Skip to main content

Advertisement

Log in

Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Even though the treatment of childhood cancer has evolved significantly in recent decades, aggressive central nervous system (CNS) tumors are still a leading cause of morbidity and mortality in this population. Consequently, the identification of molecular targets that can be incorporated into diagnostic practice, effectively predict prognosis, follow treatment response, and materialize into potential targeted therapeutic approaches are still warranted. Since the first evidence of the participation of miRNAs in cancer development and progression 20 years ago, notable progress has been made in the basic understanding of the contribution of their dysregulation as epigenetic driver of tumorigenesis. Nevertheless, among the plethora of articles in the literature, microRNA profiling of pediatric tumors are scarce. This article gives an overview of the recent advances in the diagnostic/prognostic potential of miRNAs in a selection of pediatric CNS tumors: medulloblastoma, ependymoma, pilocytic astrocytoma, glioblastoma, diffuse intrinsic pontine glioma, atypical teratoid/rhabdoid tumors, and choroid plexus tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.

    CAS  PubMed  Google Scholar 

  2. Hamilton, A. J., Baulcombe, D. C., Lendeckel, W., & Tuschl, T. (2001). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.

    Google Scholar 

  3. Bartel, D. P. (2018). Metazoan microRNAs. Cell, 173, 20–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu, P. W. C., Huang, H.-D., Hsu, S.-D., et al. (2006). miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Research, 34, D135–D139.

    CAS  PubMed  Google Scholar 

  5. Lee, Y., Ahn, C., Han, J., et al. (2003). The nuclear RNase III drosha initiates microRNA processing. Nature, 425, 415–419.

    CAS  PubMed  Google Scholar 

  6. Kim, Y.-K., & Kim, V. N. (2007). Processing of intronic microRNAs. The EMBO Journal, 26, 775–783.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Michlewski, G., & Cáceres, J. F. (2019). Post-transcriptional control of miRNA biogenesis. RNA, 25, 1–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Delsin, L. E. A., Salomao, K. B., Pezuk, J. A., & Brassesco, M. S. (2019). Expression profiles and prognostic value of miRNAs in retinoblastoma. Journal of Cancer Research and Clinical Oncology, 145, 1–10.

    PubMed  Google Scholar 

  9. Carvalho de Oliveira, J., Molinari Roberto, G., Baroni, M., et al. (2018). MiRNA dysregulation in childhood hematological cancer. International Journal of Molecular Sciences, 19, 2688.

    PubMed Central  Google Scholar 

  10. Di Leva, G., Garofalo, M., & Croce, C. M. (2014). MicroRNAs in cancer. Annual Review of Pathology: Mechanisms of Disease, 9, 287–314.

    Google Scholar 

  11. Ellison, D. W., Clifford, S. C., Gajjar, A., & Gilbertson, R. J. (2003). What’s new in neuro-oncology? Recent advances in medulloblastoma. European Journal of Paediatric Neurology, 7, 53–66.

    PubMed  Google Scholar 

  12. Paulino, A. C. (2002). Current multimodality management of medulloblastoma. Current Problems in Cancer, 26, 317–356.

    PubMed  Google Scholar 

  13. Northcott, P. A., Korshunov, A., Pfister, S. M., & Taylor, M. D. (2012). The clinical implications of medulloblastoma subgroups. Nature Reviews. Neurology, 8, 340–351.

    CAS  PubMed  Google Scholar 

  14. Pizer, B., & Clifford, S. (2008). Medulloblastoma: new insights into biology and treatment. Archives of Disease in Childhood. Education and Practice Edition, 93, 137–144.

    CAS  PubMed  Google Scholar 

  15. Xiao, H., Bid, H. K., Jou, D., et al. (2015). A novel small molecular STAT3 inhibitor, LY5, inhibits cell viability, cell migration, and angiogenesis in medulloblastoma cells. The Journal of Biological Chemistry, 290, 3418–3429.

    CAS  PubMed  Google Scholar 

  16. Kool, M., Koster, J., Bunt, J., et al. (2008). Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One, 3, e3088.

    PubMed  PubMed Central  Google Scholar 

  17. Northcott, P. A., Korshunov, A., Witt, H., et al. (2011). Medulloblastoma comprises four distinct molecular variants. Journal of Clinical Oncology, 29, 1408–1414.

    PubMed  Google Scholar 

  18. Taylor, M. D., Northcott, P. A., Korshunov, A., et al. (2012). Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathologica, 123, 465–472.

    CAS  PubMed  Google Scholar 

  19. Cavalli, F. M. G., Remke, M., Rampasek, L., et al. (2017). Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell, 31, 737–754.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mendrzyk, F., Radlwimmer, B., Joos, S., et al. (2005). Genomic and protein expression profiling identifies CDK6 As novel independent prognostic marker in medulloblastoma. Journal of Clinical Oncology, 23, 8853–8862.

    CAS  PubMed  Google Scholar 

  21. Malumbres, M., & Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences, 30, 630–641.

    CAS  PubMed  Google Scholar 

  22. Pierson, J., Hostager, B., Fan, R., & Vibhakar, R. (2008). Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. Journal of Neuro-Oncology, 90, 1–7.

    CAS  PubMed  Google Scholar 

  23. Tenga, A., Beard, J. A., Takwi, A., et al. (2016). Regulation of nuclear receptor Nur77 by miR-124. PLoS One, 11, e0148433.

    PubMed  PubMed Central  Google Scholar 

  24. Ferretti, E., De Smaele, E., Po, A., et al. (2009). MicroRNA profiling in human medulloblastoma. International Journal of Cancer, 124, 568–577.

    CAS  PubMed  Google Scholar 

  25. Lu, Y., Ryan, S. L., Elliott, D. J., et al. (2009). Amplification and overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in medulloblastoma. PLoS One, 4, e6159.

    PubMed  PubMed Central  Google Scholar 

  26. Birks, D. K., Barton, V. N., Donson, A. M., et al. (2011). Survey of MicroRNA expression in pediatric brain tumors. Pediatric Blood & Cancer, 56, 211–216.

    Google Scholar 

  27. Thor, T., Künkele, A., Pajtler, K. W., et al. (2015). MiR-34a deficiency accelerates medulloblastoma formation in vivo. International Journal of Cancer, 136, 2293–2303.

    CAS  PubMed  Google Scholar 

  28. Venkataraman, S., Alimova, I., Fan, R., et al. (2010). MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One, 5, e10748.

    PubMed  PubMed Central  Google Scholar 

  29. Leung, C., Lingbeek, M., Shakhova, O., et al. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 428, 337–341.

    CAS  PubMed  Google Scholar 

  30. Jin, Y., Xiong, A., Zhang, Z., et al. (2014). MicroRNA-31 suppresses medulloblastoma cell growth by inhibiting DNA replication through minichromosome maintenance 2. Oncotarget, 5, 4821–4833.

    PubMed  PubMed Central  Google Scholar 

  31. Xu, Q.-F., Pan, Y.-W., Li, L.-C., et al. (2014). MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. Brain Pathology, 24, 568–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y., Jiang, T., Shao, L., et al. (2016). Mir-449a, a potential diagnostic biomarker for WNT group of medulloblastoma. Journal of Neuro-Oncology, 129, 423–431.

    CAS  PubMed  Google Scholar 

  33. Yang, S. Y., Choi, S. A., Lee, J. Y., et al. (2015). miR-192 suppresses leptomeningeal dissemination of medulloblastoma by modulating cell proliferation and anchoring through the regulation of DHFR, integrins, and CD47. Oncotarget, 6, 43712–43730.

    PubMed  PubMed Central  Google Scholar 

  34. Yang, Y., Cui, H., & Wang, X. (2019). Downregulation of EIF5A2 by miR-221-3p inhibits cell proliferation, promotes cell cycle arrest and apoptosis in medulloblastoma cells. Bioscience, Biotechnology, and Biochemistry, 83, 400–408.

    CAS  PubMed  Google Scholar 

  35. Senfter, D., Samadaei, M., Mader, R. M., et al. (2019). High impact of miRNA-4521 on FOXM1 expression in medulloblastoma. Cell Death & Disease, 10, 696.

    Google Scholar 

  36. Wang, C., Yun, Z., Zhao, T., et al. (2015). MiR-495 is a predictive biomarker that downregulates GFI1 expression in medulloblastoma. Cellular Physiology and Biochemistry, 36, 1430–1439.

    CAS  PubMed  Google Scholar 

  37. Pezuk, J. A., Brassesco, M. S., de Oliveira, R. S., et al. (2017). PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis. Child's Nervous System, 33, 609–615.

    PubMed  Google Scholar 

  38. Dai, J., Li, Q., Bing, Z., et al. (2017). Comprehensive analysis of a microRNA expression profile in pediatric medulloblastoma. Molecular Medicine Reports, 15, 4109–4115.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gokhale, A., Kunder, R., Goel, A., et al. (2010). Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway. Journal of Cancer Research and Therapeutics, 6, 521–529.

    CAS  PubMed  Google Scholar 

  40. Gershanov, S., Toledano, H., Michowiz, S., et al. (2018). MicroRNA-mRNA expression profiles associated with medulloblastoma subgroup 4. Cancer Management and Research, 10, 339–352.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kunder, R., Jalali, R., Sridhar, E., et al. (2013). Real-time PCR assay based on the differential expression of microRNAs and protein-coding genes for molecular classification of formalin-fixed paraffin embedded medulloblastomas. Neuro-Oncology, 15, 1644–1651.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, Y. X., Shao, L. W., Jiang, T., et al. (2017). [miR-449a is a potential epigenetic biomarker for WNT subtype of medulloblastoma]. Zhonghua bing li xue za zhi = Chinese. The Journal of Pathology, 46, 684–689.

    CAS  Google Scholar 

  43. Ferretti, E., De Smaele, E., Di Marcotullio, L., et al. (2005). Hedgehog checkpoints in medulloblastoma: the chromosome 17p deletion paradigm. Trends in Molecular Medicine, 11, 537–545.

    CAS  PubMed  Google Scholar 

  44. Miele, E., Po, A., Begalli, F., et al. (2017). β-arrestin1-mediated acetylation of Gli1 regulates Hedgehog/Gli signaling and modulates self-renewal of SHH medulloblastoma cancer stem cells. BMC Cancer, 17, 488.

    PubMed  PubMed Central  Google Scholar 

  45. Besharat, Z. M., Sabato, C., Po, A., et al. (2018). Low Expression of miR-466f-3p sustains epithelial to mesenchymal transition in sonic hedgehog medulloblastoma stem cells through Vegfa-Nrp2 signaling pathway. Frontiers in Pharmacology, 9, 1281.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Venkataraman, S., Birks, D. K., Balakrishnan, I., et al. (2013). MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma. The Journal of Biological Chemistry, 288, 1918–1928.

    CAS  PubMed  Google Scholar 

  47. Shi, J., Yang, L., Wang, T., et al. (2013). miR-218 is downregulated and directly targets SH3GL1 in childhood medulloblastoma. Molecular Medicine Reports, 8, 1111–1117.

    CAS  PubMed  Google Scholar 

  48. Bai, A. H. C., Milde, T., Remke, M., et al. (2012). MicroRNA-182 promotes leptomeningeal spread of non-sonic hedgehog-medulloblastoma. Acta Neuropathologica, 123, 529–538.

    CAS  PubMed  Google Scholar 

  49. Murphy, B. L., Obad, S., Bihannic, L., et al. (2013). Silencing of the miR-17~92 cluster family inhibits medulloblastoma progression. Cancer Research, 73, 7068–7078.

    CAS  PubMed  Google Scholar 

  50. Northcott, P. A., Fernandez-L, A., Hagan, J. P., et al. (2009). The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. Cancer Research, 69, 3249–3255.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zindy, F., Kawauchi, D., Lee, Y., et al. (2014). Role of the miR-17∼92 cluster family in cerebellar and medulloblastoma development. Biology Open, 3, 597–605.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li, K. K.-W., Xia, T., Ma, F. M. T., et al. (2015). miR-106b is overexpressed in medulloblastomas and interacts directly with PTEN. Neuropathology and Applied Neurobiology, 41, 145–164.

    CAS  PubMed  Google Scholar 

  53. Lucon, D. R., Rocha Cde, S., Craveiro, R. B., et al. (2013). Downregulation of 14q32 microRNAs in primary human desmoplastic medulloblastoma. Frontiers in Oncology, 3, 254.

    PubMed  PubMed Central  Google Scholar 

  54. Lv, S.-Q., Kim, Y.-H., Giulio, F., et al. (2012). Genetic alterations in microRNAs in medulloblastomas. Brain Pathology, 22, 230–239.

    CAS  PubMed  Google Scholar 

  55. Weeraratne, S. D., Amani, V., Teider, N., et al. (2012). Pleiotropic effects of miR-183~96~182 converge to regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathologica, 123, 539–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, X.-H., Zhang, S.-J., Hu, Q.-B., et al. (2018). Effects of microRNA-494 on proliferation, migration, invasion, and apoptosis of medulloblastoma cells by mediating c-myc through the p38 MAPK signaling pathway. Journal of Cellular Biochemistry.

  57. Ishibashi, M., Moriyoshi, K., Sasai, Y., et al. (1994). Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. The EMBO Journal, 13, 1799–1805.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fan, X., Mikolaenko, I., Elhassan, I., et al. (2004). Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Research, 64, 7787–7793.

    CAS  PubMed  Google Scholar 

  59. Andolfo, I., Liguori, L., De Antonellis, P., et al. (2012). The micro-RNA 199b-5p regulatory circuit involves Hes1, CD15, and epigenetic modifications in medulloblastoma. Neuro-Oncology, 14, 596–612.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. de Antonellis, P., Medaglia, C., Cusanelli, E., et al. (2011). MiR-34a targeting of Notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma. PLoS One, 6, e24584.

    PubMed  PubMed Central  Google Scholar 

  61. Weeraratne, S. D., Amani, V., Neiss, A., et al. (2011). miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma. Neuro-Oncology, 13, 165–175.

    CAS  PubMed  Google Scholar 

  62. Abdelfattah, N., Rajamanickam, S., Panneerdoss, S., et al. (2018). MiR-584-5p potentiates vincristine and radiation response by inducing spindle defects and DNA damage in medulloblastoma. Nature Communications, 9, 4541.

    PubMed  PubMed Central  Google Scholar 

  63. Kilday, J.-P., Rahman, R., Dyer, S., et al. (2009). Pediatric ependymoma: biological perspectives. Molecular Cancer Research, 7, 765–786. https://doi.org/10.1158/1541-7786.MCR-08-0584.

    Article  CAS  PubMed  Google Scholar 

  64. Hasselblatt, M. (2009). Ependymal tumors. Recent Results in Cancer Research, 171, 51–66.

    PubMed  Google Scholar 

  65. Khatua, S., Mangum, R., Bertrand, K. C., et al. (2018). Pediatric ependymoma: current treatment and newer therapeutic insights. Future Oncology, 14, 3175–3186.

    CAS  PubMed  Google Scholar 

  66. Hadjipanayis, C. G., & Van Meir, E. G. (2009). Brain cancer propagating cells: biology, genetics and targeted therapies. Trends in Molecular Medicine, 15, 519–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor, M. D., Poppleton, H., Fuller, C., et al. (2005). Radial glia cells are candidate stem cells of ependymoma. Cancer Cell, 8, 323–335.

    CAS  PubMed  Google Scholar 

  68. Gerstner, E. R., & Pajtler, K. W. (2018). Ependymoma. Seminars in Neurology, 38, 104–111.

    PubMed  Google Scholar 

  69. Merchant, T. E. (2002). Current management of childhood ependymoma. Oncology (Williston Park), 16, 629–642 644; discussion 645–6, 648.

    Google Scholar 

  70. van Veelen-Vincent, M.-L. C., Pierre-Kahn, A., Kalifa, C., et al. (2002). Ependymoma in childhood: prognostic factors, extent of surgery, and adjuvant therapy. Journal of Neurosurgery, 97, 827–835.

    PubMed  Google Scholar 

  71. Mabbott, D. J., Spiegler, B. J., Greenberg, M. L., et al. (2005). Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. Journal of Clinical Oncology, 23, 2256–2263.

    PubMed  Google Scholar 

  72. Mack, S. C., & Taylor, M. D. (2009). The genetic and epigenetic basis of ependymoma. Child's Nervous System, 25, 1195–1201.

    PubMed  Google Scholar 

  73. Costa, F. F., Bischof, J. M., Vanin, E. F., et al. (2011). Identification of microRNAs as potential prognostic markers in ependymoma. PLoS One, 6, e25114.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Pajtler, K. W., Witt, H., Sill, M., et al. (2015). Molecular classification of ependymal tumors across All CNS compartments, histopathological grades, and age groups. Cancer Cell, 27, 728–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Witt, H., Mack, S. C., Ryzhova, M., et al. (2011). Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell, 20, 143–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Tantawy, M., Elzayat, M. G., Yehia, D., et al. (2018). Identification of microRNA signature in different pediatric brain tumors. Genetics and Molecular Biology, 41, 27–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sasayama, T., Nishihara, M., Kondoh, T., et al. (2009). MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. International Journal of Cancer, 125, 1407–1413.

    CAS  PubMed  Google Scholar 

  78. Ikushima, H., Todo, T., Ino, Y., et al. (2009). Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell, 5, 504–514.

    CAS  PubMed  Google Scholar 

  79. Jennings, M. T., Kaariainen, I. T., Gold, L., et al. (1994). TGF beta 1 and TGF beta 2 are potential growth regulators for medulloblastomas, primitive neuroectodermal tumors, and ependymomas: evidence in support of an autocrine hypothesis. Human Pathology, 25, 464–475.

    CAS  PubMed  Google Scholar 

  80. Lourdusamy, A., Luo, L. Z., Storer, L. C., et al. (2017). Transcriptomic analysis in pediatric spinal ependymoma reveals distinct molecular signatures. Oncotarget, 8, 115570–115581.

    PubMed  PubMed Central  Google Scholar 

  81. Braoudaki, M., Lambrou, G. I., Giannikou, K., et al. (2016). miR-15a and miR-24-1 as putative prognostic microRNA signatures for pediatric pilocytic astrocytomas and ependymomas. Tumour Biology, 37, 9887–9897.

    CAS  PubMed  Google Scholar 

  82. Zakrzewska, M., Fendler, W., Zakrzewski, K., et al. (2016). Altered microRNA expression is associated with tumor grade, molecular background and outcome in childhood infratentorial ependymoma. PLoS One, 11, e0158464.

    PubMed  PubMed Central  Google Scholar 

  83. Ahram, M., Amarin, J. Z., Suradi, H. H., et al. (2018). Association of microRNAs with the clinicopathologic characteristics of ependymoma. Journal of Molecular Neuroscience, 66, 307–313.

    CAS  PubMed  Google Scholar 

  84. Margolin-Miller, Y., Yanichkin, N., Shichrur, K., et al. (2017). Prognostic relevance of miR-124-3p and its target TP53INP1 in pediatric ependymoma. Genes, Chromosomes & Cancer, 56, 639–650.

    CAS  Google Scholar 

  85. Cipro, Š., Belhajová, M., Eckschlager, T., & Zámečník, J. (2019). MicroRNA expression in pediatric intracranial ependymomas and their potential value for tumor grading. Oncology Letters, 17, 1379–1383.

    CAS  PubMed  Google Scholar 

  86. Liang, Y., Yang, W., Zhu, Y., & Yuan, Y. (2016). Prognostic role of microRNA-203 in various carcinomas: evidence from a meta-analysis involving 13 studies. Springerplus, 5, 1538.

    PubMed  PubMed Central  Google Scholar 

  87. Shu, C., Wang, Q., Yan, X., & Wang, J. (2018). Prognostic and microRNA profile analysis for CD44 positive expression pediatric posterior fossa ependymoma. Clinical & Translational Oncology, 20, 1439–1447.

    CAS  Google Scholar 

  88. Li, A. M., Dunham, C., Tabori, U., et al. (2015). EZH2 expression is a prognostic factor in childhood intracranial ependymoma: a Canadian Pediatric Brain Tumor Consortium study. Cancer, 121, 1499–1507.

    CAS  PubMed  Google Scholar 

  89. Garvin, J. H., Selch, M. T., Holmes, E., et al. (2012). Phase II study of pre-irradiation chemotherapy for childhood intracranial ependymoma. Children’s Cancer Group protocol 9942: a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 59, 1183–1189.

    Google Scholar 

  90. Ostrom, Q. T., Gittleman, H., Liao, P., et al. (2014). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncology, 16(Suppl 4), iv1-63.

    PubMed  Google Scholar 

  91. Sadighi, Z., & Slopis, J. (2013). Pilocytic astrocytoma: a disease with evolving molecular heterogeneity. Journal of Child Neurology, 28, 625–632.

    PubMed  Google Scholar 

  92. Listernick, R., Ferner, R. E., Liu, G. T., & Gutmann, D. H. (2007). Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Annals of Neurology, 61, 189–198.

    CAS  PubMed  Google Scholar 

  93. Pfister, S., Janzarik, W. G., Remke, M., et al. (2008). BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. The Journal of Clinical Investigation, 118, 1739–1749.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ho, C.-Y., Bar, E., Giannini, C., et al. (2013). MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant targets, including PBX3, NFIB, and METAP2. Neuro-Oncology, 15, 69–82.

    CAS  PubMed  Google Scholar 

  95. Jones, T. A., Jeyapalan, J. N., Forshew, T., et al. (2015). Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways. Acta Neuropathologica Communications, 3, 86.

    PubMed  PubMed Central  Google Scholar 

  96. Darrigo Júnior, L. G., Lira, R. C. P., Fedatto, P. F., et al. (2019). MicroRNA profile of pediatric pilocytic astrocytomas identifies two tumor-specific signatures when compared to non-neoplastic white matter. Journal of Neuro-Oncology, 141, 373–382.

    PubMed  Google Scholar 

  97. Ames, H. M., Yuan, M., Vizcaíno, M. A., et al. (2017). MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Modern Pathology, 30, 204–216.

    CAS  PubMed  Google Scholar 

  98. Novakova, J., Slaby, O., Vyzula, R., & Michalek, J. (2009). MicroRNA involvement in glioblastoma pathogenesis. Biochemical and Biophysical Research Communications, 386, 1–5.

    CAS  PubMed  Google Scholar 

  99. Kesari, S. (2011). Understanding glioblastoma tumor biology: the potential to improve current diagnosis and treatments. Seminars in Oncology, 38(Suppl 4), S2–S10.

    PubMed  Google Scholar 

  100. Fangusaro, J. (2012). Pediatric high grade glioma: a review and update on tumor clinical characteristics and biology. Frontiers in Oncology, 2, 105.

    PubMed  PubMed Central  Google Scholar 

  101. Iacob, G., & Dinca, E. B. Current data and strategy in glioblastoma multiforme. Journal of Medicine and Life, 2, 386–393.

  102. Luo, J. W., Wang, X., Yang, Y., & Mao, Q. (2015). Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. European Review for Medical and Pharmacological Sciences, 19, 1630–1639.

    CAS  PubMed  Google Scholar 

  103. Chan, J. A., Krichevsky, A. M., & Kosik, K. S. (2005). MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65, 6029–6033.

    CAS  PubMed  Google Scholar 

  104. Quintavalle, C., Garofalo, M., Zanca, C., et al. (2012). miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPμ. Oncogene, 31, 858–868.

    CAS  PubMed  Google Scholar 

  105. Xie, Q., Yan, Y., Huang, Z., et al. (2014). MicroRNA-221 targeting PI3-K/Akt signaling axis induces cell proliferation and BCNU resistance in human glioblastoma. Neuropathology, 34, 455–464.

    CAS  PubMed  Google Scholar 

  106. Zhang, C.-Z., Zhang, J.-X., Zhang, A.-L., et al. (2010). MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Molecular Cancer, 9, 229.

    PubMed  PubMed Central  Google Scholar 

  107. Eguía-Aguilar, P., Pérezpeña-Díazconti, M., Benadón-Darszon, E., et al. (2014). Reductions in the expression of miR-124-3p, miR-128-1, and miR-221-3p in pediatric astrocytomas are related to high-grade supratentorial, and recurrent tumors in Mexican children. Child's Nervous System, 30, 1173–1181.

    PubMed  Google Scholar 

  108. Jha, P., Agrawal, R., Pathak, P., et al. (2015). Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. International Journal of Cancer, 137, 2343–2353.

    CAS  PubMed  Google Scholar 

  109. Shou, T., Yang, H., Lv, J., et al. (2019). MicroRNA-3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Molecular Medicine Reports, 19, 1049–1055.

    CAS  PubMed  Google Scholar 

  110. Ilhan-Mutlu, A., Wagner, L., Wöhrer, A., et al. (2012). Plasma microRNA-21 concentration may be a useful biomarker in glioblastoma patients. Cancer Investigation, 30, 615–621.

    CAS  PubMed  Google Scholar 

  111. Papagiannakopoulos, T., Shapiro, A., & Kosik, K. S. (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research, 68, 8164–8172.

    CAS  PubMed  Google Scholar 

  112. Tomaselli, S., Galeano, F., Alon, S., et al. (2015). Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biology, 16, 5.

    PubMed  PubMed Central  Google Scholar 

  113. Warren, K. E. (2014). Measuring the pons: a non-invasive biomarker for pediatric diffuse intrinsic pontine glioma. CNS Oncology, 3, 181–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Buczkowicz, P., Bartels, U., Bouffet, E., et al. (2014). Histopathological spectrum of paediatric diffuse intrinsic pontine glioma: diagnostic and therapeutic implications. Acta Neuropathologica, 128, 573–581. https://doi.org/10.1007/s00401-014-1319-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jansen, M. H., Veldhuijzen van Zanten, S. E., Sanchez Aliaga, E., et al. (2015). Survival prediction model of children with diffuse intrinsic pontine glioma based on clinical and radiological criteria. Neuro-Oncology, 17, 160–166. https://doi.org/10.1093/neuonc/nou104.

    Article  PubMed  Google Scholar 

  116. Kaye, E. C., Baker, J. N., & Broniscer, A. (2014). Management of diffuse intrinsic pontine glioma in children: current and future strategies for improving prognosis. CNS Oncology, 3, 421–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Khatua, S., & Zaky, W. (2014). Diffuse intrinsic pontine glioma: time for therapeutic optimism. CNS Oncology, 3, 337–348.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ramaswamy, V., Remke, M., & Taylor, M. D. (2014). An epigenetic therapy for diffuse intrinsic pontine gliomas. Nature Medicine, 20, 1378–1379.

    CAS  PubMed  Google Scholar 

  119. Kieran, M. W. (2015). Time to rethink the unthinkable: upfront biopsy of children with newly diagnosed diffuse intrinsic pontine glioma (DIPG). Pediatric Blood & Cancer, 62, 3–4.

    Google Scholar 

  120. Yeom, K. W., Lober, R. M., Nelson, M. D., et al. (2015). Citrate concentrations increase with hypoperfusion in pediatric diffuse intrinsic pontine glioma. Journal of Neuro-Oncology, 122, 383–389.

    CAS  PubMed  Google Scholar 

  121. Grasso, C. S., Tang, Y., Truffaux, N., et al. (2015). Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine, 21, 555–559.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xu, S., Shao, Q.-Q., Sun, J.-T., et al. (2013). Synergy between the ectoenzymes CD39 and CD73 contributes to adenosinergic immunosuppression in human malignant gliomas. Neuro-Oncology, 15, 1160–1172.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Yadavilli, S., Scafidi, J., Becher, O. J., et al. (2015). The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma. Oncotarget, 6, 12141–12155.

    PubMed  PubMed Central  Google Scholar 

  124. Wei, L., He, F., Zhang, W., et al. (2018). Bioinformatics analysis of microarray data to reveal the pathogenesis of diffuse intrinsic pontine glioma. Biological Research, 51, 26.

    PubMed  PubMed Central  Google Scholar 

  125. Frühwald, M. C., Biegel, J. A., Bourdeaut, F., et al. (2016). Atypical teratoid/rhabdoid tumors-current concepts, advances in biology, and potential future therapies. Neuro-Oncology, 18, 764–778.

    PubMed  PubMed Central  Google Scholar 

  126. Chi, S. N., Zimmerman, M. A., Yao, X., et al. (2009). Intensive multimodality treatment for children with newly diagnosed CNS atypical teratoid rhabdoid tumor. Journal of Clinical Oncology, 27, 385–389.

    PubMed  PubMed Central  Google Scholar 

  127. Lee, J., Kim, D.-S., Han, J. W., & Suh, C.-O. (2017). Atypical teratoid/rhabdoid tumors in children treated with multimodal therapies: the necessity of upfront radiotherapy after surgery. Pediatric Blood & Cancer, 64, e26663.

    Google Scholar 

  128. Babgi, M., Samkari, A., Al-Mehdar, A., & Abdullah, S. (2018). Atypical teratoid/rhabdoid tumor of the spinal cord in a child: case report and comprehensive review of the literature. Pediatric Neurosurgery, 53, 254–262.

    PubMed  Google Scholar 

  129. Biegel, J. A., Kalpana, G., Knudsen, E. S., et al. (2002). The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors. Cancer Research, 62, 323–328.

    CAS  PubMed  Google Scholar 

  130. Pickles, J. C., Hawkins, C., Pietsch, T., & Jacques, T. S. (2018). CNS embryonal tumours: WHO 2016 and beyond. Neuropathology and Applied Neurobiology, 44, 151–162.

    CAS  PubMed  Google Scholar 

  131. Redshaw, N., Wheeler, G., Hajihosseini, M. K., & Dalmay, T. (2009). microRNA-449 is a putative regulator of choroid plexus development and function. Brain Research, 1250, 20–26.

    CAS  PubMed  Google Scholar 

  132. Lizé, M., Klimke, A., & Dobbelstein, M. (2011). MicroRNA-449 in cell fate determination. Cell Cycle, 10, 2874–2882.

    PubMed  Google Scholar 

  133. Balusu, S., Van Wonterghem, E., De Rycke, R., et al. (2016). Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Molecular Medicine, 8, 1162–1183.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang, Y.-P., Nguyen, P. N. N., Ma, H.-I., et al. (2019). Tumor mesenchymal stromal cells regulate cell migration of atypical teratoid rhabdoid tumor through exosome-mediated miR155/SMARCA4 pathway. Cancers (Basel), 11.

  135. Samuel, N., Wilson, G., Lemire, M., et al. (2016). Genome-wide dna methylation analysis reveals epigenetic dysregulation of microRNA-34A in TP53-associated cancer susceptibility. Journal of Clinical Oncology, 34, 3697–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sredni, S. T., Bonaldo Mde, F., Costa, F. F., et al. (2010). Upregulation of mir-221 and mir-222 in atypical teratoid/rhabdoid tumors: potential therapeutic targets. Child's Nervous System, 26, 279–283.

    PubMed  Google Scholar 

  137. Hsieh, T.-H., Chien, C.-L., Lee, Y.-H., et al. (2014). Downregulation of SUN2, a novel tumor suppressor, mediates miR-221/222-induced malignancy in central nervous system embryonal tumors. Carcinogenesis, 35, 2164–2174.

    CAS  PubMed  Google Scholar 

  138. Zhang, K., Gao, H., Wu, X., et al. (2014). Frequent overexpression of HMGA2 in human atypical teratoid/rhabdoid tumor and its correlation with let-7a3/let-7b miRNA. Clinical Cancer Research, 20, 1179–1189.

    CAS  PubMed  Google Scholar 

  139. Lee, Y.-Y., Yang, Y.-P., Huang, M.-C., et al. (2014). MicroRNA142-3p promotes tumor-initiating and radioresistant properties in malignant pediatric brain tumors. Cell Transplantation, 23, 669–690.

    PubMed  Google Scholar 

  140. Louis, D. N., Ohgaki, H., Wiestler, O. D., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114, 97–109.

    PubMed  PubMed Central  Google Scholar 

  141. Kaur, C., Rathnasamy, G., & Ling, E.-A. (2016). The Choroid plexus in healthy and diseased brain. Journal of Neuropathology and Experimental Neurology, 75, 198–213.

    CAS  PubMed  Google Scholar 

  142. Jaiswal, S., Behari, S., Jain, V., et al. (2013). Choroid plexus tumors: a clinico-pathological and neuro-radiological study of 23 cases. Asian Journal of Neurosurgery, 8, 29.

    PubMed  PubMed Central  Google Scholar 

  143. Dash, C., Moorthy, S., Garg, K., et al. (2019). Management of choroid plexus tumors in infants and young children up to 4 years of age: an institutional experience. World Neurosurgery, 121, e237–e245.

    PubMed  Google Scholar 

  144. Wang, W.-X., Fardo, D. W., Jicha, G. A., & Nelson, P. T. (2017). A customized quantitative PCR microRNA panel provides a technically robust context for studying neurodegenerative disease biomarkers and indicates a high correlation between cerebrospinal fluid and choroid plexus microRNA expression. Molecular Neurobiology, 54, 8191–8202.

    CAS  PubMed  Google Scholar 

  145. Lawrie, C. H., Gal, S., Dunlop, H. M., et al. (2008). Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. British Journal of Haematology, 141, 672–675.

    PubMed  Google Scholar 

  146. Jones, K., Nourse, J. P., Keane, C., et al. (2014). Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clinical Cancer Research, 20, 253–264.

    CAS  PubMed  Google Scholar 

  147. Laterza, O. F., Lim, L., Garrett-Engele, P. W., et al. (2009). Plasma microRNAs as Sensitive and specific biomarkers of tissue injury. Clinical Chemistry, 55, 1977–1983.

    CAS  PubMed  Google Scholar 

  148. Stamatopoulos, B., Van Damme, M., Crompot, E., et al. (2015). Opposite prognostic significance of cellular and serum circulating microRNA-150 in patients with chronic lymphocytic leukemia. Molecular Medicine, 21, 123–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mitchell, P. S., Parkin, R. K., Kroh, E. M., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences, 105, 10513–10518.

    CAS  Google Scholar 

  150. Ilhan-Mutlu, A., Wagner, L., & Preusser, M. (2013). Circulating biomarkers of CNS tumors: an update. Biomarkers in Medicine, 7, 267–285.

    CAS  PubMed  Google Scholar 

  151. Teplyuk, N. M., Mollenhauer, B., Gabriely, G., et al. (2012). MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro-Oncology, 14, 689–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Bookland, M., Tang-Schomer, M., Gillan, E., & Kolmakova, A. (2018). Circulating serum oncologic miRNA in pediatric juvenile pilocytic astrocytoma patients predicts mural nodule volume. Acta Neurochirurgica, 160, 1571–1581.

    PubMed  Google Scholar 

  153. López-Aguilar, J. E., Velázquez-Flores, M. A., Simón-Martínez, L. A., et al. (2017). Circulating microRNAs as biomarkers for pediatric astrocytomas. Archives of Medical Research, 48, 323–332. https://doi.org/10.1016/j.arcmed.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  154. Bertoli, G., Cava, C., & Castiglioni, I. (2015). MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics, 5, 1122–1143.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Alečković, M., & Kang, Y. (2015). Regulation of cancer metastasis by cell-free miRNAs. Biochimica et Biophysica Acta, Reviews on Cancer, 1855, 24–42.

    Google Scholar 

  156. Wang, H., Peng, R., Wang, J., et al. (2018). Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clinical Epigenetics, 10, 59.

    PubMed  PubMed Central  Google Scholar 

  157. Kong, Y. W., Ferland-McCollough, D., Jackson, T. J., & Bushell, M. (2012). microRNAs in cancer management. The Lancet Oncology, 13, e249–e258.

    CAS  PubMed  Google Scholar 

  158. Kroh, E. M., Parkin, R. K., Mitchell, P. S., & Tewari, M. (2010). Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 50, 298–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Shankar, G. M., Balaj, L., Stott, S. L., et al. (2017). Liquid biopsy for brain tumors. Expert Review of Molecular Diagnostics, 17, 943–947.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Cohen, L., Hartman, M. R., Amardey-Wellington, A., & Walt, D. R. (2017). Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Research, 45, e137–e137.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Bell, E., Watson, H. L., Bailey, S., et al. (2017). A robust protocol to quantify circulating cancer biomarker microRNAs. Methods in Molecular Biology, 1580, 265–279.

    CAS  PubMed  Google Scholar 

  162. Louis DN, Ohgaki H, Wiestler OD Otmar D., et al (2016) WHO classification of tumours of the central nervous system

  163. Gajjar, A., Stewart, C. F., Ellison, D. W., et al. (2013). Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clinical Cancer Research, 19, 6305–6312.

    CAS  PubMed  Google Scholar 

  164. Robinson, G. W., Orr, B. A., Wu, G., et al. (2015). Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. Journal of Clinical Oncology, 33, 2646–2654.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kieran, M. W., Chisholm, J., Casanova, M., et al. (2017). Phase I study of oral sonidegib (LDE225) in pediatric brain and solid tumors and a phase II study in children and adults with relapsed medulloblastoma. Neuro-Oncology, 19, 1542–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Schwalbe, E. C., Lindsey, J. C., Nakjang, S., et al. (2017). Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. The Lancet Oncology, 18, 958–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Jacobsen, A., Silber, J., Harinath, G., et al. (2013). Analysis of microRNA-target interactions across diverse cancer types. Nature Structural & Molecular Biology, 20, 1325–1332.

    CAS  Google Scholar 

  168. Ferretti, E., De Smaele, E., Miele, E., et al. (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. The EMBO Journal, 27, 2616–2627.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Nguyen, T., Menocal, E. M., Harborth, J., & Fruehauf, J. H. (2008). RNAi therapeutics: an update on delivery. Current Opinion in Molecular Therapeutics, 10, 158–167.

    CAS  PubMed  Google Scholar 

  170. Crooke, S. T., Graham, M. J., Zuckerman, J. E., et al. (1996). Pharmacokinetic properties of several novel oligonucleotide analogs in mice. The Journal of Pharmacology and Experimental Therapeutics, 277, 923–937.

    CAS  PubMed  Google Scholar 

  171. Chen, Y., Gao, D.-Y., & Huang, L. (2015). In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Advanced Drug Delivery Reviews, 81, 128–141.

    CAS  PubMed  Google Scholar 

  172. Tivnan, A., Orr, W. S., Gubala, V., et al. (2012). Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PLoS One, 7, e38129.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Hsu, S.-H., Yu, B., Wang, X., et al. (2013). Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor. Nanomedicine, 9, 1169–1180.

    CAS  PubMed  Google Scholar 

  174. Gill, S.-L., O’Neill, H., McCoy, R. J., et al. (2014). Enhanced delivery of microRNA mimics to cardiomyocytes using ultrasound responsive microbubbles reverses hypertrophy in an in-vitro model. Technology and Health Care, 22, 37–51.

    PubMed  Google Scholar 

  175. Liu, J., Dang, L., Li, D., et al. (2015). A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials, 52, 148–160.

    CAS  PubMed  Google Scholar 

  176. Janssen, H. L. A., Reesink, H. W., Lawitz, E. J., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368, 1685–1694.

    CAS  PubMed  Google Scholar 

  177. Wang, H., Liu, S., Jia, L., et al. (2018). Nanostructured lipid carriers for MicroRNA delivery in tumor gene therapy. Cancer Cell International, 18, 101.

    PubMed  PubMed Central  Google Scholar 

  178. Dzmitruk, V., Apartsin, E., Ihnatsyeu-Kachan, A., et al. (2018). Dendrimers show promise for siRNA and microRNA therapeutics. Pharmaceutics, 10, 126.

    CAS  PubMed Central  Google Scholar 

  179. Wang, S., Cao, M., Deng, X., et al. (2015). Degradable hyaluronic acid/protamine sulfate interpolyelectrolyte complexes as miRNA-delivery nanocapsules for triple-negative breast cancer therapy. Advanced Healthcare Materials, 4, 281–290.

    CAS  PubMed  Google Scholar 

  180. Zhao, J., Weng, G., Li, J., et al. (2018). Polyester-based nanoparticles for nucleic acid delivery. Materials Science & Engineering. C, Materials for Biological Applications, 92, 983–994.

    CAS  Google Scholar 

  181. Singh, D. P., Herrera, C. E., Singh, B., et al. (2018). Graphene oxide: an efficient material and recent approach for biotechnological and biomedical applications. Materials Science & Engineering. C, Materials for Biological Applications, 86, 173–197.

    CAS  Google Scholar 

  182. Nafee, N., & Gouda, N. (2017). Nucleic acids-based nanotherapeutics crossing the blood brain barrier. Current Gene Therapy, 17, 154–169.

    CAS  PubMed  Google Scholar 

  183. Bhaskaran, V., Nowicki, M. O., Idriss, M., et al. (2019). The functional synergism of microRNA clustering provides therapeutically relevant epigenetic interference in glioblastoma. Nature Communications, 10, 442.

    PubMed  PubMed Central  Google Scholar 

  184. Seo, Y.-E., Suh, H.-W., Bahal, R., et al. (2019). Nanoparticle-mediated intratumoral inhibition of miR-21 for improved survival in glioblastoma. Biomaterials, 201, 87–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu, Q., Zhao, K., Wang, C., et al. (2019). Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Advance Science (Weinheim), 6, 1801423.

    Google Scholar 

  186. Titze de Almeida, S. S., Horst, C. H., Soto-Sánchez, C., et al. (2018). Delivery of miRNA-targeted oligonucleotides in the rat striatum by magnetofection with Neuromag®. Molecules, 23, 1825.

    PubMed Central  Google Scholar 

  187. Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6, 287–296.

    PubMed  PubMed Central  Google Scholar 

  188. Zhang, D., Lee, H., Zhu, Z., et al. (2017). Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. American Journal of Physiology. Lung Cellular and Molecular Physiology, 312, L110–L121.

    PubMed  Google Scholar 

  189. Yang, T., Martin, P., Fogarty, B., et al. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharmaceutical Research, 32, 2003–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Osorio-Querejeta, I., Alberro, A., Muñoz-Culla, M., et al. (2018). Therapeutic potential of extracellular vesicles for demyelinating diseases; challenges and opportunities. Frontiers in Molecular Neuroscience, 11, 434.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Beg, M. S., Brenner, A. J., Sachdev, J., et al. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investigational New Drugs, 35, 180–188.

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for the financial support along all these years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sol Brassesco.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pezuk, J.A., Salomão, K.B., Baroni, M. et al. Aberrantly expressed microRNAs and their implications in childhood central nervous system tumors. Cancer Metastasis Rev 38, 813–828 (2019). https://doi.org/10.1007/s10555-019-09820-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09820-6

Keywords

Navigation