Advertisement

Update on gastric cancer treatments and gene therapies

  • Alessio Biagioni
  • Ileana Skalamera
  • Sara Peri
  • Nicola SchiavoneEmail author
  • Fabio CianchiEmail author
  • Elisa Giommoni
  • Lucia Magnelli
  • Laura Papucci
Clinical
  • 309 Downloads

Abstract

Gastric cancer is an active topic of clinical and basic research due to high morbidity and mortality. To date, gastrectomy and chemotherapy are the only therapeutic options for gastric cancer patients, but drug resistance, either acquired or primary, is the main cause for treatment failure. Differences in development and response to cancer treatments have been observed among ethnically diverse GC patient populations. In spite of major incidence, GC Asian patients have a significantly better prognosis and response to treatments than Caucasian ones due to genetic discordances between the two populations. Gene therapy could be an alternative strategy to overcome such issues and especially CRISPR/Cas9 represents one of the most intriguing gene-editing system. Thus, in this review article, we want to provide an update on the currently used therapies for the treatment of advanced GC.

Graphical abstract

Keywords

Gastric cancer Chemotherapy Metastases Gene therapy CRISPR 

Notes

Financial support

Dr. Alessio Biagioni was supported by a postdoctoral fellowship of the Italian Foundation for Cancer Research (AIRC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68, 394–424.  https://doi.org/10.3322/caac.21492.CrossRefGoogle Scholar
  2. 2.
    Ishaq, S., & Nunn, L. (2015). Helicobacter pylori and gastric cancer: a state of the art review. Gastroenterology and Hepatology from Bed to Bench, 8(Suppl 1), S6–S14.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kim, J., Cho, Y. A., Choi, W. J., & Jeong, S. H. (2014). Gene-diet interactions in gastric cancer risk: A systematic review. World Journal of Gastroenterology, 20(28), 9600–9610.  https://doi.org/10.3748/wjg.v20.i28.9600.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR). Continuous update project report: diet, nutrition, physical activity and stomach cancer 2016. Revised 2018. London: World Cancer Research Fund International; 2018.Google Scholar
  5. 5.
    Casamayor, M., Morlock, R., Maeda, H., & Ajani, J. (2018). Targeted literature review of the global burden of gastric cancer. Ecancermedicalscience., 12, 883.  https://doi.org/10.3332/ecancer.2018.883 eCollection 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Berlth, F., Bollschweiler, E., Drebber, U., Hoelscher, A. H., & Moenig, S. (2014). Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value. World Journal of Gastroenterology, 20(19), 5679–5684.  https://doi.org/10.3748/wjg.v20.i19.5679.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Clements, W. M., Wang, J., Sarnaik, A., Kim, O. J., MacDonald, J., Fenoglio-Preiser, C., Groden, J., & Lowy, A. M. (2002). Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Research, 62(12), 3503–3506.PubMedGoogle Scholar
  8. 8.
    Feng, R., Chen, X., Yu, Y., Su, L., Yu, B., Li, J., Cai, Q., Yan, M., Liu, B., & Zhu, Z. (2010). miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Letters, 298, 50–63.CrossRefPubMedGoogle Scholar
  9. 9.
    Moses, C., Garcia-Bloj, B., Harvey, A. R., & Blancafort, P. (2018). Hallmarks of cancer: The CRISPR generation. European Journal of Cancer, 93, 10–18.  https://doi.org/10.1016/j.ejca.2018.01.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Su, S., Zou, Z., Chen, F., Ding, N., Du, J., Shao, J., Li, L., Fu, Y., Hu, B., Yang, Y., Sha, H., Meng, F., Wei, J., Huang, X., & Liu, B. (2016). CRISPR-Cas9-mediated disruption of PD-1 on human T cells for adoptive cellular therapies of EBV positive gastric cancer. Oncoimmunology, 6(1), e1249558.  https://doi.org/10.1080/2162402X.2016.1249558.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deng, X., & Nakamura, Y. (2017). Cancer precision medicine: from cancer screening to drug selection and personalized immunotherapy. Trends in Pharmacological Sciences, 38(1), 15–24.  https://doi.org/10.1016/j.tips.2016.10.013.CrossRefPubMedGoogle Scholar
  12. 12.
    Gao, Q., Dong, X., Xu, Q., Zhu, L., Wang, F., Hou, Y., & Chao, C. C. (2019). Therapeutic potential of CRISPR/Cas9 gene editing in engineered T-cell therapy. Cancer Medicine.  https://doi.org/10.1002/cam4.2257.
  13. 13.
    Dolcetti, R., De Re, V., Canzonieri, V. (2018). Immunotherapy for gastric cancer: time for a personalized approach? International Journal of Molecular Sciences, 19(6). doi: https://doi.org/10.3390/ijms19061602.
  14. 14.
    Cong, L., Zhou, R., Kuo, Y. C., Cunniff, M., & Zhang, F. (2012). Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nature Communications, 3, 968.  https://doi.org/10.1038/ncomms1962.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Garcia-Bloj, B., Moses, C., Sgro, A., Plani-Lam, J., Arooj, M., Duffy, C., Thiruvengadam, S., Sorolla, A., Rashwan, R., Mancera, R. L., Leisewitz, A., Swift-Scanlan, T., Corvalan, A. H., & Blancafort, P. (2016). Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system. Oncotarget, 7(37), 60535–60554.  https://doi.org/10.18632/oncotarget.11142.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Liu, J., Ben, Q., Lu, E., He, X., Yang, X., Ma, J., Zhang, W., Wang, Z., Liu, T., Zhang, J., & Wang, H. (2018). Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death & Disease, 9(2), 168.  https://doi.org/10.1038/s41419-017-0246-6.CrossRefGoogle Scholar
  17. 17.
    Wagner, A. D., Unverzagt, S., Grothe, W., et al. (2010). Chemotherapy for advanced gastric cancer. Cochrane Database of Systematic Reviews, 3, CD004064.Google Scholar
  18. 18.
    Bang, Y. J., Van Cutsem, E., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, A., Lordick, F., Ohtsu, A., Omuro, Y., Satoh, T., Aprile, G., Kulikov, E., Hill, J., Lehle, M., Ruschoff, J., Kang, Y. K., et al. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastroesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 376(9742), 687–697.CrossRefGoogle Scholar
  19. 19.
    Koizumi, W., Narahara, H., Hara, T., Takagane, A., Akiya, T., Takagi, M., Miyashita, K., Nishizaki, T., Kobayashi, O., Takiyama, W., Toh, Y., Nagaie, T., Takagi, S., Yamamura, Y., Yanaoka, K., Orita, H., & Takeuchi, M. (2008). S-1 plus cisplatin versus S-1 alone for first-line treatment of advanced gastric cancer (SPIRITS trial): a phase III trial. The Lancet Oncology, 9, 215–221.CrossRefPubMedGoogle Scholar
  20. 20.
    Ajani, J. A., Buyse, M., Lichinitser, M., et al. (2013). Combination of cisplatin/S-1 in the treatment of patients with advanced gastric or gastroesophageal adenocarcinoma: results of noninferiority and safety analyses compared with cisplatin/5-fluorouracil in the First-Line Advanced Gastric Cancer study. Eur J Cancer, 49, 3616–3624.CrossRefPubMedGoogle Scholar
  21. 21.
    Ajani, J. A., Rodriguez, W., Bodoky, G., Moiseyenko, V., Lichinitser, M., Gorbunova, V., Vynnychenko, I., Garin, A., Lang, I., & Falcon, S. (2010). Multicenter phase III comparison of cisplatin/S-1 with cisplatin/infusional fluorouracil in advanced gastric or gastroesophageal adenocarcinoma study: the FLAGS trial. Journal of Clinical Oncology, 28, 1547–1553.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., et al. (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. Journal of Clinical Oncology, 24, 4991–4997.CrossRefPubMedGoogle Scholar
  23. 23.
    Al-Batran, S. E., Homann, N., & Pauligk, C. (2019). Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): a randomised, phase 2/3 trial. Lancet, 393(10184), 1948–1957.CrossRefPubMedGoogle Scholar
  24. 24.
    Catalano, V., Graziano, F., Santini, D., D'Emidio, S., Baldelli, A. M., Rossi, D., Vincenzi, B., Giordani, P., Alessandroni, P., Testa, E., Tonini, G., & Catalano, G. (2008). Second-line chemotherapy for patients with advanced gastric cancer: who may benefit? British Journal of Cancer, 99, 1402–1407.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hang, Y., Ma, B., Huang, X. T., et al. (2016). Doublet versus single agent as second-line treatment for advanced gastric cancer: a meta-analysis of 10 randomized controlled trials. Medicine, 95, e2792.CrossRefGoogle Scholar
  26. 26.
    Fuchs, C. S., Tomasek, J., Yong, C. J., Dumitru, F., Passalacqua, R., Goswami, C., Safran, H., dos Santos, L. V., Aprile, G., Ferry, D. R., Melichar, B., Tehfe, M., Topuzov, E., Zalcberg, J. R., Chau, I., Campbell, W., Sivanandan, C., Pikiel, J., Koshiji, M., Hsu, Y., Liepa, A. M., Gao, L., Schwartz, J. D., & Tabernero, J. (2014). Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 383, 31–39.CrossRefGoogle Scholar
  27. 27.
    Wilke, H., Muro, K., Van Cutsem, E., et al. (2014). Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. The Lancet Oncology, 15, 1224–1235.CrossRefPubMedGoogle Scholar
  28. 28.
    Riihimäki, M., Hemminki, A., Sundquist, K., Sundquist, J., & Hemminki, K. (2016). Metastatic spread in patients with gastric cancer. Oncotarget, 7(32), 52307–52316.  https://doi.org/10.18632/oncotarget.10740.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Thomassen, I., van Gestel, Y. R., van Ramshorst, B., Luyer, M. D., Bosscha, K., Nienhuijs, S. W., Lemmens, V. E., & de Hingh, I. H. (2014). Peritoneal carcinomatosis of gastric origin: a population-based study on incidence, survival and risk factors. International Journal of Cancer, 134(3), 622–628.  https://doi.org/10.1002/ijc.28373.CrossRefPubMedGoogle Scholar
  30. 30.
    Kanda, M., & Kodera, Y. (2016). Molecular mechanisms of peritoneal dissemination in gastric cancer. World Journal of Gastroenterology, 22(30), 6829–6840.  https://doi.org/10.3748/wjg.v22.i30.6829 Review.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S., Liu, J., Yue, Y. G., Wang, J., Yu, K., Ye, X. S., Do, I. G., Liu, S., Gong, L., Fu, J., Jin, J. G., Choi, M. G., Sohn, T. S., Lee, J. H., Bae, J. M., Kim, S. T., Park, S. H., Sohn, I., Jung, S. H., Tan, P., Chen, R., Hardwick, J., Kang, W. K., Ayers, M., Hongyue, D., Reinhard, C., Loboda, A., Kim, S., & Aggarwal, A. (2015). Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nature Medicine, 21(5), 449–456.  https://doi.org/10.1038/nm.3850.CrossRefPubMedGoogle Scholar
  32. 32.
    Kim, B., Shin, H. C., Heo, Y. J., Ha, S. Y., Jang, K. T., Kim, S. T., Kang, W. K., Lee, J., & Kim, K. M. (2019). CCNE1 amplification is associated with liver metastasis in gastric carcinoma. Pathology, Research and Practice, 4, 152434.  https://doi.org/10.1016/j.prp.2019.152434.CrossRefGoogle Scholar
  33. 33.
    Zhang, J., Huang, J. Y., Chen, Y. N., Yuan, F., Zhang, H., Yan, F. H., Wang, M. J., Wang, G., Su, M., Lu, G., Huang, Y., Dai, H., Ji, J., Zhang, J., Zhang, J. N., Jiang, Y. N., Chen, S. J., Zhu, Z. G., & Yu, Y. Y. (2015). Erratum: whole genome and transcriptome sequencing of matched primary and peritoneal metastatic gastric carcinoma. Scientific Reports, 5, 15309.  https://doi.org/10.1038/srep15309.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fang, W. L., Lan, Y. T., Huang, K. H., Liu, C. A., Hung, Y. P., Lin, C. H., Jhang, F. Y., Chang, S. C., Chen, M. H., Chao, Y., Lin, W. C., Lo, S. S., Fen-Yau Li, A., Wu, C. W., Chiou, S. H., & Shyr, Y. M. (2016). Clinical significance of circulating plasma DNA in gastric cancer. International Journal of Cancer, 138(12), 2974–2983.  https://doi.org/10.1002/ijc.30018.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang, R., Song, S., Harada, K., Ghazanfari Amlashi, F., Badgwell, B., Pizzi, M. P., Xu, Y., Zhao, W., Dong, X., Jin, J., Wang, Y., Scott, A., Ma, L., Huo, L., Vicente, D., Blum Murphy, M., Shanbhag, N., Tatlonghari, G., Thomas, I., Rogers, J., Kobayashi, M., Vykoukal, J., Estrella, J. S., Roy-Chowdhuri, S., Han, G., Zhang, S., Mao, X., Song, X., Zhang, J., Gu, J., Johnson, R. L., Calin, G. A., Peng, G., Lee, J. S., Hanash, S. M., Futreal, A., Wang, Z., Wang, L., & Ajani, J. A. (2019). Multiplex profiling of peritoneal metastases from gastric adenocarcinoma identified novel targets and molecular subtypes that predict treatment response. Gut.  https://doi.org/10.1136/gutjnl-2018-318070.
  36. 36.
    Wang, J., Sun, Y., & Bertagnolli, M. M. (2015). Comparison of gastric cancer survival between Caucasian and Asian patients treated in the United States: results from the Surveillance Epidemiology and End Results (SEER) database. Annals of Surgical Oncology, 22(9), 2965–2971.  https://doi.org/10.1245/s10434-015-4388-4.CrossRefPubMedGoogle Scholar
  37. 37.
    Stock, M., & Otto, F. (2005). Gene deregulation in gastric cancer. Gene., 360(1), 1–19 Review.CrossRefPubMedGoogle Scholar
  38. 38.
    Parkin, D. M., Bray, F., Ferlay, J., & Pisani, P. (2005). Global cancer statistics, 2002. CA: a Cancer Journal for Clinicians, 55(2), 74–108.Google Scholar
  39. 39.
    Jia, F., Teer, J. K., Knepper, T. C., Lee, J. K., Zhou, H. H., He, Y. J., & McLeod, H. L. (2017). Discordance of somatic mutations between Asian and Caucasian patient populations with gastric cancer. Molecular Diagnosis & Therapy, 21(2), 179–185.  https://doi.org/10.1007/s40291-016-0250-z.CrossRefGoogle Scholar
  40. 40.
    Kim, J., Sun, C. L., Mailey, B., Prendergast, C., Artinyan, A., Bhatia, S., Pigazzi, A., & Ellenhorn, J. D. (2010). Race and ethnicity correlate with survival in patients with gastric adenocarcinoma. Annals of Oncology, 21(1), 152–160.  https://doi.org/10.1093/annonc/mdp290.CrossRefPubMedGoogle Scholar
  41. 41.
    Mehta, S., Shelling, A., Muthukaruppan, A., Lasham, A., Blenkiron, C., Laking, G., & Print, C. (2010). Predictive and prognostic molecular markers for cancer medicine. Therapeutic Advances in Medical Oncology, 2(2), 125–148.  https://doi.org/10.1177/1758834009360519.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pinheiro Ddo, R., Ferreira, W. A., Barros, M. B., Araújo, M. D., Rodrigues-Antunes, S., & Borges, B. N. (2014). Perspectives on new biomarkers in gastric cancer: diagnostic and prognostic applications. World Journal of Gastroenterology, 20(33), 11574–11585.  https://doi.org/10.3748/wjg.v20.i33.11574 Review.CrossRefPubMedGoogle Scholar
  43. 43.
    Abrahao-Machado, L. F., & Scapulatempo-Neto, C. (2016). HER2 testing in gastric cancer: an update. World Journal of Gastroenterology, 22(19), 4619–4625.  https://doi.org/10.3748/wjg.v22.i19.4619 Review.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Lordick, F., Lorenzen, S., Yamada, Y., & Ilson, D. (2014). Optimal chemotherapy for advanced gastric cancer: is there a global consensus? Gastric Cancer, 17(2), 213–225.  https://doi.org/10.1007/s10120-013-0297-z Review.CrossRefPubMedGoogle Scholar
  45. 45.
    Chou, S. T., Leng, Q., & Mixson, A. J. (2012). Zinc finger nucleases: tailor-made for gene therapy. Drugs of the Future, 37(3), 183–196.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Silva, G., Poirot, L., Galetto, R., Smith, J., Montoya, G., Duchateau, P., & Pâques, F. (2011). Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Current Gene Therapy, 11(1), 11–27 Review.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., Meng, X., Paschon, D. E., Leung, E., Hinkley, S. J., Dulay, G. P., Hua, K. L., Ankoudinova, I., Cost, G. J., Urnov, F. D., Zhang, H. S., Holmes, M. C., Zhang, L., Gregory, P. D., & Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature Biotechnology, 29(2), 143–148.  https://doi.org/10.1038/nbt.1755.CrossRefPubMedGoogle Scholar
  48. 48.
    Lee, H. J., Kim, E., & Kim, J. S. (2010). Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Research, 20(1), 81–89.  https://doi.org/10.1101/gr.099747.109.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liang, F., Han, M., Romanienko, P. J., & Jasin, M. (1998). Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5172–5177.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Garneau, J. E., Dupuis, M. È., Villion, M., Romero, D. A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A. H., & Moineau, S. (2010). The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature., 468(7320), 67–71.  https://doi.org/10.1038/nature09523.CrossRefPubMedGoogle Scholar
  51. 51.
    Nishimasu, H., Ran, F. A., Hsu, P. D., Konermann, S., Shehata, S. I., Dohmae, N., Ishitani, R., Zhang, F., & Nureki, O. (2014). Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell., 156(5), 935–949.  https://doi.org/10.1016/j.cell.2014.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 1(6), e60.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dow, L. E., Fisher, J., O'Rourke, K. P., Muley, A., Kastenhuber, E. R., Livshits, G., Tschaharganeh, D. F., Socci, N. D., & Lowe, S. W. (2015). Inducible in vivo genome editing with CRISPR-Cas9. Nature Biotechnology, 33(4), 390–394.  https://doi.org/10.1038/nbt.3155.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang, Y. Q., Pei, J. H., Shi, S. S., Guo, X. S., Cui, G. Y., Li, Y. F., Zhang, H. P., & Hu, W. Q. (2019). CRISPR/Cas9-mediated knockout of the PDEF gene inhibits migration and invasion of human gastric cancer AGS cells. Biomedicine & Pharmacotherapy, 111, 76–85.  https://doi.org/10.1016/j.biopha.2018.12.048.CrossRefGoogle Scholar
  55. 55.
    Hilton, I. B., D’Ippolito, A. M., Vockley, C. M., Thakore, P. I., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2015). Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 33, 510–517.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chavez, A., Scheiman, J., Vora, S., Pruitt, B. W., Tuttle, M., P R Iyer, E., Lin, S., Kiani, S., Guzman, C. D., Wiegand, D. J., Ter-Ovanesyan, D., Braff, J. L., Davidsohn, N., et al. (2015). Highly efficient Cas9-mediated transcriptional programming. Nature Methods, 12, 326–328.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Perez-Pinera, P., Kocak, D. D., Vockley, C. M., Adler, A. F., Kabadi, A. M., Polstein, L. R., Thakore, P. I., Glass, K. A., Ousterout, D. G., Leong, K. W., Guilak, F., Crawford, G. E., Reddy, T. E., & Gersbach, C. A. (2013). RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nature Methods, 10, 973–976.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sandoval-Bórquez, A., Saavedra, K., Carrasco-Avino, G., Garcia-Bloj, B., Fry, J., Wichmann, I., & Corvalán, A. H. (2015). Noncoding genomics in gastric cancer and the gastric precancerous cascade: pathogenesis and biomarkers. Disease Markers, 2015, 1–14.CrossRefGoogle Scholar
  59. 59.
    Bernal, C., Aguayo, F., Villarroel, C., Vargas, M., Díaz, I., Ossandon, F. J., Santibáñez, E., Palma, M., Aravena, E., Barrientos, C., & Corvalan, A. H. (2008). Reprimo as a potential biomarker for early detection in gastric cancer. Clinical Cancer Research, 14, 6264–6269.CrossRefPubMedGoogle Scholar
  60. 60.
    Kanda, T., Furuse, Y., Oshitani, H., & Kiyono, T. (2016). Highly efficient CRISPR/Cas9-mediated cloning and functional characterization of gastric cancer-derived Epstein-Barr virus strains. Journal of Virology, 90(9), 4383–4393.  https://doi.org/10.1128/JVI.00060-16.Print2016May.
  61. 61.
    Corso, G., Marrelli, D., & Roviello, F. (2012). Familial gastric cancer and germline mutations of E-cadherin. Annali Italiani di Chirurgia, 83(3), 177–182.PubMedGoogle Scholar
  62. 62.
    van der Post, R. S., Vogelaar, I. P., Carneiro, F., Guilford, P., Huntsman, D., Hoogerbrugge, N., Caldas, C., Schreiber, K. E., Hardwick, R. H., Ausems, M. G., Bardram, L., Benusiglio, P. R., Bisseling, T. M., Blair, V., Bleiker, E., Boussioutas, A., Cats, A., Coit, D., DeGregorio, L., Figueiredo, J., Ford, J. M., Heijkoop, E., Hermens, R., Humar, B., Kaurah, P., Keller, G., Lai, J., Ligtenberg, M. J., O'Donovan, M., Oliveira, C., Pinheiro, H., Ragunath, K., Rasenberg, E., Richardson, S., Roviello, F., Schackert, H., Seruca, R., Taylor, A., Ter Huurne, A., Tischkowitz, M., Joe, S. T., van Dijck, B., van Grieken, N. C., van Hillegersberg, R., van Sandick, J. W., Vehof, R., van Krieken, J. H., & Fitzgerald, R. C. (2015). Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. Journal of Medical Genetics, 52(6), 361–374.  https://doi.org/10.1136/jmedgenet-2015-103094.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Biagioni, A., Laurenzana, A., Margheri, F., Chillà, A., Fibbi, G., & Del Rosso, M. (2018). Delivery systems of CRISPR/Cas9-based cancer gene therapy. Journal of Biological Engineering, 12, 33.  https://doi.org/10.1186/s13036-018-0127-2 eCollection 2018. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cepko, C., & Pear, W. (2001). Overview of the retrovirus transduction system. Current Protocols in Molecular Biology, 9, 9.9.Google Scholar
  65. 65.
    Annunziato, S., Kas, S. M., Nethe, M., Yücel, H., Del Bravo, J., Pritchard, C., Bin Ali, R., et al. (2016). Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes & Development, 30(12), 1470–1480.CrossRefGoogle Scholar
  66. 66.
    English, D. P., Roque, D. M., & Santin, A. D. (2013). HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Molecular Diagnosis & Therapy, 17(2), 85–99.  https://doi.org/10.1007/s40291-013-0024-9 Review.CrossRefGoogle Scholar
  67. 67.
    Koizumi, W., Tanabe, S., Saigenji, K., Ohtsu, A., Boku, N., Nagashima, F., Shirao, K., Matsumura, Y., & Gotoh, M. (2003). Phase I/II study of S-1 combined with cisplatin in patients with advanced gastric cancer. British Journal of Cancer, 89(12), 2207–2212.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ohtsu, Y., Shimada, K., Shirao, N., Boku, I., Hyodo, H., & Saito. (et al.). Randomized phase III trial of fluorouracil alone versus fluorouracil plus cisplatin versus uracil and tegafur plus mitomycin in patients with unresectable, advanced gastric cancer: the Japan Clinical Oncology Group Study (JCOG9205). Journal of Clinical Oncology, 21(2003), 54e59.Google Scholar
  69. 69.
    Van Cutsem, E., Moiseyenko, V. M., Tjulandin, S., Majlis, A., Constenla, M., Boni, C., et al. (2006). Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 Study Group. Journal of Clinical Oncology, 24, 4991e4997.Google Scholar
  70. 70.
    Narahara, H., Iishi, H., Imamura, H., Tsuburaya, A., Chin, K., Imamoto, H., Esaki, T., Furukawa, H., Hamada, C., & Sakata, Y. (2011). Randomized phase III study comparing the efficacy and safety of irinotecan plus S-1 with S-1 alone as first-line treatment for advanced gastric cancer (study GC0301/TOP-002). Gastric Cancer, 14(1), 72–80.  https://doi.org/10.1007/s10120-011-0009-5.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Das, K., Chan, X. B., Epstein, D., Teh, B. T., Kim, K. M., Kim, S. T., Park, S. H., Kang, W. K., Rozen, S., Lee, J., & Tan, P. (2016). NanoString expression profiling identifies candidate biomarkers of RAD001 response in metastatic gastric cancer. ESMO Open, 1, e000009.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Liu, S., Chapman, J. A., Burnell, M. J., Levine, M. N., Pritchard, K. I., Whelan, T. J., Rugo, H. S., Albain, K. S., Perez, E. A., Virk, S., Barry, G., Gao, D., O'Brien, P., Shepherd, L. E., Nielsen TO, & Gelmon, K. A. (2015). Prognostic and predictive investigation of PAM50 intrinsic subtypes in the NCIC CTG MA.21 phase III chemotherapy trial. Breast Cancer Research and Treatment, 149(2), 439–448.  https://doi.org/10.1007/s10549-014-3259-1.CrossRefPubMedGoogle Scholar
  73. 73.
    Dulak, A. M., Schumacher, S. E., van Lieshout, J., Imamura, Y., Fox, C., Shim, B., Ramos, A. H., Saksena, G., Baca, S. C., Baselga, J., Tabernero, J., Barretina, J., Enzinger, P. C., Corso, G., Roviello, F., Lin, L., Bandla, S., Luketich, J. D., Pennathur, A., Meyerson, M., Ogino, S., Shivdasani, R. A., Beer, D. G., Godfrey, T. E., Beroukhim, R., & Bass, A. J. (2012). Gastrointestinal adenocarcinomas of the esophagus, stomach, and colon exhibit distinct patterns of genome instability and oncogenesis. Cancer Research, 72(17), 4383–4393.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lee, J., Sohn, I., Do, I. G., Kim, K. M., Park, S. H., Park, J. O., Park, Y. S., Lim, H. Y., Sohn, T. S., Bae, J. M., Choi, M. G., Lim, D. H., Min, B. H., Lee, J. H., Rhee, P. L., Kim, J. J., Choi, D. I., Tan, I. B., Das, K., Tan, P., Jung, S. H., Kang, W. K., & Kim, S. (2014). Nanostring-based multigene assay to predict recurrence for gastric cancer patients after surgery. PLoS One, 9, e90133.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chen, K., Yang, D., Li, X., et al. (2015). Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 112, 1107e1112.Google Scholar
  76. 76.
    Busuttil, R. A., Zapparoli, G. V., Haupt, S., et al. (2014). Role of p53 in the progression of gastric cancer. Oncotarget, 5, 12016e12026. 4.CrossRefGoogle Scholar
  77. 77.
    Endo, F., Nishizuka, S. S., Kume, K., Ishida, K., Katagiri, H., Ishida, K., Sato, K., Iwaya, T., Koeda, K., & Wakabayashi, G. (2014). A compensatory role of NF-kB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines. PLoS One, 9, e90155.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zha, Y., Gan, P., Liu, Q., & Yao, Q. (2016). TP53 codon 72 polymorphism predicts efficacy of paclitaxel plus capecitabine chemotherapy in advanced gastric cancer patients. Archives of Medical Research, 47(1), 13–18.  https://doi.org/10.1016/j.arcmed.2015.12.001 Epub 2015 Dec 13.CrossRefPubMedGoogle Scholar
  79. 79.
    Das, K., Taguri, M., Imamura, H., Sugimoto, N., Nishikawa, K., Yoshida, K., Tan, P., & Tsuburaya, A. (2018). Genomic predictors of chemotherapy efficacy in advanced or recurrent gastric cancer in the GC0301/TOP002 phase III clinical trial. Cancer Letters, 412, 208–215.  https://doi.org/10.1016/j.canlet.2017.10.011.CrossRefPubMedGoogle Scholar
  80. 80.
    Jardim, D. L., de Melo, G. D., Falchook, G. S., Janku, F., Zinner, R., Wheler, J. J., Subbiah, V., Piha-Paul, S. A., Fu, S., Murphy, M. B., Ajani, J., Tang, C., Hess, K., Hamilton, S. R., Roy-Chowdhuri, S., Kurzrock, R., Meric-Bernstam, F., & Hong, D. S. (2014). MET aberrations and c-MET inhibitors in patients with gastric and esophageal cancers in a phase I unit. Oncotarget, 5(7), 1837–1845.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Comoglio, P. M., Giordano, S., & Trusolino, L. (2008). Drug development of MET inhibitors: targeting oncogene addiction and expedience. Nature Reviews Drug Discovery, 7(6), 504–516.CrossRefPubMedGoogle Scholar
  82. 82.
    Tuynman, J. B., Lagarde, S. M., Ten Kate, F. J., Richel, D. J., & van Lanschot, J. J. (2008). Met expression is an independent prognostic risk factor in patients with oesophageal adenocarcinoma. British Journal of Cancer, 98(6), 1102–1108.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lennerz, J. K., Kwak, E. L., Ackerman, A., Michael, M., Fox, S. B., Bergethon, K., Lauwers, G. Y., Christensen, J. G., Wilner, K. D., Haber, D. A., Salgia, R., Bang, Y. J., Clark, J. W., Solomon, B. J., & Iafrate, A. J. (2011). MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. Journal of Clinical Oncology, 29(36), 4803–4810.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Stahl, M., Maderer, A., Lordick, F., Mihaljevic, A. L., Kanzler, S., Hoehler, T., Thuss-Patience, P., Mönig, S., Kunzmann, V., Schroll, S., Sandermann, A., Tannapfel, A., Meyer, H. J., Schuhmacher, C., Wilke, H., Moehler, M., & Arbeitsgemeinschaft Internistische Onkologie (AIO) Oesophageal and Gastric Cancer Working Group and the Chirurgische Arbeitsgemeinschaft Onkologie (CAOGI/DGAV) of the German Cancer Society. (2018). Perioperative chemotherapy with or without epidermal growth factor receptor blockade in unselected patients with locally advanced oesophagogastric adenocarcinoma: randomized phase II study with advanced biomarker program of the German Cancer Society (AIO/CAO STO-0801). European Journal of Cancer, 93, 119–126.  https://doi.org/10.1016/j.ejca.2018.01.079.CrossRefPubMedGoogle Scholar
  85. 85.
    Kim, M. A., Lee, H. S., Lee, H. E., Jeon, Y. K., Yang, H. K., & Kim, W. H. (2008). EGFR in gastric carcinomas: prognostic significance of protein overexpression and high gene copy number. Histopathology., 52(6), 738–746.  https://doi.org/10.1111/j.1365-2559.2008.03021.x.CrossRefPubMedGoogle Scholar
  86. 86.
    Cacina, C., Arikan, S., Duzkoylu, Y., Dogan, M. B., Okay, E., Turan, S., et al. (2015). Analyses of EGF A61G gene variation and serum EGF level on gastric cancer susceptibility and clinicopathological parameters. Anticancer Research, 35(5), 2709e13.Google Scholar
  87. 87.
    Park, D. J., Yoon, C., Thomas, N., Ku, G. Y., Janjigian, Y. Y., Kelsen, D. P., et al. (2014). Prognostic significance of targetable angiogenic and growth factors in patients undergoing resection for gastric and gastroesophageal junction cancers. Annals of Surgical Oncology, 21(4), 1130e7.Google Scholar
  88. 88.
    Takahashi, N., Furuta, K., Taniguchi, H., Sasaki, Y., Shoji, H., Honma, Y., et al. (2016). Serum level of hepatocyte growth factor is a novel marker of predicting the outcome and resistance to the treatment with trastuzumab in HER2-positive patients with metastatic gastric cancer. Oncotarget, 7(4), 4925e38.CrossRefGoogle Scholar
  89. 89.
    Lim, J. B., Kim, D. K., & Chung, H. W. (2014). Clinical significance of serum thymus and activation-regulated chemokine in gastric cancer: potential as a serum biomarker. Cancer Science, 105(10), 1327e33.CrossRefGoogle Scholar
  90. 90.
    Jang, J. H., Shin, K. H., & Park, J. G. (2001). Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Research, 61, 3541–3543.PubMedGoogle Scholar
  91. 91.
    Murase, H., Inokuchi, M., Takagi, Y., et al. (2014). Prognostic significance of the co- overexpression of fibroblast growth factor receptors 1, 2 and 4 in gastric cancer. Molecular and Clinical Oncology, 2, 509–517.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Brooks, A. N., Kilgour, E., & Smith, P. D. (2012). Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clinical Cancer Research, 18, 1855–1862.CrossRefPubMedGoogle Scholar
  93. 93.
    Van Cutsem, E., Bang, Y. J., Mansoor, W., Petty, R. D., Chao, Y., Cunningham, D., Ferry, D. R., Smith, N. R., Frewer, P., Ratnayake, J., Stockman, P. K., Kilgour, E., & Landers, D. (2017). A randomized, open-label study of the efficacy and safety of AZD4547 monotherapy versus paclitaxel for the treatment of advanced gastric adenocarcinoma with FGFR2 polysomy or gene amplification. Annals of Oncology, 28(6), 1316–1324.  https://doi.org/10.1093/annonc/mdx107.CrossRefPubMedGoogle Scholar
  94. 94.
    Metzger, R., Leichman, C. G., Danenberg, K. D., Danenberg, P. V., Lenz, H. J., Hayashi, K., Groshen, S., Salonga, D., Cohen, H., Laine, L., Crookes, P., Silberman, H., Baranda, J., Konda, B., & Leichman, L. (1998). ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. Journal of Clinical Oncology, 16, 309–316.CrossRefPubMedGoogle Scholar
  95. 95.
    Yamada, Y., Boku, N., Nishina, T., Yamaguchi, K., Denda, T., Tsuji, A., Hamamoto, Y., Konishi, K., Tsuji, Y., Amagai, K., Ohkawa, S., Fujita, Y., Nishisaki, H., Kawai, H., Takashima, A., Mizusawa, J., Nakamura, K., & Ohtsu, A. (2013). Impact of excision repair cross-complementing gene 1 (ERCC1) on the outcomes of patients with advanced gastric cancer: correlative study in Japan Clinical Oncology Group Trial JCOG9912. Annals of Oncology, 24(10), 2560–2565.  https://doi.org/10.1093/annonc/mdt238 Epub 2013 Jul 24.CrossRefPubMedGoogle Scholar
  96. 96.
    Deng, M., Tang, H. L., Lu, X. H., Liu, M. Y., Lu, X. M., Gu, Y. X., Liu, J. F., & He, Z. M. (2013). miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS One, 8(8), e72662.  https://doi.org/10.1371/journal.pone.0072662.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Ji, M., Xu, B., Jiang, J. T., Wu, J., Li, X. D., Zhao, W. Q., Zhang, H. Y., Zhou, W. J., & Wu, C. P. (2013). Relationship between glutathione S-transferase P1 (GSTP1), X-ray repair cross complementing group 1 (XRCC1) and 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) gene polymorphisms and response to chemotherapy in advanced gastric cancer. Onkologie, 36(6), 335–340.  https://doi.org/10.1159/000351260.CrossRefPubMedGoogle Scholar
  98. 98.
    Sato, F., & Meltzer, S. J. (2006). CpG island hypermethylation in progression of esophageal and gastric cancer. Cancer, 106, 483–493.CrossRefPubMedGoogle Scholar
  99. 99.
    Kang, C., Song, J. J., Lee, J., & Kim, M. Y. (2014). Epigenetics: an emerging player in gastric cancer. World journal of gastroenterology: WJG, 20, 6433–6447.CrossRefPubMedGoogle Scholar
  100. 100.
    Hamilton, J. P., Sato, F., Jin, Z., Greenwald, B. D., Ito, T., Mori, Y., Paun, B. C., Kan, T., Cheng, Y., Wang, S., Yang, J., Abraham, J. M., & Meltzer, S. J. (2006). Reprimo methylation is a potential biomarker of Barrett’s-associated esophageal neoplastic progression. Clinical Cancer Research, 12, 6637–6642.CrossRefPubMedGoogle Scholar
  101. 101.
    Eads, C. A., Lord, R. V., Wickramasinghe, K., Long, T. I., Kurumboor, S. K., Bernstein, L., Peters, J. H., DeMeester, S., DeMeester, T., Skinner, K. A., & Laird, P. W. (2001). Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Research, 61, 3410–3418.PubMedGoogle Scholar
  102. 102.
    Wang, J. S., Guo, M., Montgomery, E. A., Thompson, R. E., Cosby, H., Hicks, L., Wang, S., Herman, J. G., & Canto, M. I. (2009). DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. The American Journal of Gastroenterology, 104, 2153–2160.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Oka, D., Yamashita, S., Tomioka, T., Nakanishi, Y., Kato, H., Kaminishi, M., & Ushijima, T. (2009). The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer, 115, 3412–3426.CrossRefPubMedGoogle Scholar
  104. 104.
    Schneider, B. J., Shah, M. A., Klute, K., Ocean, A., Popa, E., Altorki, N., Lieberman, M., Schreiner, A., Yantiss, R., Christos, P. J., Palmer, R., You, D., Viale, A., Kermani, P., & Scandura, J. M. (2017). Phase I Study of epigenetic priming with azacitidine prior to standard neoadjuvant chemotherapy for patients with resectable gastric and esophageal adenocarcinoma: evidence of tumor hypomethylation as an indicator of major histopathologic response. Clinical Cancer Research, 23(11), 2673–2680.  https://doi.org/10.1158/1078-0432.CCR-16-1896.CrossRefPubMedGoogle Scholar
  105. 105.
    Marin, J. J., Al-Abdulla, R., Lozano, E., Briz, O., Bujanda, L., Banales, J. M., & Macias, R. I. (2016). Mechanisms of resistance to chemotherapy in gastric cancer. Anti-Cancer Agents in Medicinal Chemistry, 16(3), 318–334 Review.CrossRefPubMedGoogle Scholar
  106. 106.
    Khare, P. D., Shao-Xi, L., Kuroki, M., Hirose, Y., Arakawa, F., Nakamura, K., Tomita, Y., & Kuroki, M. (2001). Specifically targeted killing of carcinoembryonic antigen (CEA)-expressing cells by a retroviral vector displaying single-chain variable fragmented antibody to CEA and carrying the gene for inducible nitric oxide synthase. Cancer Research, 61(1), 370–375.PubMedGoogle Scholar
  107. 107.
    Shaw, D. M., Embleton, M. J., Westwater, C., Ryan, M. G., Myers, K. A., Kingsman, S. M., Carroll, M. W., & Stern, P. L. (2000). Isolation of a high affinity scFv from a monoclonal antibody recognising the oncofoetal antigen 5T4. Biochimica et Biophysica Acta, 1524(2–3), 238–246.CrossRefPubMedGoogle Scholar
  108. 108.
    Biagioni, A., Chillà, A., Andreucci, E., Laurenzana, A., Margheri, F., Peppicelli, S., Del Rosso, M., & Fibbi, G. (2017). Type II CRISPR/Cas9 approach in the oncological therapy. Journal of Experimental & Clinical Cancer Research, 36(1), 80.  https://doi.org/10.1186/s13046-017-0550-0 Review.CrossRefGoogle Scholar
  109. 109.
    Ohashi, M., Kanai, F., Ueno, H., Tanaka, T., Tateishi, K., Kawakami, T., Koike, Y., Ikenoue, T., Shiratori, Y., Hamada, H., & Omata, M. (1999). Adenovirus mediated p53 tumour suppressor gene therapy for human gastric cancer cells in vitro and in vivo. Gut, 44(3), 366–371.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Okino, T., Onda, M., Matsukura, N., Inada, K. I., Tatematsu, M., Suzuki, S., & Shimada, T. (2001). Sequential histopathological changes in vivo after suicide gene therapy of gastric cancer induced by N-methyl-N'-nitro-N-nitrosoguanidine in rats. Japanese Journal of Cancer Research, 92(6), 673–679.CrossRefPubMedGoogle Scholar
  111. 111.
    Shimizu, T., Shimada, H., Ochiai, T., & Hamada, H. (2001). Enhanced growth suppression in esophageal carcinoma cells using adenovirus-mediated fusion gene transfer (uracil phosphoribosyl transferase and herpes simplex virus thymidine kinase). Cancer Gene Therapy, 8, 512–521.CrossRefPubMedGoogle Scholar
  112. 112.
    Joung, J., Konermann, S., Gootenberg, J. S., Abudayyeh, O. O., Platt, R. J., Brigham, M. D., Sanjana, N. E., & Zhang, F. (2017). Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nature Protocols, 12(4), 828–863.  https://doi.org/10.1038/nprot.2017.016.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alessio Biagioni
    • 1
  • Ileana Skalamera
    • 2
  • Sara Peri
    • 1
    • 3
  • Nicola Schiavone
    • 1
    Email author
  • Fabio Cianchi
    • 2
    Email author
  • Elisa Giommoni
    • 4
  • Lucia Magnelli
    • 1
  • Laura Papucci
    • 1
  1. 1.Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
  2. 2.Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
  3. 3.Department of Biotechnology, Chemistry and PharmacyUniversity of SienaSienaItaly
  4. 4.Medical Oncology Unit, Department of Oncology and Robotic SurgeryAOU CareggiFlorenceItaly

Personalised recommendations