J.-H., Wen, X.-H., & Nie, X.-M. (2016). MicroRNA-199a-5p inhibits VEGF-induced tumorigenesis through targeting oxidored-nitro domain-containing protein 1 in human HepG2 cells. Oncology reports, 35(4), 2216–22. https://doi.org/10.3892/or.2016.4550

    CAS  PubMed  Google Scholar 

  254. Dou, C., Wang, Y., Li, C., Liu, Z., Jia, Y., Li, Q., … Tu, K. (2015). MicroRNA-212 suppresses tumor growth of human hepatocellular carcinoma by targeting FOXA1. Oncotarget, 6(15), 13216–28. https://doi.org/10.18632/oncotarget.3916

  255. Tu, H., Wei, G., Cai, Q., Chen, X., Sun, Z., Cheng, C., … Zeng, T. (2015). MicroRNA-212 inhibits hepatocellular carcinoma cell proliferation and induces apoptosis by targeting FOXA1. OncoTargets and therapy, 8, 2227–35. https://doi.org/10.2147/OTT.S87976

  256. Zheng, W.-W., Zhou, J., Zhang, C.-H., & Liu, X.-S. (2016). MicroRNA-216b is downregulated in hepatocellular carcinoma and inhibits HepG2 cell growth by targeting Forkhead box protein M1. European review for medical and pharmacological sciences, 20(12), 2541–50. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27383303

  257. Dong, Z., Qi, R., Guo, X., Zhao, X., Li, Y., Zeng, Z., … Lu, Y. (2017). MiR-223 modulates hepatocellular carcinoma cell proliferation through promoting apoptosis via the Rab1-mediated mTOR activation. Biochemical and biophysical research communications, 483(1), 630–637. https://doi.org/10.1016/j.bbrc.2016.12.091

    CAS  PubMed  Google Scholar 

  258. Fang, L., Zhang, H.-B., Li, H., Fu, Y., & Yang, G.-S. (2012). miR-548c-5p inhibits proliferation and migration and promotes apoptosis in CD90(+) HepG2 cells. Radiology and oncology, 46(3), 233–41. https://doi.org/10.2478/v10019-012-0025-z

  259. Guo, W., Tan, W., Liu, S., Huang, X., Lin, J., Liang, R., … Wang, C. (2015). MiR-570 inhibited the cell proliferation and invasion through directly targeting B7-H1 in hepatocellular carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 36(11), 9049–57. https://doi.org/10.1007/s13277-015-3644-3

    CAS  PubMed  Google Scholar 

  260. Shan, X., Miao, Y., Fan, R., Qian, H., Chen, P., Liu, H., … Zhou, F. (2013). MiR-590-5P inhibits growth of HepG2 cells via decrease of S100A10 expression and inhibition of the Wnt pathway, 14(4). https://doi.org/10.3390/ijms14048556

    PubMed  PubMed Central  Google Scholar 

  261. Huang, Y., Liu, J., Fan, L., Wang, F., Yu, H., Wei, W., & Sun, G. (2016). miR-663 overexpression induced by endoplasmic reticulum stress modulates hepatocellular carcinoma cell apoptosis via transforming growth factor beta 1. OncoTargets and therapy, 9, 1623–33. https://doi.org/10.2147/OTT.S96902

  262. Chu, Y., Fan, W., Guo, W., Zhang, Y., Wang, L., Guo, L., … Xu, G. (2017). miR-1247-5p functions as a tumor suppressor in human hepatocellular carcinoma by targeting Wnt3. Oncology reports, 38(1), 343–351. https://doi.org/10.3892/or.2017.5702

    CAS  PubMed  Google Scholar 

  263. Liu, Y., Liang, H., & Jiang, X. (2015). MiR-1297 promotes apoptosis and inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting HMGA2. International journal of molecular medicine, 36(5), 1345–52. https://doi.org/10.3892/ijmm.2015.2341

    CAS  PubMed  Google Scholar 

  264. Liu, C., Wang, C., Wang, J., & Huang, H. (2016). miR-1297 promotes cell proliferation by inhibiting RB1 in liver cancer. Oncology letters, 12(6), 5177–5182. https://doi.org/10.3892/ol.2016.5326

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Li, D., Yang, P., Li, H., Cheng, P., Zhang, L., Wei, D., … Zhang, T. (2012). MicroRNA-1 inhibits proliferation of hepatocarcinoma cells by targeting endothelin-1. Life sciences, 91(11–12), 440–447. https://doi.org/10.1016/j.lfs.2012.08.015

    CAS  PubMed  Google Scholar 

  266. WEI, W., HU, Z., FU, H., TIE, Y., ZHANG, H., WU, Y., & ZHENG, X. (2012). MicroRNA-1 and microRNA-499 downregulate the expression of the ets1 proto-oncogene in HepG2 cells. Oncology Reports, 28(2), 701–706. https://doi.org/10.3892/or.2012.1850

    CAS  PubMed  Google Scholar 

  267. Li, Q., Zhou, L., Yang, F., Wang, G., Zheng, H., Wang, D., … Dou, K. (2012). MicroRNA-10b promotes migration and invasion through CADM1 in human hepatocellular carcinoma cells. Tumor Biology, 33(5), 1455–1465. https://doi.org/10.1007/s13277-012-0396-1

    CAS  PubMed  Google Scholar 

  268. Zeng, Y.-B., Liang, X.-H., Zhang, G.-X., Jiang, N., Zhang, T., Huang, J.-Y., … Zeng, X.-C. (2016). miRNA-135a promotes hepatocellular carcinoma cell migration and invasion by targeting forkhead box O1. Cancer cell international, 16(1), 63. https://doi.org/10.1186/s12935-016-0328-z

  269. Han, Z.-B., Chen, H.-Y., Fan, J.-W., Wu, J.-Y., Tang, H.-M., & Peng, Z.-H. (2012). Up-regulation of microRNA-155 promotes cancer cell invasion and predicts poor survival of hepatocellular carcinoma following liver transplantation. Journal of Cancer Research and Clinical Oncology, 138(1), 153–161. https://doi.org/10.1007/s00432-011-1076-z

    PubMed  Google Scholar 

  270. Xie, Q., Chen, X., Lu, F., Zhang, T., Hao, M., Wang, Y., … Zhuang, H. (2012). Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex-determining region Y box 6 in hepatocellular carcinoma. Cancer, 118(9), 2431–42. https://doi.org/10.1002/cncr.26566

    PubMed  Google Scholar 

  271. Shan, S. W., Fang, L., Shatseva, T., Rutnam, Z. J., Yang, X., Du, W., … Yang, B. B. (2013). Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways, 126. https://doi.org/10.1242/jcs.122895

    CAS  PubMed  Google Scholar 

  272. Zhang, X., Yu, B., Zhang, F., Guo, Z., & Li, L. (2017). microRNA-18a promotes cell migration and invasion through inhibiting Dicer l expression in hepatocellular carcinoma in vitro. Chinese medical sciences journal = Chung-kuo i hsueh k’o hsueh tsa chih, 32(1), 34–3. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/28399983

  273. Tu, K., Zheng, X., Dou, C., Li, C., Yang, W., Yao, Y., & Liu, Q. (2014). MicroRNA-130b promotes cell aggressiveness by inhibiting peroxisome proliferator-activated receptor gamma in human hepatocellular carcinoma. International journal of molecular sciences, 15(11), 20486–99. https://doi.org/10.3390/ijms151120486

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Chuang, K.-H., Whitney-Miller, C. L., Chu, C.-Y., Zhou, Z., Dokus, M. K., Schmit, S., & Barry, C. T. (2015). MicroRNA-494 is a master epigenetic regulator of multiple invasion-suppressor microRNAs by targeting ten eleven translocation 1 in invasive human hepatocellular carcinoma tumors. Hepatology (Baltimore, Md.), 62(2), 466–80. https://doi.org/10.1002/hep.27816

    CAS  PubMed  Google Scholar 

  275. Li, Z.-B., Li, Z.-Z., Li, L., Chu, H.-T., & Jia, M. (2015). MiR-21 and miR-183 can simultaneously target SOCS6 and modulate growth and invasion of hepatocellular carcinoma (HCC) cells. European review for medical and pharmacological sciences, 19(17), 3208–17. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26400524

  276. Mao, B., Xiao, H., Zhang, Z., Wang, D., & Wang, G. (2015). MicroRNA-21 regulates the expression of BTG2 in HepG2 liver cancer cells. Molecular medicine reports, 12(4), 4917–24. https://doi.org/10.3892/mmr.2015.4051

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Chai, Z.-T., Kong, J., Zhu, X.-D., Zhang, Y.-Y., Lu, L., Zhou, J.-M., … Sun, H.-C. (2013). MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PIK3C2α/Akt/HIF-1α pathway in hepatocellular carcinoma. PloS one, 8(10), e77957. https://doi.org/10.1371/journal.pone.0077957

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Wang, G., Sun, Y., He, Y., Ji, C., Hu, B., & Sun, Y. (2015). miR-26a promoted by interferon-alpha inhibits hepatocellular carcinoma proliferation and migration by blocking EZH2. Genetic testing and molecular biomarkers, 19(1), 30–6. https://doi.org/10.1089/gtmb.2014.0245

    PubMed  Google Scholar 

  279. Ma, D.-N., Chai, Z.-T., Zhu, X.-D., Zhang, N., Zhan, D.-H., Ye, B.-G., … Tang, Z.-Y. (2016). MicroRNA-26a suppresses epithelial-mesenchymal transition in human hepatocellular carcinoma by repressing enhancer of zeste homolog 2, 9(1), 1. https://doi.org/10.1186/s13045-015-0229-y

  280. Wang, Y., Cui, M., Sun, B., Liu, F., Zhang, X., & Ye, L. (2014). MiR-506 suppresses proliferation of hepatoma cells through targeting YAP mRNA 3’UTR. Acta pharmacologica Sinica, 35(9), 1207–14. https://doi.org/10.1038/aps.2014.59

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Lu, Z., Zhang, W., Gao, S., Jiang, Q., Xiao, Z., Ye, L., & Zhang, X. (2015). MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA. Biochemical and biophysical research communications, 468(1–2), 8–13. https://doi.org/10.1016/j.bbrc.2015.11.008

    CAS  PubMed  Google Scholar 

  282. Shen, G., Lin, Y., Yang, X., Zhang, J., Xu, Z., & Jia, H. (2014). MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC cancer, 14(1), 393. https://doi.org/10.1186/1471-2407-14-393

  283. Wang, J., Li, J., Wang, X., Zheng, C., & Ma, W. (2013). Downregulation of microRNA-214 and overexpression of FGFR-1 contribute to hepatocellular carcinoma metastasis. Biochemical and biophysical research communications, 439(1), 47–53. https://doi.org/10.1016/j.bbrc.2013.08.032

    CAS  PubMed  Google Scholar 

  284. Li, Y., Li, Y., Chen, Y., Xie, Q., Dong, N., Gao, Y., … Wang, S. (2017). MicroRNA-214-3p inhibits proliferation and cell cycle progression by targeting MELK in hepatocellular carcinoma and correlates cancer prognosis. Cancer cell international, 17(1), 102. https://doi.org/10.1186/s12935-017-0471-1

  285. Li, H., Wang, H., & Ren, Z. (2018). MicroRNA-214-5p inhibits the invasion and migration of hepatocellular carcinoma cells by targeting Wiskott-Aldrich syndrome like. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 46(2), 757–764. https://doi.org/10.1159/000488734

    CAS  PubMed  Google Scholar 

  286. Cui, W., Li, Y., Xu, K., Chen, G., Lu, X., Duan, Q., & Kang, Z. (2016). miR-361-5p inhibits hepatocellular carcinoma cell proliferation and invasion by targeting VEGFA. Biochemical and biophysical research communications, 479(4), 901–906. https://doi.org/10.1016/j.bbrc.2016.09.076

    CAS  PubMed  Google Scholar 

  287. Guo, C., Zhao, D., Zhang, Q., Liu, S., & Sun, M.-Z. (2018). miR-429 suppresses tumor migration and invasion by targeting CRKL in hepatocellular carcinoma via inhibiting Raf/MEK/ERK pathway and epithelial-mesenchymal transition. Scientific reports, 8(1), 2375. https://doi.org/10.1038/s41598-018-20258-8

  288. Yang, Z., Tsuchiya, H., Zhang, Y., Hartnett, M. E., & Wang, L. (2013). MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. The Journal of biological chemistry, 288(40), 28893–9. https://doi.org/10.1074/jbc.M113.502682

    CAS  Google Scholar 

  289. Xue, J., Chen, L.-Z., Li, Z.-Z., Hu, Y., Yan, S., & Liu, L.-Y. (2015). MicroRNA-433 inhibits cell proliferation in hepatocellular carcinoma by targeting p21 activated kinase (PAK4). Molecular and cellular biochemistry, 399(1–2), 77–86. https://doi.org/10.1007/s11010-014-2234-9

    PubMed  Google Scholar 

  290. Mao, J., Hu, X., Pang, P., Zhou, B., Li, D., & Shan, H. (2017). miR-30e acts as a tumor suppressor in hepatocellular carcinoma partly via JAK1/STAT3 pathway. Oncology reports, 38(1), 393–401. https://doi.org/10.3892/or.2017.5683

    CAS  PubMed  Google Scholar 

  291. Zhao, G., Han, C., Zhang, Z., Wang, L., & Xu, J. (2017). Increased expression of microRNA-31-5p inhibits cell proliferation, migration, and invasion via regulating Sp1 transcription factor in HepG2 hepatocellular carcinoma cell line. Biochemical and biophysical research communications, 490(2), 371–377. https://doi.org/10.1016/j.bbrc.2017.06.050

    CAS  PubMed  Google Scholar 

  292. Han, S.-Y., Han, H.-B., Tian, X.-Y., Sun, H., Xue, D., Zhao, C., … Li, P.-P. (2016). MicroRNA-33a-3p suppresses cell migration and invasion by directly targeting PBX3 in human hepatocellular carcinoma. Oncotarget, 7(27), 42461–42473. https://doi.org/10.18632/oncotarget.9886

  293. Tian, Q., Xiao, Y., Wu, Y., Liu, Y., Song, Z., Gao, W., … Sun, Z. (2016). MicroRNA-33b suppresses the proliferation and metastasis of hepatocellular carcinoma cells through the inhibition of Sal-like protein 4 expression. International journal of molecular medicine, 38(5), 1587–1595. https://doi.org/10.3892/ijmm.2016.2754

    CAS  PubMed  Google Scholar 

  294. Song, J., Wang, Q., Luo, Y., Yuan, P., Tang, C., Hui, Y., & Wang, Z. (2015). miR-34c-3p inhibits cell proliferation, migration and invasion of hepatocellular carcinoma by targeting MARCKS. International journal of clinical and experimental pathology, 8(10), 12728–37. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26722462

  295. Wang, L., Wu, J., & Xie, C. (2017). miR-92a promotes hepatocellular carcinoma cells proliferation and invasion by FOXA2 targeting. Iranian journal of basic medical sciences, 20(7), 783–790. https://doi.org/10.22038/IJBMS.2017.9010

  296. Liu, Z., Wang, J., Mao, Y., Zou, B., & Fan, X. (2016). MicroRNA-101 suppresses migration and invasion via targeting vascular endothelial growth factor-C in hepatocellular carcinoma cells. Oncology letters, 11(1), 433–438. https://doi.org/10.3892/ol.2015.3832

    PubMed  PubMed Central  Google Scholar 

  297. Cao, K., Li, J., Zhao, Y., Wang, Q., Zeng, Q., He, S., … Cao, P. (2016). miR-101 inhibiting cell proliferation, migration and invasion in hepatocellular carcinoma through downregulating girdin, 39(2), 96–102. https://doi.org/10.14348/molcells.2016.2161

  298. Jia, H., Wang, H., Yao, Y., Wang, C., & Li, P. (2018). MiR-136 inhibits malignant progression of hepatocellular carcinoma cells by targeting cyclooxygenase 2. Oncology research, 26(6), 967–976. https://doi.org/10.3727/096504018X15148192843443

    Google Scholar 

  299. Yang, L., Guo, Y., Liu, X., Wang, T., Tong, X., Lei, K., … Xu, Q. (2018). The tumor suppressive miR-302c-3p inhibits migration and invasion of hepatocellular carcinoma cells by targeting TRAF4. Journal of Cancer, 9(15), 2693–2701. https://doi.org/10.7150/jca.25569

    PubMed  PubMed Central  Google Scholar 

  300. Ding, W., Tan, H., Zhao, C., Li, X., Li, Z., Jiang, C., … Wang, L. (2015). MiR-145 suppresses cell proliferation and motility by inhibiting ROCK1 in hepatocellular carcinoma. Tumor Biology, 37(5), 1–6. https://doi.org/10.1007/s13277-015-4462-3

    PubMed  Google Scholar 

  301. Zu, Y., Yang, Y., Zhu, J., Bo, X., Hou, S., Zhang, B., … Zheng, J. (2016). MiR-146a suppresses hepatocellular carcinoma by downregulating TRAF6. American journal of cancer research, 6(11), 2502–2513. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27904767

  302. Liu, W., Xu, C., Wan, H., Liu, C., Wen, C., Lu, H., & Wan, F. (2014). MicroRNA-206 overexpression promotes apoptosis, induces cell cycle arrest and inhibits the migration of human hepatocellular carcinoma HepG2 cells. International journal of molecular medicine, 34(2), 420–8. https://doi.org/10.3892/ijmm.2014.1800

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Jiang, G., Cui, Y., Yu, X., Wu, Z., Ding, G., & Cao, L. (2015). miR-211 suppresses hepatocellular carcinoma by downregulating SATB2. Oncotarget, 6(11), 9457–66. https://doi.org/10.18632/oncotarget.3265

  304. Xie, F., Yuan, Y., Xie, L., Ran, P., Xiang, X., Huang, Q., … Zheng, S. (2017). miRNA-320a inhibits tumor proliferation and invasion by targeting c-Myc in human hepatocellular carcinoma. OncoTargets and therapy, 10, 885–894. https://doi.org/10.2147/OTT.S122992

    Google Scholar 

  305. Liu, H., Li, W., Chen, C., Pei, Y., & Long, X. (2015). MiR-335 acts as a potential tumor suppressor miRNA via downregulating ROCK1 expression in hepatocellular carcinoma. Tumor Biology, 36(8), 6313–6319. https://doi.org/10.1007/s13277-015-3317-2

    CAS  PubMed  Google Scholar 

  306. Liu, Y., Zhang, W., Liu, S., Liu, K., Ji, B., & Wang, Y. (2017). miR-365 targets ADAM10 and suppresses the cell growth and metastasis of hepatocellular carcinoma. Oncology reports, 37(3), 1857–1864. https://doi.org/10.3892/or.2017.5423

    CAS  PubMed  Google Scholar 

  307. Huang, X.-P., Hou, J., Shen, X.-Y., Huang, C.-Y., Zhang, X.-H., Xie, Y.-A., & Luo, X.-L. (2015). MicroRNA-486-5p, which is downregulated in hepatocellular carcinoma, suppresses tumor growth by targeting PIK3R1. The FEBS journal, 282(3), 579–94. https://doi.org/10.1111/febs.13167

    Google Scholar 

  308. Wang, Y., Xie, Y., Li, X., Lin, J., Zhang, S., Li, Z., … Gong, R. (2018). MiR-876-5p acts as an inhibitor in hepatocellular carcinoma progression by targeting DNMT3A. Pathology, research and practice, 214(7), 1024–1030. https://doi.org/10.1016/j.prp.2018.04.012

    CAS  Google Scholar 

  309. Fang, L., Yang, N., Ma, J., Fu, Y., & Yang, G.-S. (2012). microRNA-1301-mediated inhibition of tumorigenesis. Oncology reports, 27(4), 929–34. https://doi.org/10.3892/or.2011.1589

    PubMed  PubMed Central  Google Scholar 

  310. Chang, W., Zhang, L., Xian, Y., & Yu, Z. (2017). MicroRNA-33a promotes cell proliferation and inhibits apoptosis by targeting PPARα in human hepatocellular carcinoma. Experimental and therapeutic medicine, 13(5), 2507–2514. https://doi.org/10.3892/etm.2017.4236

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Li, N., Fu, H., Tie, Y., Hu, Z., Kong, W., Wu, Y., & Zheng, X. (2009). miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer letters, 275(1), 44–53. https://doi.org/10.1016/j.canlet.2008.09.035

    CAS  PubMed  Google Scholar 

  312. Wen, F., Li, B., Huang, C., Wei, Z., Zhou, Y., Liu, J., & Zhang, H. (2015). MiR-34a is involved in the decrease of ATP contents induced by resistin through target on ATP5S in HepG2 cells. Biochemical genetics, 53(11–12), 301–9. https://doi.org/10.1007/s10528-015-9693-x

    CAS  PubMed  Google Scholar 

  313. Ye, J., Yao, Y., Song, Q., Li, S., Hu, Z., Yu, Y., … Wang, Q. K. (2016). Up-regulation of miR-95-3p in hepatocellular carcinoma promotes tumorigenesis by targeting p21 expression. Scientific reports, 6(1), 34034. https://doi.org/10.1038/srep34034

  314. Yu, L., Zhou, L., Cheng, Y., Sun, L., Fan, J., Liang, J., … Zhu, L. (2014). MicroRNA-543 acts as an oncogene by targeting PAQR3 in hepatocellular carcinoma. American journal of cancer research, 4(6), 897–906. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25520877

  315. Liu, T., Zhang, X., Sha, K., Liu, X., Zhang, L., & Wang, B. (2015). miR-709 up-regulated in hepatocellular carcinoma, promotes proliferation and invasion by targeting GPC5. Cell proliferation, 48(3), 330–7. https://doi.org/10.1111/cpr.12181

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Xu, D., He, X., Chang, Y., Xu, C., Jiang, X., Sun, S., & Lin, J. (2013). Inhibition of miR-96 expression reduces cell proliferation and clonogenicity of HepG2 hepatoma cells. Oncology reports, 29(2), 653–61. https://doi.org/10.3892/or.2012.2138

    PubMed  Google Scholar 

  317. Gao, B., Gao, K., Li, L., Huang, Z., & Lin, L. (2014). miR-184 functions as an oncogenic regulator in hepatocellular carcinoma (HCC). Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 68(2), 143–8. https://doi.org/10.1016/j.biopha.2013.09.005

    CAS  Google Scholar 

  318. Zhang, J.-J., Wang, C.-Y., Hua, L., Yao, K.-H., Chen, J.-T., & Hu, J.-H. (2015). miR-107 promotes hepatocellular carcinoma cell proliferation by targeting Axin2. International journal of clinical and experimental pathology, 8(5), 5168–74. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26191213

  319. Wu, N., Liu, X., Xu, X., Fan, X., Liu, M., Li, X., … Tang, H. (2011). MicroRNA-373, a new regulator of protein phosphatase 6, functions as an oncogene in hepatocellular carcinoma. The FEBS journal, 278(12), 2044–54. https://doi.org/10.1111/j.1742-4658.2011.08120.x

    CAS  Google Scholar 

  320. Zhang, S., Yang, Z., Cai, X., Zhao, M., Sun, M.-M., Li, J., … Zhang, X. (2017). miR-511 promotes the proliferation of human hepatoma cells by targeting the 3′UTR of B cell translocation gene 1 (BTG1) mRNA, 38(8), 1161–1170. https://doi.org/10.1038/aps.2017.62

    CAS  PubMed  PubMed Central  Google Scholar 

  321. Lang, Q., & Ling, C. (2012). MiR-124 suppresses cell proliferation in hepatocellular carcinoma by targeting PIK3CA., 426(2). https://doi.org/10.1016/j.bbrc.2012.08.075

    CAS  PubMed  Google Scholar 

  322. Zhao, L., & Wang, W. (2015). miR-125b suppresses the proliferation of hepatocellular carcinoma cells by targeting Sirtuin7. International journal of clinical and experimental medicine, 8(10), 18469–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26770454

  323. Zhou, J., Zhang, Y., Qi, Y., Yu, D., Shao, Q., & Liang, J. (2017). MicroRNA-152 inhibits tumor cell growth by directly targeting RTKN in hepatocellular carcinoma. Oncology reports, 37(2), 1227–1234. https://doi.org/10.3892/or.2016.5290

    PubMed  Google Scholar 

  324. Li, X.-Y., Feng, X.-Z., Tang, J.-Z., Dong, K., Wang, J.-F., Meng, C.-C., … Sun, Z.-W. (2016). MicroRNA-200b inhibits the proliferation of hepatocellular carcinoma by targeting DNA methyltransferase 3a. Molecular medicine reports, 13(5), 3929–35. https://doi.org/10.3892/mmr.2016.4995

    CAS  PubMed  Google Scholar 

  325. Wei, W., Wanjun, L., Hui, S., Dongyue, C., Xinjun, Y., & Jisheng, Z. (2013). miR-203 inhibits proliferation of HCC cells by targeting survivin. Cell biochemistry and function, 31(1), 82–5. https://doi.org/10.1002/cbf.2863

    PubMed  Google Scholar 

  326. Zhang, A., Lakshmanan, J., Motameni, A., & Harbrecht, B. G. (2018). MicroRNA-203 suppresses proliferation in liver cancer associated with PIK3CA, p38 MAPK, c-Jun, and GSK3 signaling. Molecular and cellular biochemistry, 441(1–2), 89–98. https://doi.org/10.1007/s11010-017-3176-9

    PubMed  Google Scholar 

  327. Liu, K., Li, X., Cao, Y., Ge, Y., Wang, J., & Shi, B. (2015). MiR-132 inhibits cell proliferation, invasion and migration of hepatocellular carcinoma by targeting PIK3R3. International journal of oncology, 47(4), 1585–93. https://doi.org/10.3892/ijo.2015.3112

    CAS  PubMed  Google Scholar 

  328. Zhang, W., Liu, K., Liu, S., Ji, B., Wang, Y., & Liu, Y. (2015). MicroRNA-133a functions as a tumor suppressor by targeting IGF-1R in hepatocellular carcinoma. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 36(12), 9779–88. https://doi.org/10.1007/s13277-015-3749-8

    CAS  PubMed  Google Scholar 

  329. Chen, X., Bo, L., Zhao, X., & Chen, Q. (2015). MicroRNA-133a inhibits cell proliferation, colony formation ability, migration and invasion by targeting matrix metallopeptidase 9 in hepatocellular carcinoma. Molecular medicine reports, 11(5), 3900–7. https://doi.org/10.3892/mmr.2015.3232

    CAS  PubMed  Google Scholar 

  330. Pang, X., Huang, K., Zhang, Q., Zhang, Y., & Niu, J. (2015). miR-154 targeting ZEB2 in hepatocellular carcinoma functions as a potential tumor suppressor. Oncology reports, 34(6), 3272–9. https://doi.org/10.3892/or.2015.4321

    CAS  PubMed  Google Scholar 

  331. Tian, Z., Jiang, H., Liu, Y., Huang, Y., Xiong, X., Wu, H., & Dai, X. (2016). MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Experimental cell research, 343(2), 135–147. https://doi.org/10.1016/j.yexcr.2016.03.027

    CAS  PubMed  Google Scholar 

  332. Li, H., Xiang, Z., Liu, Y., Xu, B., & Tang, J. (2017). MicroRNA-133b inhibits proliferation, cellular migration, and invasion via targeting LASP1 in hepatocarcinoma cells. Oncology research, 25(8), 1269–1282. https://doi.org/10.3727/096504017X14850151453092

    Google Scholar 

  333. Zhu, M., Li, M., Wang, T., Linghu, E., & Wu, B. (2016). MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(10), 13995–14008. https://doi.org/10.1007/s13277-016-5230-8

    CAS  PubMed  Google Scholar 

  334. Cui, S., Sun, Y., Liu, Y., Liu, C., Wang, J., Hao, G., & Sun, Q. (2018). [Corrigendum] MicroRNA-137 has a suppressive role in liver cancer via targeting EZH2. Molecular medicine reports, 17(5), 7460. https://doi.org/10.3892/mmr.2018.8785

  335. Liu, X., Gong, J., & Xu, B. (2015). miR-143 down-regulates TLR2 expression in hepatoma cells and inhibits hepatoma cell proliferation and invasion. International journal of clinical and experimental pathology, 8(10), 12738–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26722463

  336. Xue, F., Yin, J., Xu, L., & Wang, B. (2017). MicroRNA-143 inhibits tumorigenesis in hepatocellular carcinoma by downregulating GATA6. Experimental and therapeutic medicine, 13(6), 2667–2674. https://doi.org/10.3892/etm.2017.4348

    CAS  PubMed  PubMed Central  Google Scholar 

  337. Wang, L., Wang, Y. M., Xu, S., Wang, W. G., Chen, Y., MAO, J. Y., … Le Tian, B. (2015). MicroRNA-215 is upregulated by treatment with Adriamycin and leads to the chemoresistance of hepatocellular carcinoma cells and tissues, 12(4). https://doi.org/10.3892/mmr.2015.4012

    CAS  PubMed  Google Scholar 

  338. Li, Q., Wang, G., Shan, J.-L., Yang, Z.-X., Wang, H.-Z., Feng, J., … Wang, D. (2010). MicroRNA-224 is upregulated in HepG2 cells and involved in cellular migration and invasion. Journal of gastroenterology and hepatology, 25(1), 164–71. https://doi.org/10.1111/j.1440-1746.2009.05971.x

    PubMed  Google Scholar 

  339. Ma, D., Tao, X., Gao, F., Fan, C., & Wu, D. (2012). miR-224 functions as an onco-miRNA in hepatocellular carcinoma cells by activating AKT signaling. Oncology letters, 4(3), 483–488. https://doi.org/10.3892/ol.2012.742

    CAS  PubMed  PubMed Central  Google Scholar 

  340. Xu, H., Zhao, L., Fang, Q., Sun, J., Zhang, S., Zhan, C., … Zhang, Y. (2014). MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PloS one, 9(12), e115565. https://doi.org/10.1371/journal.pone.0115565

    PubMed  PubMed Central  Google Scholar 

  341. Xiao, Y., Tian, Q., He, J., Huang, M., Yang, C., & Gong, L. (2016). MiR-503 inhibits hepatocellular carcinoma cell growth via inhibition of insulin-like growth factor 1 receptor. OncoTargets and therapy, 9, 3535–44. https://doi.org/10.2147/OTT.S106351

  342. Yang, X., Zang, J., Pan, X., Yin, J., Xiang, Q., Yu, J., … Lei, X. (2017). miR-503 inhibits proliferation making human hepatocellular carcinoma cells susceptible to 5-fluorouracil by targeting EIF4E. Oncology reports, 37(1), 563–570. https://doi.org/10.3892/or.2016.5220

    PubMed  Google Scholar 

  343. Yu, M., Xue, H., Wang, Y., Shen, Q., Jiang, Q., Zhang, X., Tian, Y. (2017). miR-345 inhibits tumor metastasis and EMT by targeting IRF1-mediated mTOR/STAT3/AKT pathway in hepatocellular carcinoma. International journal of oncology, 50(3), 975–983. https://doi.org/10.3892/ijo.2017.3852

    CAS  PubMed  Google Scholar 

  344. Zheng, Q., Sheng, Q., Jiang, C., Shu, J., Chen, J., Nie, Z., Zhang, Y. (2014). MicroRNA-452 promotes tumorigenesis in hepatocellular carcinoma by targeting cyclin-dependent kinase inhibitor 1B. Molecular and cellular biochemistry, 389(1–2), 187–95. https://doi.org/10.1007/s11010-013-1940-z

    CAS  PubMed  Google Scholar 

  345. Tang, H., Zhang, J., Yu, Z., Ye, L., Li, K., Ding, F., Meng, W. (2017). Mir-452-3p: a potential tumor promoter that targets the CPEB3/EGFR axis in human hepatocellular carcinoma. Technology in cancer research & treatment, 16(6), 1136–1149. https://doi.org/10.1177/1533034617735931

    CAS  Google Scholar 

  346. Yu, L., Gong, X., Sun, L., Yao, H., Lu, B., & Zhu, L. (2015). miR-454 functions as an oncogene by inhibiting CHD5 in hepatocellular carcinoma. Oncotarget, 6(36), 39225–34. https://doi.org/10.18632/oncotarget.4407

  347. Zhou, Y., Li, Y., Ye, J., Jiang, R., Yan, H., Yang, X., … Zhang, J. (2013). MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver international: official journal of the International Association for the Study of the Liver, 33(8), 1271–80. https://doi.org/10.1111/liv.12190

    CAS  PubMed  Google Scholar 

  348. Zhao, G., Wang, T., Huang, Q.-K., Pu, M., Sun, W., Zhang, Z.-C., Tao, K.-S. (2016). MicroRNA-548a-5p promotes proliferation and inhibits apoptosis in hepatocellular carcinoma cells by targeting Tg737. World journal of gastroenterology, 22(23), 5364–73. https://doi.org/10.3748/wjg.v22.i23.5364

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Li, X., Zhang, W., Zhou, L., Yue, D., & Su, X. (2015). MicroRNA-592 targets DEK oncogene and suppresses cell growth in the hepatocellular carcinoma cell line HepG2. International journal of clinical and experimental pathology, 8(10), 12455–63. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26722432

  350. Han, G., Zhang, L., Ni, X., Chen, Z., Pan, X., Zhu, Q., Wang, X. (2018). MicroRNA-873 promotes cell proliferation, migration, and invasion by directly targeting TSLC1 in hepatocellular carcinoma. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 46(6), 2261–2270. https://doi.org/10.1159/000489594

    CAS  PubMed  Google Scholar 

  351. Lu, S., Wu, J., Gao, Y., Han, G., Ding, W., & Huang, X. (2016). MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. International journal of biological macromolecules, 86, 43–9. https://doi.org/10.1016/j.ijbiomac.2016.01.019

    CAS  PubMed  Google Scholar 

  352. Etzioni, R., Urban, N., Ramsey, S., McIntosh, M., Schwartz, S., Reid, B., Hartwell, L. (2003). The case for early detection. Nature reviews. Cancer, 3(4), 243–52. https://doi.org/10.1038/nrc1041

    CAS  PubMed  Google Scholar 

  353. Murray, M. J., Raby, K. L., Saini, H. K., Bailey, S., Wool, S. V, Tunnacliffe, J. M., Coleman, N. (2015). Solid tumors of childhood display specific serum microRNA profiles. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 24(2), 350–60. https://doi.org/10.1158/1055-9965.EPI-14-0669

    Google Scholar 

  354. Larrea, E., Sole, C., Manterola, L., Goicoechea, I., Armesto, M., Arestin, M., Lawrie, C. H. (2016). New concepts in cancer biomarkers: circulating miRNAs in liquid biopsies, 17(5), 627. https://doi.org/10.3390/ijms17050627

    PubMed Central  Google Scholar 

  355. Pezuk, J. A., Miller, T. L. A., Bevilacqua, J. L. B., de Barros, A. C. S. D., de Andrade, F. E. M., E Macedo, L. F. de A., Reis, L. F. L. (2017). Measuring plasma levels of three microRNAs can improve the accuracy for identification of malignant breast lesions in women with BI-RADS 4 mammography. Oncotarget, 8(48), 83940–83948. https://doi.org/10.18632/oncotarget.20806

  356. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology, 9(6), 654–9. https://doi.org/10.1038/ncb1596

    CAS  PubMed  Google Scholar 

  357. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. U.S.A., 105(30), 10513–10518. https://doi.org/10.1073/pnas.0804549105

    CAS  Google Scholar 

  358. Chim, S. S. C., Shing, T. K. F., Hung, E. C. W., Leung, T. -y., Lau, T. -k., Chiu, R. W. K., & Dennis Lo, Y. M. (2008). Detection and characterization of placental microRNAs in maternal plasma. Clinical Chemistry, 54(3), 482–490. https://doi.org/10.1373/clinchem.2007.097972

    CAS  PubMed  Google Scholar 

  359. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., … Tewari, M. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 5003–8. https://doi.org/10.1073/pnas.1019055108

    CAS  Google Scholar 

  360. Noferesti, S. S., Sohel, M. M. H., Hoelker, M., Salilew-Wondim, D., Tholen, E., Looft, C., … Tesfaye, D. (2015). Controlled ovarian hyperstimulation induced changes in the expression of circulatory miRNA in bovine follicular fluid and blood plasma. Journal of ovarian research, 8(1), 81. https://doi.org/10.1186/s13048-015-0208-5

  361. Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews Clinical Oncology, 8(8), 467–477. https://doi.org/10.1038/nrclinonc.2011.76

    CAS  PubMed  PubMed Central  Google Scholar 

  362. Turchinovich, A., Weiz, L., & Burwinkel, B. (2012). Extracellular miRNAs: the mystery of their origin and function, 37(11). https://doi.org/10.1016/j.tibs.2012.08.003

    CAS  PubMed  Google Scholar 

  363. Zhang, L., Xu, Y., Jin, X., Wang, Z., Wu, Y., Zhao, D., Liang, Z. (2015). A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Research and Treatment, 154(2), 423–434. https://doi.org/10.1007/s10549-015-3591-0

    CAS  PubMed  Google Scholar 

  364. Zhang, H., Mao, F., Shen, T., Luo, Q., Ding, Z., Qian, L., & Huang, J. (2017). Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncology letters, 13(2), 669–676. https://doi.org/10.3892/ol.2016.5462

    PubMed  PubMed Central  Google Scholar 

  365. Wang, J., Yan, F., Zhao, Q., Zhan, F., Wang, R., Wang, L., Huang, X. (2017). Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Scientific reports, 7(1), 4150. https://doi.org/10.1038/s41598-017-04386-1

  366. Arab, A., Karimipoor, M., Irani, S., Kiani, A., Zeinali, S., Tafsiri, E., & Sheikhy, K. (2017). Potential circulating miRNA signature for early detection of NSCLC. Cancer genetics, 216217, 150–158. https://doi.org/10.1016/j.cancergen.2017.07.006

    CAS  PubMed  Google Scholar 

  367. Wang, Y., Yin, W., Lin, Y., Yin, K., Zhou, L., Du, Y., Lu, J. (2018). Downregulated circulating microRNAs after surgery: potential noninvasive biomarkers for diagnosis and prognosis of early breast cancer. Cell death discovery, 5(1), 21. https://doi.org/10.1038/s41420-018-0089-7

  368. Bertoli, G., Cava, C., & Castiglioni, I. (2015). Micrornas: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 5(10), 1122–1143. https://doi.org/10.7150/thno.11543

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Alečković, M., & Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochimica et biophysica acta, 1855(1), 24–42. https://doi.org/10.1016/j.bbcan.2014.10.005

    Google Scholar 

  370. Wang, H., Peng, R., Wang, J., Qin, Z., & Xue, L. (2018). Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clinical epigenetics, 10(1), 59. https://doi.org/10.1186/s13148-018-0492-1

  371. Witwer, K. W. (2015). Circulating microRNA biomarker studies: pitfalls and potential solutions. Clinical chemistry, 61(1), 56–63. https://doi.org/10.1373/clinchem.2014.221341

    CAS  PubMed  Google Scholar 

  372. Leong, S. P., Ballesteros-Merino, C., Jensen, S. M., Marwitz, S., Bifulco, C., Fox, B. A., & Skoberne, M. (2018). Novel frontiers in detecting cancer metastasis. Clin Exp Metastasis, 35(5–6), 403–412. https://doi.org/10.1007/s10585-018-9918-6

    Google Scholar 

  373. Chaudhry, M., Steiner, R., Claussen, C., Patel, K., Lee, H., Weber, D., Manasanch, E. E. (2018). Carfilzomib-based combination regimens are highly effective frontline therapies for multiple myeloma and Waldenström’s macroglobulinemia. Leukemia & lymphoma, 1–7. https://doi.org/10.1080/10428194.2018.1508668

    Google Scholar 

  374. Haug, B. H., Hald, Ø. H., Utnes, P., Roth, S. A., Løkke, C., Flægstad, T., & Einvik, C. (2015). Exosome-like extracellular vesicles from MYCN-amplified neuroblastoma cells contain oncogenic miRNAs. Anticancer Research, 35(5), 2521–2530.

  375. Ramraj, S. K., Aravindan, S., Somasundaram, D. B., Herman, T. S., Natarajan, M., & Aravindan, N. (2016). Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease. Oncotarget, 7(14), 18605–19. https://doi.org/10.18632/oncotarget.7615

  376. Zeka, F., Decock, A., Van Goethem, A., Vanderheyden, K., Demuynck, F., Lammens, T., … Vandesompele, J. (2018). Circulating microRNA biomarkers for metastatic disease in neuroblastoma patients. JCI insight, 3(23). https://doi.org/10.1172/jci.insight.97021

  377. Ma, J., Xu, M., Yin, M., Hong, J., Chen, H., Gao, Y., Mo, X. (2019). Exosomal hsa-miR199a-3p promotes proliferation and migration in neuroblastoma. Frontiers in oncology, 9, 459. https://doi.org/10.3389/fonc.2019.00459

  378. Ludwig, N., Nourkami-Tutdibi, N., Backes, C., Lenhof, H.-P., Graf, N., Keller, A., & Meese, E. (2015). Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatric blood & cancer, 62(8), 1360–7. https://doi.org/10.1002/pbc.25481

    CAS  Google Scholar 

  379. Liu, W., Chen, S., & Liu, B. (2016). Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatric surgery international, 32(11), 1059–1065. https://doi.org/10.1007/s00383-016-3960-8

    PubMed  Google Scholar 

  380. Patel, D., Boufraqech, M., Jain, M., Zhang, L., He, M., Gesuwan, K., Kebebew, E. (2013). MiR-34a and miR-483-5p are candidate serum biomarkers for adrenocortical tumors. Surgery, 154(6). https://doi.org/10.1016/j.surg.2013.06.022

    PubMed  Google Scholar 

  381. Decmann, A., Bancos, I., Khanna, A., Thomas, M. A., Turai, P., Perge, P., Igaz, P. (2019). Comparison of plasma and urinary microRNA-483-5p for the diagnosis of adrenocortical malignancy. Journal of Biotechnology, 297, 49–53. https://doi.org/10.1016/j.jbiotec.2019.03.017

    CAS  PubMed  Google Scholar 

  382. Pezzuto, F., Buonaguro, L., Buonaguro, F. M., & Tornesello, M. L. (2018). The role of circulating free DNA and microRNA in non-invasive diagnosis of HBV- and HCV-related hepatocellular carcinoma. International Journal of Molecular Sciences, 19(4), 1007. https://doi.org/10.3390/ijms19041007

  383. Mourad, L., El-Ahwany, E., Zoheiry, M., Abu-Taleb, H., Hassan, M., Ouf, A., Zada, S. (2018). Expression analysis of liver-specific circulating microRNAs in HCV-induced hepatocellular carcinoma in Egyptian patients. Cancer biology & therapy, 19(5), 400–406. https://doi.org/10.1080/15384047.2018.1423922

    CAS  Google Scholar 

  384. Ali, H. E. A., Abdel Hameed, R., Effat, H., Ahmed, E. K., Atef, A. A., Sharawi, S. K., … Abdel Wahab, A. H. (2017). Circulating microRNAs panel as a diagnostic tool for discrimination of HCV-associated hepatocellular carcinoma. Clinics and research in hepatology and gastroenterology, 41(4), e51–e62. https://doi.org/10.1016/j.clinre.2017.06.004

    CAS  PubMed  Google Scholar 

  385. Huang, Y.-H., Liang, K.-H., Chien, R.-N., Hu, T.-H., Lin, K.-H., Hsu, C.-W., Yeh, C.-T. (2017). A circulating microRNA signature capable of assessing the risk of hepatocellular carcinoma in cirrhotic patients. Scientific reports, 7(1), 523. https://doi.org/10.1038/s41598-017-00631-9

  386. Nishida, N., Arizumi, T., Hagiwara, S., Ida, H., Sakurai, T., & Kudo, M. (2017). MicroRNAs for the prediction of early response to sorafenib treatment in human hepatocellular carcinoma. Liver cancer, 6(2), 113–125. https://doi.org/10.1159/000449475

    PubMed  PubMed Central  Google Scholar 

  387. Shi, M., Jiang, Y., Yang, L., Yan, S., Wang, Y.-G., & Lu, X.-J. (2018). Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. Journal of cellular biochemistry, 119(6), 4711–4716. https://doi.org/10.1002/jcb.26650

    CAS  PubMed  Google Scholar 

  388. Ding, Y., Yan, J.-L., Fang, A.-N., Zhou, W.-F., & Huang, L. (2017). Circulating miRNAs as novel diagnostic biomarkers in hepatocellular carcinoma detection: a meta-analysis based on 24 articles. Oncotarget, 8(39), 66402–66413. https://doi.org/10.18632/oncotarget.18949

  389. Zhang, Y.-C., Xu, Z., Zhang, T.-F., & Wang, Y.-L. (2015). Circulating microRNAs as diagnostic and prognostic tools for hepatocellular carcinoma. World journal of gastroenterology, 21(34), 9853–62. https://doi.org/10.3748/wjg.v21.i34.9853

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Moshiri, F., Salvi, A., Gramantieri, L., Sangiovanni, A., Guerriero, P., De Petro, G., … Negrini, M. (2018). Circulating miR-106b-3p, miR-101-3p and miR-1246 as diagnostic biomarkers of hepatocellular carcinoma. Oncotarget, 9(20), 15350–15364. https://doi.org/10.18632/oncotarget.24601

  391. Yin, D., Wang, Y., Sai, W., Zhang, L., Miao, Y., Cao, L., … Yang, L. (2016). Serum microRNA panel for early diagnosis of the onset of hepatocellular carcinoma, 36(4). https://doi.org/10.3892/or.2016.5026

    CAS  PubMed  Google Scholar 

  392. Simonson, B., & Das, S. (2015). MicroRNA therapeutics: the next magic bullet? Mini reviews in medicinal chemistry, 15(6), 467–74. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC4410078

  393. Bravo, V., Rosero, S., Ricordi, C., & Pastori, R. L. (2007). Instability of miRNA and cDNAs derivatives in RNA preparations. Biochemical and biophysical research communications, 353(4), 1052–5. https://doi.org/10.1016/j.bbrc.2006.12.135

    CAS  PubMed  Google Scholar 

  394. Nguyen, T., Menocal, E. M., Harborth, J., & Fruehauf, J. H. (2008). RNAi therapeutics: an update on delivery. Current opinion in molecular therapeutics, 10(2), 158–67. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18386228

  395. Janssen, H. L. A., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., … Hodges, M. R. (2013). Treatment of HCV infection by targeting microRNA. The New England journal of medicine, 368(18), 1685–94. https://doi.org/10.1056/NEJMoa1209026

    CAS  Google Scholar 

  396. Tivnan, A., Orr, W. S., Gubala, V., Nooney, R., Williams, D. E., McDonagh, C., … Stallings, R. L. (2012). Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PloS one, 7(5), e38129. https://doi.org/10.1371/journal.pone.0038129

    CAS  PubMed  PubMed Central  Google Scholar 

  397. Hsu, S., Yu, B., Wang, X., Lu, Y., Schmidt, C. R., Lee, R. J., … Ghoshal, K. (2013). Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine: nanotechnology, biology, and medicine, 9(8), 1169–80. https://doi.org/10.1016/j.nano.2013.05.007

    CAS  Google Scholar 

  398. Li, F., Wang, F., Zhu, C., Wei, Q., Zhang, T., & Zhou, Y. L. (2018). miR-221 suppression through nanoparticle-based miRNA delivery system for hepatocellular carcinoma therapy and its diagnosis as a potential biomarker. International journal of nanomedicine, 13, 2295–2307. https://doi.org/10.2147/IJN.S157805

    Google Scholar 

  399. Meissner, J. M., Toporkiewicz, M., Czogalla, A., Matusewicz, L., Kuliczkowski, K., & Sikorski, A. F. (2015). Novel antisense therapeutics delivery systems: in vitro and in vivo studies of liposomes targeted with anti-CD20 antibody. Journal of controlled release: official journal of the Controlled Release Society, 220(Pt A), 515–528. https://doi.org/10.1016/j.jconrel.2015.11.015

    CAS  PubMed  Google Scholar 

  400. Ekin, A., Karatas, O. F., Culha, M., & Ozen, M. (2014). Designing a gold nanoparticle-based nanocarrier for microRNA transfection into the prostate and breast cancer cells. The journal of gene medicine, 16(11–12), 331–5. https://doi.org/10.1002/jgm.2810

    CAS  PubMed  Google Scholar 

  401. Piacenti, V., Langella, E., Autiero, I., Nolan, J. C., Piskareva, O., Adamo, M. F. A., … Moccia, M. (2019). A combined experimental and computational study on peptide nucleic acid (PNA) analogues of tumor suppressive miRNA-34a. Bioorganic Chemistry, 91, 103165. https://doi.org/10.1016/j.bioorg.2019.103165

    CAS  PubMed  Google Scholar 

  402. Gebert, L. F. R., Rebhan, M. A. E., Crivelli, S. E. M., Denzler, R., Stoffel, M., & Hall, J. (2014). Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic acids research, 42(1), 609–21. https://doi.org/10.1093/nar/gkt852

    PubMed  PubMed Central  Google Scholar 

  403. van der Ree, M. H., van der Meer, A. J., van Nuenen, A. C., de Bruijne, J., Ottosen, S., Janssen, H. L., … Reesink, H. W. (2016). Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Alimentary Pharmacology & Therapeutics, 43(1), 102–113. https://doi.org/10.1111/apt.13432

    Google Scholar 

  404. Ottosen, S., Parsley, T. B., Yang, L., Zeh, K., van Doorn, L.-J., van der Veer, E., … Patick, A. K. (2015). In vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrobial agents and chemotherapy, 59(1), 599–608. https://doi.org/10.1128/AAC.04220-14

    PubMed  PubMed Central  Google Scholar 

  405. Cai, C.-K., Zhao, G.-Y., Tian, L.-Y., Liu, L., Yan, K., Ma, Y.-L., … Ma, B.-A. (2012). miR-15a and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncology reports, 28(5), 1764–70. https://doi.org/10.3892/or.2012.1995

    CAS  PubMed  Google Scholar 

  406. van der Ree, M. H., de Vree, J. M., Stelma, F., Willemse, S., van der Valk, M., Rietdijk, S., … Reesink, H. W. (2017). Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet (London, England), 389(10070), 709–717. https://doi.org/10.1016/S0140-6736(16)31715-9

    CAS  Google Scholar 

  407. Northcott, P. A., Jones, D. T. W., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y.-J., … Pfister, S. M. (2012). Medulloblastomics: the end of the beginning. Nature reviews. Cancer, 12(12), 818–34. https://doi.org/10.1038/nrc3410

    CAS  PubMed  PubMed Central  Google Scholar 

  408. Schmidt, M. F. (2017). miRNA targeting drugs: the next blockbusters? Methods in molecular biology (Clifton, N.J.), 1517, 3–22. https://doi.org/10.1007/978-1-4939-6563-2_1

    Google Scholar 

Download references

Funding

The authors would like to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the financial support along all these years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sol Brassesco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomão, K.B., Pezuk, J.A., de Souza, G.R. et al. MicroRNA dysregulation interplay with childhood abdominal tumors. Cancer Metastasis Rev 38, 783–811 (2019). https://doi.org/10.1007/s10555-019-09829-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09829-x

Keywords

Navigation