Skip to main content

Advertisement

Log in

Exosomes, metastases, and the miracle of cancer stem cell markers

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Full names of proteins and genes are listed in Table S1.

References

  1. Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.

    CAS  PubMed  Google Scholar 

  3. Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.

    Article  CAS  PubMed  Google Scholar 

  4. Stewart, R. L., & O'Connor, K. L. (2015). Clinical significance of the integrin α6β4 in human malignancies. Laboratory Investigation, 95(9), 976–986. https://doi.org/10.1038/labinvest.2015.82.

    Article  CAS  PubMed  Google Scholar 

  5. Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.

    Article  PubMed  Google Scholar 

  6. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  7. Kaur, E., Gupta, S., & Dutt, S. (2014). Clinical implications of MTA proteins in human cancer. Cancer Metastasis Reviews, 33(4), 1017–1024. https://doi.org/10.1007/s10555-014-9527-z.

    Article  CAS  PubMed  Google Scholar 

  8. Malisetty, V. L., Penugurti, V., Panta, P., Chitta, S. K., & Manavathi, B. (2017). MTA1 expression in human cancers—clinical and pharmacological significance. Biomedicine & Pharmacotherapy, 95, 956–964. https://doi.org/10.1016/j.biopha.2017.09.025.

    Article  CAS  Google Scholar 

  9. Karhemo, P. R., Hyvönen, M., & Laakkonen, P. (2012). Metastasis-associated cell surface oncoproteomics. Frontiers in Pharmacology, 3, 192. https://doi.org/10.3389/fphar.2012.00192.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.

    Article  PubMed  Google Scholar 

  11. Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.

    Article  CAS  PubMed  Google Scholar 

  12. Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.

    Article  CAS  PubMed  Google Scholar 

  13. Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.

    CAS  PubMed  Google Scholar 

  14. Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.

    Article  CAS  PubMed  Google Scholar 

  15. Tirino, V., Desiderio, V., Paino, F., De Rosa, A., Papaccio, F., La Noce, M., et al. (2013). Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. The FASEB Journal, 27(1), 13–24. https://doi.org/10.1096/fj.12-218222.

    Article  CAS  PubMed  Google Scholar 

  16. Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. Nature Reviews. Cancer, 18(2), 128–134. https://doi.org/10.1038/nrc.2017.118.

    Article  CAS  PubMed  Google Scholar 

  17. Woodward, W. A., & Sulman, E. P. (2008). Cancer stem cells: markers or biomarkers? Cancer Metastasis Reviews, 27(3), 459–470. https://doi.org/10.1007/s10555-008-9130-2.

    Article  CAS  PubMed  Google Scholar 

  18. Keysar, S. B., & Jimeno, A. (2010). More than markers: biological significance of cancer stem cell-defining molecules. Molecular Cancer Therapeutics, 9(9), 2450–2457. https://doi.org/10.1158/1535-7163.MCT-10-0530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murar, M., & Vaidya, A. (2015). Cancer stem cell markers: premises and prospects. Biomarkers in Medicine, 9(12), 1331–1342. https://doi.org/10.2217/bmm.15.85.

    Article  CAS  PubMed  Google Scholar 

  20. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.

    CAS  PubMed  Google Scholar 

  21. Rashed, M. H., Bayraktar, E., Helal, G. K., Abd-Ellah, M. F., Amero, P., Chavez-Reyes, A., et al. (2017). Exosomes: from garbage bins to promising therapeutic targets. International Journal of Molecular Sciences, 18(3), E538. https://doi.org/10.3390/ijms18030538.

    Article  CAS  Google Scholar 

  22. Lobb, R. J., Lima, L. G., & Möller, A. (2017). Exosomes: key mediators of metastasis and pre-metastatic niche formation. Seminars in Cell & Developmental Biology, 67, 3–10. https://doi.org/10.1016/j.semcdb.2017.01.004.

    Article  CAS  Google Scholar 

  23. Steinbichler, T. B., Dudás, J., Riechelmann, H., & Skvortsova, I. I. (2017). The role of exosomes in cancer metastasis. Seminars in Cancer Biology, 44, 170–181. https://doi.org/10.1016/j.semcancer.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  24. Wu, J., Qu, Z., Fei, Z. W., Wu, J. H., & Jiang, C. P. (2017). Role of stem cell-derived exosomes in cancer. Oncology Letters, 13(5), 2855–2866. https://doi.org/10.3892/ol.2017.5824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sharma, A. (2018). Role of stem cell derived exosomes in tumor biology. International Journal of Cancer, 142(6), 1086–1092. https://doi.org/10.1002/ijc.31089.

    Article  CAS  PubMed  Google Scholar 

  26. Sato, S., & Weaver, A. M. (2018). Extracellular vesicles: important collaborators in cancer progression. Essays in Biochemistry, 62(2), 149–163. https://doi.org/10.1042/EBC20170080.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Abak, A., Abhari, A., & Rahimzadeh, S. (2018). Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. PeerJ, 6, e4763. https://doi.org/10.7717/peerj.4763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA: a Cancer Journal for Clinicians, 66(1), 7–30. https://doi.org/10.3322/caac.21332.

    Article  Google Scholar 

  29. Engelhardt, E. G., Révész, D., Tamminga, H. J., Punt, C. J. A., Koopman, M., Onwuteaka-Philipsen, B. D., et al. (2018). Clinical usefulness of tools to support decision-making for palliative treatment of metastatic colorectal cancer: a systematic review. Clinical Colorectal Cancer, 17(1), e1–e12. https://doi.org/10.1016/j.clcc.2017.06.007.

    Article  PubMed  Google Scholar 

  30. Brenner, H., Kloor, M., & Pox, C. P. (2014). Colorectal cancer. Lancet, 383, 1490–1502.

    Article  PubMed  Google Scholar 

  31. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96.

    Google Scholar 

  32. Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh, J. W., Comber, H., et al. (2013). Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. European Journal of Cancer, 49(6), 1374–1403. https://doi.org/10.1016/j.ejca.2012.12.027.

  33. Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743.

    Google Scholar 

  34. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74(11), 2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155.

    Article  CAS  PubMed  Google Scholar 

  35. Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17.

  37. Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.

    Article  CAS  PubMed  Google Scholar 

  38. Hong, S. N. (2018). Genetic and epigenetic alterations of colorectal cancer. Intest Res, 16(3), 327–337. https://doi.org/10.5217/ir.2018.16.3.327.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aguirre, A. J., & Collisson, E. A. (2017). Advances in the genetics and biology of pancreatic cancer. Cancer Journal, 23(6), 315–320. https://doi.org/10.1097/PPO.0000000000000286.

    Article  CAS  PubMed  Google Scholar 

  40. Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M., & Taichman, R. S. (2013). Cancer stem cells and their role in metastasis. Pharmacology & Therapeutics, 138(2), 285–293. https://doi.org/10.1016/j.pharmthera.2013.01.014.

    Article  CAS  Google Scholar 

  41. Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis (review). International Journal of Oncology, 44(6), 1806–1812. https://doi.org/10.3892/ijo.2014.2362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Daley, G. Q. (2015). Stem cells and the evolving notion of cellular identity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1680), 20140376. https://doi.org/10.1098/rstb.2014.0376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.

    CAS  PubMed  Google Scholar 

  44. Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  46. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.

    Article  CAS  PubMed  Google Scholar 

  47. Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.

    Article  CAS  PubMed  Google Scholar 

  48. Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.

    CAS  PubMed  Google Scholar 

  49. Rostovskaya, M., Bredenkamp, N., & Smith, A. (2015). Towards consistent generation of pancreatic lineage progenitors from human pluripotent stem cells. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1680), 20140365. https://doi.org/10.1098/rstb.2014.0365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, F. X., & Morahan, G. (2014). Pancreatic stem cells remain unresolved. Stem Cells and Development, 23(23), 2803–2812. https://doi.org/10.1089/scd.2014.0214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Larsen, H. L., & Grapin-Botton, A. (2017). The molecular and morphogenetic basis of pancreas organogenesis. Seminars in Cell & Developmental Biology, 66, 51–68. https://doi.org/10.1016/j.semcdb.2017.01.005.

    Article  CAS  Google Scholar 

  52. Sznurkowska, M. K., Hannezo, E., Azzarelli, R., Rulands, S., Nestorowa, S., Hindley, C. J., et al. (2018). Defining lineage potential and fate behavior of precursors during pancreas development. Developmental Cell, 46(3), 360–375.e5. https://doi.org/10.1016/j.devcel.2018.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buczacki, S. J., Zecchini, H. I., Nicholson, A. M., Russell, R., Vermeulen, L., Kemp, R., et al. (2013). Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature, 495(7439), 65–69. https://doi.org/10.1038/nature11965.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Z., & Huang, J. (2013). Intestinal stem cells—types and markers. Cell Biology International, 37(5), 406–414. https://doi.org/10.1002/cbin.10049.

    Article  CAS  PubMed  Google Scholar 

  55. Clevers, H. C., & Bevins, C. L. (2013). Paneth cells: maestros of the small intestinal crypts. Annual Review of Physiology, 75, 289–311. https://doi.org/10.1146/annurev-physiol-030212-183744.

    Article  CAS  PubMed  Google Scholar 

  56. Kriz, V., & Korinek, V. (2018). Wnt, RSPO and Hippo signalling in the intestine and intestinal stem cells. Genes (Basel), 9(1), E20. https://doi.org/10.3390/genes9010020.

    Article  CAS  Google Scholar 

  57. Krausova, M., & Korinek, V. (2014). Wnt signaling in adult intestinal stem cells and cancer. Cellular Signalling, 26(3), 570–579. https://doi.org/10.1016/j.cellsig.2013.11.032.

    Article  CAS  PubMed  Google Scholar 

  58. Clevers, H., Loh, K. M., & Nusse, R. (2014). Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science, 346(6205), 1248012. https://doi.org/10.1126/science.1248012.

    Article  CAS  PubMed  Google Scholar 

  59. Park, S., Cui, J., Yu, W., Wu, L., Carmon, K. S., & Liu, Q. J. (2018). Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. The Journal of Biological Chemistry, 293(25), 9759–9769. https://doi.org/10.1074/jbc.RA118.002743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, K. S., Janda, C. Y., Chang, J., Zheng, G. X. Y., Larkin, K. A., Luca, V. C., et al. (2017). Non-equivalence of Wnt and R-spondin ligands during Lgr5+ intestinal stem-cell self-renewal. Nature, 545(7653), 238–242. https://doi.org/10.1038/nature22313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.

    Article  PubMed  Google Scholar 

  62. Johnsen, H. E., Kjeldsen, M. K., Urup, T., Fogd, K., Pilgaard, L., Boegsted, M., et al. (2009). Cancer stem cells and the cellular hierarchy in haematological malignancies. European Journal of Cancer, 45(Suppl 1), 194–201. https://doi.org/10.1016/S0959-8049(09)70033-4.

    Article  PubMed  Google Scholar 

  63. Shah, M., & Allegrucci, C. (2013). Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells. Sub-Cellular Biochemistry, 61, 545–565. https://doi.org/10.1007/978-94-007-4525-4_24.

    Article  CAS  PubMed  Google Scholar 

  64. Verga Falzacappa, M. V., Ronchini, C., Reavie, L. B., & Pelicci, P. G. (2012). Regulation of self-renewal in normal and cancer stem cells. The FEBS Journal, 279(19), 3559–3572. https://doi.org/10.1111/j.1742-4658.2012.08727.x.

    Article  CAS  PubMed  Google Scholar 

  65. Liu, J. (2018). The dualistic origin of human tumors. Seminars in Cancer Biology, 2018. https://doi.org/10.1016/j.semcancer.2018.07.004.

  66. Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    Article  CAS  PubMed  Google Scholar 

  67. Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.

    Article  CAS  Google Scholar 

  68. Hinge, A., & Filippi, M. D. (2016). Deconstructing the complexity of TGFβ signaling in hematopoietic stem cells: quiescence and beyond. Curr Stem Cell Rep, 2(4), 388–397. https://doi.org/10.1007/s40778-016-0069-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Soteriou, D., & Fuchs, Y. (2018). A matter of life and death: stem cell survival in tissue regeneration and tumour formation. Nature Reviews. Cancer, 18(3), 187–201. https://doi.org/10.1038/nrc.2017.122.

    Article  CAS  PubMed  Google Scholar 

  70. Alison, M. R., Guppy, N. J., Lim, S. M., & Nicholson, L. J. (2010). Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology, 222(4), 335–344. https://doi.org/10.1002/path.2772.

    Article  PubMed  Google Scholar 

  71. Easwaran, H., Tsai, H. C., & Baylin, S. B. (2014). Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Molecular Cell, 54(5), 716–727. https://doi.org/10.1016/j.molcel.2014.05.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Colak, S., & Medema, J. P. (2014). Cancer stem cells—important players in tumor therapy resistance. The FEBS Journal, 281(21), 4779–4791. https://doi.org/10.1111/febs.13023.

    Article  CAS  PubMed  Google Scholar 

  73. Skvortsova, I., Debbage, P., Kumar, V., & Skvortsov, S. (2015). Radiation resistance: cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Seminars in Cancer Biology, 35, 39–44. https://doi.org/10.1016/j.semcancer.2015.09.009.

    Article  CAS  PubMed  Google Scholar 

  74. Lipinska, N., Romaniuk, A., Paszel-Jaworska, A., Toton, E., Kopczynski, P., & Rubis, B. (2017). Telomerase and drug resistance in cancer. Cellular and Molecular Life Sciences, 74(22), 4121–4132. https://doi.org/10.1007/s00018-017-2573-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yan, Y., Zuo, X., & Wie, D. (2015). Concise review: Emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Translational Medicine, 4(9), 1033–1043. https://doi.org/10.5966/sctm.2015-0048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Lucas, B., Pérez, L. M., & Gálvez, B. G. (2018). Importance and regulation of adult stem cell migration. Journal of Cellular and Molecular Medicine, 22(2), 746–754. https://doi.org/10.1111/jcmm.13422.

    Article  PubMed  Google Scholar 

  77. Hamidi, H., & Ivaska, J. (2018). Every step of the way: integrins in cancer progression and metastasis. Nature Reviews. Cancer. https://doi.org/10.1038/s41568-018-0038-z.

  78. Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Research, 17, 17. https://doi.org/10.1186/s13058-015-0523-1.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    Article  CAS  PubMed  Google Scholar 

  81. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moghbeli, M., Moghbeli, F., Forghanifard, M. M., & Abbaszadegan, M. R. (2014). Cancer stem cell detection and isolation. Medical Oncology, 31(9), 69. https://doi.org/10.1007/s12032-014-0069-6.

    Article  CAS  PubMed  Google Scholar 

  83. Telford, W. G. (2013). Stem cell identification by DyeCycle Violet side population analysis. Methods in Molecular Biology, 946, 163–179. https://doi.org/10.1007/978-1-62703-128-8_11.

    Article  CAS  PubMed  Google Scholar 

  84. Ishiguro, T., Ohata, H., Sato, A., Yamawaki, K., Enomoto, T., & Okamoto, K. (2017). Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Science, 108(3), 283–289. https://doi.org/10.1111/cas.13155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ma, I., & Allan, A. L. (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews, 7(2), 292–306. https://doi.org/10.1007/s12015-010-9208-4.

    Article  CAS  Google Scholar 

  86. Duan, J. J., Cai, J., Guo, Y. F., Bian, X. W., & Yu, S. C. (2016). ALDH1A3, a metabolic target for cancer diagnosis and therapy. International Journal of Cancer, 139(5), 965–975. https://doi.org/10.1002/ijc.30091.

    Article  CAS  PubMed  Google Scholar 

  87. Mele, L., Liccardo, D., & Tirino, V. (2018). Evaluation and isolation of cancer stem cells using ALDH activity assay. Methods in Molecular Biology, 1692, 43–48. https://doi.org/10.1007/978-1-4939-7401-6_4.

    Article  CAS  PubMed  Google Scholar 

  88. Gopalan, V., Islam, F., & Lam, A. K. (2018). Surface markers for the identification of cancer stem cells. Methods in Molecular Biology, 1692, 17–29. https://doi.org/10.1007/978-1-4939-7401-6_2.

    Article  CAS  PubMed  Google Scholar 

  89. Pelosi, E., Castelli, G., & Testa, U. (2015). Targeting LSCs through membrane antigens selectively or preferentially expressed on these cells. Blood Cells, Molecules & Diseases, 55(4), 336–346. https://doi.org/10.1016/j.bcmd.2015.07.015.

    Article  CAS  Google Scholar 

  90. Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61.

  91. Guzman, M. L., & Allan, J. N. (2014). Concise review: Leukemia stem cells in personalized medicine. Stem Cells, 32(4), 844–851. https://doi.org/10.1002/stem.1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Munz, M., Baeuerle, P. A., & Gires, O. (2009). The emerging role of EpCAM in cancer and stem cell signaling. Cancer Research, 69(14), 5627–5629. https://doi.org/10.1158/0008-5472.CAN-09-0654.

    Article  CAS  PubMed  Google Scholar 

  93. Todaro, M., Gaggianesi, M., Catalano, V., Benfante, A., Iovino, F., Biffoni, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356. https://doi.org/10.1016/j.stem.2014.01.009.

    Article  CAS  PubMed  Google Scholar 

  94. Smith, N. R., Davies, P. S., Levin, T. G., Gallagher, A. C., Keene, D. R., Sengupta, S. K., et al. (2017). Cell adhesion molecule CD166/ALCAM functions within the crypt to orchestrate murine intestinal stem cell homeostasis. Cellular and Molecular Gastroenterology and Hepatology, 3(3), 389–409. https://doi.org/10.1016/j.jcmgh.2016.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jung, P., Sato, T., Merlos-Suárez, A., Barriga, F. M., Iglesias, M., Rossell, D., et al. (2011). Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 17(10), 1225–1227. https://doi.org/10.1038/nm.2470.

    Article  CAS  PubMed  Google Scholar 

  96. Li, C., Wu, J. J., Hynes, M., Dosch, J., Sarkar, B., Welling, T. H., et al. (2011). c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology, 141(6), 2218–2227.e5. https://doi.org/10.1053/j.gastro.2011.08.009.

    Article  CAS  PubMed  Google Scholar 

  97. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323. https://doi.org/10.1016/j.stem.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  98. Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    Article  CAS  PubMed  Google Scholar 

  100. Ren, F., Sheng, W. Q., & Du, X. (2013). CD133: a cancer stem cells marker, is used in colorectal cancers. World Journal of Gastroenterology, 19(17), 2603–2611. https://doi.org/10.3748/wjg.v19.i17.2603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mak, A. B., Nixon, A. M., Kittanakom, S., Stewart, J. M., Chen, G. I., Curak, J., et al. (2012). Regulation of CD133 by HDAC6 promotes β-catenin signaling to suppress cancer cell differentiation. Cell Reports, 2(4), 951–963. https://doi.org/10.1016/j.celrep.2012.09.016.

    Article  CAS  PubMed  Google Scholar 

  102. Shimozato, O., Waraya, M., Nakashima, K., Souda, H., Takiguchi, N., Yamamoto, H., et al. (2015). Receptor-type protein tyrosine phosphatase κ directly dephosphorylates CD133 and regulates downstream AKT activation. Oncogene, 34(15), 1949–1960. https://doi.org/10.1038/onc.2014.141.

    Article  CAS  PubMed  Google Scholar 

  103. Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.

    Article  PubMed  Google Scholar 

  104. Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.

    Article  CAS  PubMed  Google Scholar 

  105. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  106. Fonseca, A. V., Bauer, N., & Corbeil, D. (2008). The stem cell marker CD133 meets the endosomal compartment—new insights into the cell division of hematopoietic stem cells. Blood Cells, Molecules & Diseases, 41(2), 194–195. https://doi.org/10.1016/j.bcmd.2008.04.004.

    Article  CAS  Google Scholar 

  107. Kemper, K., Prasetyanti, P. R., De Lau, W., Rodermond, H., Clevers, H., & Medema, J. P. (2012). Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells, 30(11), 2378–2386. https://doi.org/10.1002/stem.1233.

    Article  CAS  PubMed  Google Scholar 

  108. de Lau, W., Barker, N., Low, T. Y., Koo, B. K., Li, V. S., Teunissen, H., et al. (2011). Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature, 476(7360), 293–297. https://doi.org/10.1038/nature10337.

    Article  CAS  PubMed  Google Scholar 

  109. Koo, B. K., & Clevers, H. (2014). Stem cells marked by the R-spondin receptor LGR5. Gastroenterology, 147(2), 289–302. https://doi.org/10.1053/j.gastro.2014.05.007.

    Article  CAS  PubMed  Google Scholar 

  110. de Sousa e Melo, F., Kurtova, A. V., Harnoss, J. M., Kljavin, N., Hoeck, J. D., Hung, J., et al. (2017). A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature, 543(7647), 676–680. https://doi.org/10.1038/nature21713.

    Article  CAS  PubMed  Google Scholar 

  111. Leung, C., Tan, S. H., & Barker, N. (2018). Recent advances in Lgr5+ stem cell research. Trends in Cell Biology, 28(5), 380–391. https://doi.org/10.1016/j.tcb.2018.01.010.

    Article  CAS  PubMed  Google Scholar 

  112. Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.

    Article  CAS  PubMed  Google Scholar 

  114. Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.

    Article  CAS  PubMed  Google Scholar 

  116. Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.

    Article  CAS  PubMed  Google Scholar 

  117. Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.

    Article  CAS  PubMed  Google Scholar 

  118. Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711.

    CAS  Google Scholar 

  119. Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178.

    Google Scholar 

  120. Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  122. Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.

    Article  CAS  PubMed  Google Scholar 

  123. Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.

    Article  CAS  PubMed  Google Scholar 

  124. Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.

    Article  CAS  PubMed  Google Scholar 

  125. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.

    Article  CAS  PubMed  Google Scholar 

  126. Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.

    Article  CAS  PubMed  Google Scholar 

  127. Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634. https://doi.org/10.1074/jbc.M113.542357.

    Article  CAS  PubMed  Google Scholar 

  128. Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.

    Article  CAS  PubMed  Google Scholar 

  129. Tremmel, M., Matzke, A., Albrecht, I., Laib, A. M., Olaku, V., Ballmer-Hofer, K., et al. (2009). A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood, 114, 5236–5244. https://doi.org/10.1182/blood-2009-04-219204.

    Article  CAS  PubMed  Google Scholar 

  130. Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.

    CAS  PubMed  Google Scholar 

  131. Orian-Rousseau, V. (2015). CD44 acts as a signaling platform controlling tumor progression and metastasis. Frontiers in Immunology, 6, 154. https://doi.org/10.3389/fimmu.2015.00154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.

    Article  CAS  Google Scholar 

  135. Orian-Rousseau, V., Morrison, H., Matzke, A., Kastilan, T., Pace, G., Herrlich, P., et al. (2007). Hepatocyte growth factor-induced Ras activation requires ERM proteins linked to both CD44v6 and F-actin. Molecular Biology of the Cell, 18, 76–83. https://doi.org/10.1091/mbc.E06-08-0674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.

    Article  CAS  Google Scholar 

  137. Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.

    Article  CAS  PubMed  Google Scholar 

  138. Kozovska, Z., Gabrisova, V., & Kucerova, L. (2014). Colon cancer: cancer stem cells markers, drug resistance and treatment. Biomedicine & Pharmacotherapy, 68, 911–916. https://doi.org/10.1016/j.biopha.2014.10.019.

    Article  CAS  Google Scholar 

  139. Grass, G. D., Dai, L., Qin, Z., Parsons, C., & Toole, B. P. (2014). CD147: regulator of hyaluronan signaling in invasiveness and chemoresistance. Advances in Cancer Research, 123, 351–373. https://doi.org/10.1016/B978-0-12-800092-2.00013-7.

    Article  CAS  PubMed  Google Scholar 

  140. Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ghatak, S., Misra, S., & Toole, B. P. (2005). Hyaluronan constitutively regulates ErbB2 phosphorylation and signaling complex formation in carcinoma cells. The Journal of Biological Chemistry, 280, 8875–8883. https://doi.org/10.1074/jbc.M410882200.

    Article  CAS  PubMed  Google Scholar 

  142. Heldin, P., Basu, K., Kozlova, I., & Porsch, H. (2014). HAS2 and CD44 in breast tumorigenesis. Advances in Cancer Research, 123, 211–229. https://doi.org/10.1016/B978-0-12-800092-2.00008-3.

    Article  CAS  PubMed  Google Scholar 

  143. Xu, H., Tian, Y., Yuan, X., Wu, H., Liu, Q., Pestell, R. G., et al. (2015). The role of CD44 in epithelial-mesenchymal transition and cancer development. Onco Targets Ther, 8, 3783–3792. https://doi.org/10.2147/OTT.S95470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nastase, M. V., Janicova, A., Wygrecka, M., & Schaefer, L. (2017). Signaling at the crossroads: matrix-derived proteoglycan and reactive oxygen species signaling. Antioxidants & Redox Signaling, 27(12), 855–873. https://doi.org/10.1089/ars.2017.7165.

    Article  CAS  Google Scholar 

  145. Ekyalongo, R. C., Nakayama, H., Kina, K., Kaga, N., & Iwabuchi, K. (2015). Organization and functions of glycolipid-enriched microdomains in phagocytes. Biochimica et Biophysica Acta, 1851, 90–97. https://doi.org/10.1016/j.bbalip.2014.06.009.

    Article  CAS  PubMed  Google Scholar 

  146. Korcsmaros, T., & Schneider, M. V. (2017). Superti-Furga G. Next generation of network medicine: interdisciplinary signaling approaches. Integr Biol (Camb), 9, 97–108. https://doi.org/10.1039/c6ib00215c.

    Article  Google Scholar 

  147. Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.

    Article  CAS  PubMed  Google Scholar 

  148. Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.

    Article  CAS  PubMed  Google Scholar 

  149. Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224.

    CAS  Google Scholar 

  150. Halova, I., & Draber, P. (2016). Tetraspanins and transmembrane adaptor proteins as plasma membrane organizers—mast cell case. Frontiers in Cell and Development Biology, 4, 43. https://doi.org/10.3389/fcell.2016.00043.

    Article  Google Scholar 

  151. Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.

    Article  CAS  PubMed  Google Scholar 

  152. Yáñez-Mó, M., Gutiérrez-López, M. D., & Cabañas, C. (2011). Functional interplay between tetraspanins and proteases. Cellular and Molecular Life Sciences, 68, 3323–3335. https://doi.org/10.1007/s00018-011-0746-y.

    Article  CAS  PubMed  Google Scholar 

  153. Stepanek, O., Draber, P., & Horejsi, V. (2014). Palmitoylated transmembrane adaptor proteins in leukocyte signaling. Cellular Signalling, 26, 895–902. https://doi.org/10.1016/j.cellsig.2014.01.007.

    Article  CAS  PubMed  Google Scholar 

  154. Termini, C. M., & Gillette, J. M. (2017). Tetraspanins function as regulators of cellular signaling. Frontiers in Cell and Development Biology, 5, 34. https://doi.org/10.3389/fcell.2017.00034.

    Article  Google Scholar 

  155. Schmidt, T. H., Homsi, Y., & Lang, T. (2016). Oligomerization of the tetraspanin CD81 via the flexibility of its δ-loop. Biophysical Journal, 110, 2463–2474. https://doi.org/10.1016/j.bpj.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Yue, S., Zhao, K., Erb, U., Rana, S., & Zöller, M. (2017). Joint features and complementarities of Tspan8 and CD151 revealed in knockdown and knockout models. Biochemical Society Transactions, 45, 437–447. https://doi.org/10.1042/BST20160298.

    Article  CAS  PubMed  Google Scholar 

  157. Park, C. S., Kim, T. K., Kim, H. G., Kim, Y. J., Jeoung, M. H., Lee, W. R., et al. (2016). Therapeutic targeting of tetraspanin8 in epithelial ovarian cancer invasion and metastasis. Oncogene, 35, 4540–4548. https://doi.org/10.1038/onc.2015.520.

    Article  CAS  PubMed  Google Scholar 

  158. Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769.

  159. Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607.

    Google Scholar 

  160. El Kharbili, M., Robert, C., Witkowski, T., Danty-Berger, E., Barbollat-Boutrand, L., Masse, I., et al. (2017). Tetraspanin 8 is a novel regulator of ILK-driven β1 integrin adhesion and signaling in invasive melanoma cells. Oncotarget, 8(10), 17140–17155. https://doi.org/10.18632/oncotarget.15084.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Pan, S. J., Wu, Y. B., Cai, S., Pan, Y. X., Liu, W., Bian, L. G., et al. (2015). Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochemical and Biophysical Research Communications, 458, 476–482. https://doi.org/10.1016/j.bbrc.2015.01.128.

    Article  CAS  PubMed  Google Scholar 

  162. Wang, H., Rana, S., Giese, N., Büchler, M. W., & Zöller, M. (2013). Tspan8, CD44v6 and alpha6beta4 are biomarkers of migrating pancreatic cancer-initiating cells. International Journal of Cancer, 133(2), 416–426. https://doi.org/10.1002/ijc.28044.

    Article  CAS  PubMed  Google Scholar 

  163. Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627. https://doi.org/10.1002/ijc.29324.

    Article  CAS  PubMed  Google Scholar 

  164. Greco, C., Bralet, M. P., Ailane, N., Dubart-Kupperschmitt, A., Rubinstein, E., Le Naour, F., et al. (2010). E-cadherin/p120-catenin and tetraspanin Co-029 cooperate for cell motility control in human colon carcinoma. Cancer Research, 70(19), 7674–7683. https://doi.org/10.1158/0008-5472.CAN-09-4482.

    Article  CAS  PubMed  Google Scholar 

  165. Ailane, N., Greco, C., Zhu, Y., Sala-Valdés, M., Billard, M., Casal, I., et al. (2014). Effect of an anti-human Co-029/tspan8 mouse monoclonal antibody on tumor growth in a nude mouse model. Frontiers in Physiology, 5, 364. https://doi.org/10.3389/fphys.2014.00364.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pan, S. J., Zhan, S. K., Pan, Y. X., Liu, W., Bian, L. G., Sun, B., et al. (2015). Tetraspanin 8-rictor-integrin α3 complex is required for glioma cell migration. International Journal of Molecular Sciences, 16, 5363–5374. https://doi.org/10.3390/ijms16035363.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Wang, Z., von Au, A., Schnölzer, M., Hackert, T., & Zöller, M. (2016). CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells. Oncotarget, 7(34), 55409–55436. https://doi.org/10.18632/oncotarget.10580.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yue, S., Mu, W., & Zöller, M. (2013). Tspan8 and CD151 promote metastasis by distinct mechanisms. European Journal of Cancer, 49(13), 2934–2948. https://doi.org/10.1016/j.ejca.2013.03.032.

    Article  CAS  PubMed  Google Scholar 

  169. Schmidt, F., Müller, M., Prox, J., Arnold, P., Schönherr, C., Tredup, C., et al. (2016). Tetraspanin 8 is an interactor of the metalloprotease meprin β within tetraspanin-enriched microdomains. Biological Chemistry, 397(9), 857–869. https://doi.org/10.1515/hsz-2016-0126.

    Article  CAS  PubMed  Google Scholar 

  170. Zhu, Y., Ailane, N., Sala-Valdés, M., Haghighi-Rad, F., Billard, M., Nguyen, V., et al. (2017). Multi-factorial modulation of colorectal carcinoma cells motility—partial coordination by the tetraspanin Co-029/tspan8. Oncotarget, 8(16), 27454–27470. https://doi.org/10.18632/oncotarget.16247.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.

    Article  CAS  PubMed  Google Scholar 

  172. Nazarenko, I., Rana, S., Baumann, A., McAlear, J., Hellwig, A., Trendelenburg, M., et al. (2010). Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Research, 70(4), 1668–1678. https://doi.org/10.1158/0008-5472.CAN-09-2470.

    Article  CAS  PubMed  Google Scholar 

  173. Rana, S., Claas, C., Kretz, C. C., Nazarenko, I., & Zöller, M. (2011). Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: impact on tumor cell motility. The International Journal of Biochemistry & Cell Biology, 43(1), 106–119. https://doi.org/10.1016/j.biocel.2010.10.002.

    Article  CAS  Google Scholar 

  174. Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.

    Article  CAS  PubMed  Google Scholar 

  175. Patriarca, C., Macchi, R. M., Marschner, A. K., & Mellstedt, H. (2012). Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treatment Reviews, 38(1), 68–75. https://doi.org/10.1016/j.ctrv.2011.04.002.

    Article  CAS  PubMed  Google Scholar 

  176. Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.

    Article  Google Scholar 

  177. Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.

    Article  CAS  PubMed  Google Scholar 

  179. Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wang, H., Stoecklein, N. H., Lin, P. P., & Gires, O. (2017). Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget, 8(1), 1884–1912. https://doi.org/10.18632/oncotarget.12242.

    Article  PubMed  Google Scholar 

  181. Herreros-Pomares, A., Aguilar-Gallardo, C., Calabuig-Fariñas, S., Sirera, R., Jantus-Lewintre, E., & Camps, C. (2018). EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale. Critical Reviews in Oncology/Hematology, 126, 52–63. https://doi.org/10.1016/j.critrevonc.2018.03.006.

    Article  PubMed  Google Scholar 

  182. Biddle, A., Liang, X., Gammon, L., Fazil, B., Harper, L. J., Emich, H., et al. (2011). Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Research, 71(15), 5317–5326. https://doi.org/10.1158/0008-5472.CAN-11-1059.

    Article  CAS  PubMed  Google Scholar 

  183. Gires, O., Klein, C. A., & Baeuerle, P. A. (2009). On the abundance of EpCAM on cancer stem cells. Nature Reviews. Cancer, 9(2), 143; author reply 143. https://doi.org/10.1038/nrc2499-c1.

    Article  CAS  PubMed  Google Scholar 

  184. González, B., Denzel, S., Mack, B., Conrad, M., & Gires, O. (2009). EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells, 27(8), 1782–1791. https://doi.org/10.1002/stem.97.

    Article  CAS  PubMed  Google Scholar 

  185. Lu, T. Y., Lu, R. M., Liao, M. Y., Yu, J., Chung, C. H., Kao, C. F., et al. (2010). Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. The Journal of Biological Chemistry, 285(12), 8719–8732. https://doi.org/10.1074/jbc.M109.077081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tamura, A., & Tsukita, S. (2014). Paracellular barrier and channel functions of TJ claudins in organizing biological systems: advances in the field of barriology revealed in knockout mice. Seminars in Cell & Developmental Biology, 36, 177–185. https://doi.org/10.1016/j.semcdb.2014.09.019.

    Article  CAS  Google Scholar 

  187. Van Itallie, C. M., & Anderson, J. M. (2014). Architecture of tight junctions and principles of molecular composition. Seminars in Cell & Developmental Biology, 36, 157–165. https://doi.org/10.1016/j.semcdb.2014.08.011.

    Article  CAS  Google Scholar 

  188. Ding, L., Lu, Z., Foreman, O., Tatum, R., Lu, Q., Renegar, R., et al. (2012). Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology, 142, 305–315. https://doi.org/10.1053/j.gastro.2011.

    Article  CAS  PubMed  Google Scholar 

  189. Tanaka, H., Takechi, M., Kiyonari, H., Shioi, G., Tamura, A., & Tsukita, S. (2015). Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut, 64, 1529–1538. https://doi.org/10.1136/gutjnl-2014-308419.

    Article  CAS  PubMed  Google Scholar 

  190. Lal-Nag, M., & Morin, P. J. (2009). The claudins. Genome Biology, 10, 235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Van Itallie, C. M., & Anderson, J. M. (2013). Claudin interactions in and out of the tight junction. Tissue Barriers, 1, e25247.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Su, L., Nalle, S. C., Shen, L., Turner, E. S., Singh, G., Breskin, L. A., et al. (2013). TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 145(2), 407–415. https://doi.org/10.1053/j.gastro.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  194. Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Stamatovic, S. M., Keep, R. F., & Andjelkovic, A. V. (2011). Tracing the endocytosis of claudin-5 in brain endothelial cells. Methods in Molecular Biology, 762, 303–320. https://doi.org/10.1007/978-1-61779-185-7_22.

    Article  CAS  PubMed  Google Scholar 

  196. Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.

    Article  CAS  PubMed Central  Google Scholar 

  197. Thuma, F., Heiler, S., Schnölzer, M., & Zöller, M. (2016). Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules. Oncotarget, 7, 30659–30677. https://doi.org/10.18632/oncotarget.8928.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Rao, Y., Rückert, C., Saenger, W., & Haucke, V. (2012). The early steps of endocytosis: from cargo selection to membrane deformation. European Journal of Cell Biology, 91, 226–233. https://doi.org/10.1016/j.ejcb.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  199. Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.

    Article  CAS  Google Scholar 

  200. Deshmukh, A., Binju, M., Arfuso, F., Newsholme, P., & Dharmarajan, A. (2017). Role of epigenetic modulation in cancer stem cell fate. The International Journal of Biochemistry & Cell Biology, 90, 9–16. https://doi.org/10.1016/j.biocel.2017.07.003.

    Article  CAS  Google Scholar 

  201. Godoy, P., Schmidt-Heck, W., Hellwig, B., Nell, P., Feuerborn, D., Rahnenführer, J., et al. (2018). Assessment of stem cell differentiation based on genome-wide expression profiles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1750), 20170221. https://doi.org/10.1098/rstb.2017.0221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Niwa, H. (2018). The principles that govern transcription factor network functions in stem cells. Development, 145(6), 157420. https://doi.org/10.1242/dev.157420.

    Article  CAS  Google Scholar 

  203. Herreros-Villanueva, M., Bujanda, L., Billadeau, D. D., & Zhang, J. S. (2014). Embryonic stem cell factors and pancreatic cancer. World Journal of Gastroenterology, 20(9), 2247–2254. https://doi.org/10.3748/wjg.v20.i9.2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Herreros-Villanueva, M., Zhang, J. S., Koenig, A., Abel, E. V., Smyrk, T. C., Bamlet, W. R., et al. (2013). SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis, 2, e61. https://doi.org/10.1038/oncsis.2013.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rhim, A. D., Mirek, E. T., Aiello, N. M., Maitra, A., Bailey, J. M., McAllister, F., et al. (2012). EMT and dissemination precede pancreatic tumor formation. Cell, 148(1–2), 349–361. https://doi.org/10.1016/j.cell.2011.11.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wang, S., Huang, S., & Sun, Y. L. (2017). Epithelial-mesenchymal transition in pancreatic cancer: a review. BioMed Research International, 2017, 2646148. https://doi.org/10.1155/2017/2646148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B., et al. (2017). Enhancer reprogramming promotes pancreatic cancer metastasis. Cell, 170(5), 875–888.e20. https://doi.org/10.1016/j.cell.2017.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Kreso, A., & Dick, J. E. (2014). Evolution of the cancer stem cell model. Cell Stem Cell, 14(3), 275–291. https://doi.org/10.1016/j.stem.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  209. Katoh, M. (2017). Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (review). International Journal of Oncology, 51(5), 1357–1369. https://doi.org/10.3892/ijo.2017.4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fearon, E. R., & Wicha, M. S. (2014). KRAS and cancer stem cells in APC-mutant colorectal cancer. Journal of the National Cancer Institute, 106(2), djt444. https://doi.org/10.1093/jnci/djt444.

    Article  PubMed  Google Scholar 

  211. Zhang, F., Sun, H., Zhang, S., Yang, X., Zhang, G., & Su, T. (2017). Overexpression of PER3 inhibits self-renewal capability and chemoresistance of colorectal cancer stem-like cells via inhibition of notch and β-catenin signaling. Oncology Research, 25(5), 709–719. https://doi.org/10.3727/096504016X14772331883976.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.

    CAS  PubMed  Google Scholar 

  213. Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707. https://doi.org/10.1038/ncb2992.

    Article  CAS  PubMed  Google Scholar 

  214. Chen, J., Shao, R., Li, F., Monteiro, M., Liu, J. P., Xu, Z. P., et al. (2015). PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clinical and Experimental Pharmacology & Physiology, 42(12), 1317–1326. https://doi.org/10.1111/1440-1681.12493.

    Article  CAS  Google Scholar 

  215. Pelicci, P. G., Dalton, P., & Giorgio, M. (2013). The other face of ROS: a driver of stem cell expansion in colorectal cancer. Cell Stem Cell, 12(6), 635–636. https://doi.org/10.1016/j.stem.2013.05.023.

    Article  CAS  PubMed  Google Scholar 

  216. Hong, A. W., Meng, Z., & Guan, K. L. (2016). The Hippo pathway in intestinal regeneration and disease. Nature Reviews. Gastroenterology & Hepatology, 13(6), 324–337. https://doi.org/10.1038/nrgastro.2016.59.

    Article  CAS  Google Scholar 

  217. Sikandar, S. S., Pate, K. T., Anderson, S., Dizon, D., Edwards, R. A., Waterman, M. L., et al. (2010). NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer. Cancer Research, 70(4), 1469–1478. https://doi.org/10.1158/0008-5472.CAN-09-2557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358. https://doi.org/10.3109/10799893.2013.828072.

    Article  CAS  PubMed  Google Scholar 

  219. Fender, A. W., Nutter, J. M., Fitzgerald, T. L., Bertrand, F. E., & Sigounas, G. (2015). Notch-1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. Journal of Cellular Biochemistry, 116(11), 2517–2527. https://doi.org/10.1002/jcb.25196.

    Article  CAS  PubMed  Google Scholar 

  220. Jin, L., Vu, T., Yuan, G., & Datta, P. K. (2017). STRAP promotes stemness of human colorectal cancer via epigenetic regulation of the NOTCH pathway. Cancer Research, 77(20), 5464–5478. https://doi.org/10.1158/0008-5472.CAN-17-0286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Voorneveld, P. W., Kodach, L. L., Jacobs, R. J., van Noesel, C. J., Peppelenbosch, M. P., Korkmaz, K. S., et al. (2015). The BMP pathway either enhances or inhibits the Wnt pathway depending on the SMAD4 and p53 status in CRC. British Journal of Cancer, 112(1), 122–130. https://doi.org/10.1038/bjc.2014.560.

    Article  CAS  PubMed  Google Scholar 

  222. Kim, B. R., Oh, S. C., Lee, D. H., Kim, J. L., Lee, S. Y., Kang, M. H., et al. (2015). BMP-2 induces motility and invasiveness by promoting colon cancer stemness through STAT3 activation. Tumour Biology, 36(12), 9475–9486. https://doi.org/10.1007/s13277-015-3681-y.

    Article  CAS  PubMed  Google Scholar 

  223. Catalano, V., Dentice, M., Ambrosio, R., Luongo, C., Carollo, R., Benfante, A., et al. (2016). Activated thyroid hormone promotes differentiation and chemotherapeutic sensitization of colorectal cancer stem cells by regulating Wnt and BMP4 signaling. Cancer Research, 76(5), 1237–1244. https://doi.org/10.1158/0008-5472.CAN-15-1542.

    Article  CAS  PubMed  Google Scholar 

  224. Xue, R., Jia, K., Wang, J., Yang, L., Wang, Y., Gao, L., et al. (2018). A rising star in pancreatic diseases: pancreatic stellate cells. Frontiers in Physiology, 9, 754. https://doi.org/10.3389/fphys.2018.00754.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Zeuner, A., Todaro, M., Stassi, G., & De Maria, R. (2014). Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell, 15(6), 692–705. https://doi.org/10.1016/j.stem.2014.11.012.

    Article  CAS  PubMed  Google Scholar 

  226. Calon, A., Tauriello, D. V., & Batlle, E. (2014). TGF-beta in CAF-mediated tumor growth and metastasis. Seminars in Cancer Biology, 25, 15–22. https://doi.org/10.1016/j.semcancer.2013.12.008.136.

    Article  CAS  PubMed  Google Scholar 

  227. Wang, K., & Karin, M. (2015). Tumor-elicited inflammation and colorectal cancer. Advances in Cancer Research, 128, 173–196. https://doi.org/10.1016/bs.acr.2015.04.014.

    Article  CAS  PubMed  Google Scholar 

  228. Lotti, F., Jarrar, A. M., Pai, R. K., Hitomi, M., Lathia, J., Mace, A., et al. (2013). Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. The Journal of Experimental Medicine, 210(13), 2851–2872. https://doi.org/10.1084/jem.20131195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.

    Article  CAS  PubMed  Google Scholar 

  230. Koliaraki, V., Pallangyo, C. K., Greten, F. R., & Kollias, G. (2017). Mesenchymal cells in colon cancer. Gastroenterology, 152(5), 964–979. https://doi.org/10.1053/j.gastro.2016.11.049.

    Article  CAS  PubMed  Google Scholar 

  231. Lu, J., Ye, X., Fan, F., Xia, L., Bhattacharya, R., Bellister, S., et al. (2013). Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell, 23(2), 171–185. https://doi.org/10.1016/j.ccr.2012.12.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Roberts, K. J., Kershner, A. M., & Beachy, P. A. (2017). The stromal niche for epithelial stem cells: a template for regeneration and a brake on malignancy. Cancer Cell, 32(4), 404–410. https://doi.org/10.1016/j.ccell.2017.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Gerling, M., Büller, N. V., Kirn, L. M., Joost, S., Frings, O., Englert, B., et al. (2016). Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nature Communications, 7, 12321. https://doi.org/10.1038/ncomms12321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Nicolas, F. E. (2017). Role of ncRNAs in development, diagnosis and treatment of human cancer. Recent Patents on Anti-Cancer Drug Discovery, 12(2), 128–135. https://doi.org/10.2174/1574892812666170105113415.

    Article  CAS  PubMed  Google Scholar 

  235. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  236. Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.

    Article  CAS  PubMed  Google Scholar 

  238. Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.

    Article  CAS  PubMed  Google Scholar 

  240. Seok, H., Ham, J., Jang, E. S., & Chi, S. W. (2016). MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Molecules and Cells, 39(5), 375–381. https://doi.org/10.14348/molcells.2016.0013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews. Cancer, 9(4), 293–302. https://doi.org/10.1038/nrc2619.

    Article  CAS  PubMed  Google Scholar 

  242. Acunzo, M., Romano, G., Wernicke, D., & Croce, C. M. (2015). MicroRNA and cancer—a brief overview. Adv Biol Regul, 57, 1–9. https://doi.org/10.1016/j.jbior.2014.09.013.

    Article  CAS  PubMed  Google Scholar 

  243. Giovannetti, E., van der Borden, C. L., Frampton, A. E., Ali, A., Firuzi, O., & Peters, G. J. (2017). Never let it go: stopping key mechanisms underlying metastasis to fight pancreatic cancer. Seminars in Cancer Biology, 44, 43–59. https://doi.org/10.1016/j.semcancer.2017.04.006.

    Article  CAS  PubMed  Google Scholar 

  244. Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.

    Article  CAS  PubMed  Google Scholar 

  245. Mamoori, A., Gopalan, V., Smith, R. A., & Lam, A. K. (2016). Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biology of the Cell, 108(3), 51–64. https://doi.org/10.1111/boc.201500062.

    Article  CAS  PubMed  Google Scholar 

  246. Kung, J. T., Colognori, D., & Lee, J. T. (2013). Long noncoding RNAs: past, present, and future. Genetics, 193(3), 651–669. https://doi.org/10.1534/genetics.112.146704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038. https://doi.org/10.1038/nature09144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446. https://doi.org/10.1038/nsmb.2516.

    Article  CAS  Google Scholar 

  249. Li, T., Mo, X., Fu, L., Xiao, B., & Guo, J. (2016). Molecular mechanisms of long noncoding RNAs on gastric cancer. Oncotarget, 7(8), 8601–8612. https://doi.org/10.18632/oncotarget.6926.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Sanchez-Mejias, A., & Tay, Y. (2015). Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. Journal of Hematology & Oncology, 8, 30. https://doi.org/10.1186/s13045-015-0129-1.

    Article  CAS  Google Scholar 

  251. Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.

    Article  CAS  PubMed  Google Scholar 

  252. Kopp, F., & Mendell, J. T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell, 172(3), 393–407. https://doi.org/10.1016/j.cell.2018.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Hung, T., Wang, Y., Lin, M. F., Koegel, A. K., Kotake, Y., Grant, G. D., et al. (2011). Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genetics, 43(7), 621–629. https://doi.org/10.1038/ng.848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Liu, C., Wu, H. T., Zhu, N., Shi, Y. N., Liu, Z., Ao, B. X., et al. (2016). Steroid receptor RNA activator: biologic function and role in disease. Clinica Chimica Acta, 459, 137–146. https://doi.org/10.1016/j.cca.2016.06.004.

    Article  CAS  Google Scholar 

  256. Thomson, D. W., & Dinger, M. E. (2016). Endogenous microRNA sponges: evidence and controversy. Nature Reviews. Genetics, 17(5), 272–283. https://doi.org/10.1038/nrg.2016.20.

    Article  CAS  PubMed  Google Scholar 

  257. Dykes, I. M., & Emanueli, C. (2017). Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics, Proteomics & Bioinformatics, 15(3), 177–186. https://doi.org/10.1016/j.gpb.2016.12.005.

    Article  Google Scholar 

  258. Deng, H., Wang, J. M., Li, M., Tang, R., Tang, K., Su, Y., et al. (2017). Long non-coding RNAs: new biomarkers for prognosis and diagnosis of colon cancer. Tumour Biology, 39(6), 1010428317706332. https://doi.org/10.1177/1010428317706332.

    Article  PubMed  Google Scholar 

  259. Yang, Y., Junjie, P., Sanjun, C., & Ma, Y. (2017). Long non-coding RNAs in colorectal cancer: progression and future directions. Journal of Cancer, 8(16), 3212–3225. https://doi.org/10.7150/jca.19794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Yang, S., Sun, Z., Zhou, Q., Wang, W., Wang, G., Song, J., et al. (2018). MicroRNAs, long noncoding RNAs, and circular RNAs: potential tumor biomarkers and targets for colorectal cancer. Cancer Management and Research, 10, 2249–2257. https://doi.org/10.2147/CMAR.S166308.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.

    Article  CAS  PubMed  Google Scholar 

  262. Duguang, L., Jin, H., Xiaowei, Q., Peng, X., Xiaodong, W., Zhennan, L., et al. (2017). The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biology & Therapy, 18(12), 927–936. https://doi.org/10.1080/15384047.2017.1385682.

    Article  CAS  Google Scholar 

  263. Huang, X., Xiao, R., Pan, S., Yang, X., Yuan, W., Tu, Z., et al. (2017). Uncovering the roles of long non-coding RNAs in cancer stem cells. Journal of Hematology & Oncology, 10(1), 62. https://doi.org/10.1186/s13045-017-0428-9.

    Article  CAS  Google Scholar 

  264. Heery, R., Finn, S. P., Cuffe, S., & Gray, S. G. (2017). Long non-coding RNAs: key regulators of epithelial-mesenchymal transition, tumour drug resistance and cancer stem cells. Cancers (Basel), 9(4), E38. https://doi.org/10.3390/cancers9040038.

    Article  CAS  Google Scholar 

  265. Chi, H. C., Tsai, C. Y., Tsai, M. M., Yeh, C. T., & Lin, K. H. (2017). Roles of long noncoding RNAs in recurrence and metastasis of radiotherapy-resistant cancer stem cells. International Journal of Molecular Sciences, 18(9), E1903. https://doi.org/10.3390/ijms18091903.

    Article  CAS  PubMed  Google Scholar 

  266. Théry, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. https://doi.org/10.1038/nri855.

    Article  CAS  PubMed  Google Scholar 

  267. Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9, 358–367. https://doi.org/10.1002/prca.201400114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Jia, S., Zocco, D., Samuels, M. L., Chou, M. F., Chammas, R., Skog, J., et al. (2014). Emerging technologies in extracellular vesicle-based molecular diagnostics. Expert Review of Molecular Diagnostics, 14, 307–321. https://doi.org/10.1586/14737159.2014.893828.

    Article  CAS  PubMed  Google Scholar 

  269. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  CAS  PubMed  Google Scholar 

  270. Lo Cicero, A., Stahl, P. D., & Raposo, G. (2015). Extracellular vesicles shuffling intercellular messages: for good or for bad. Current Opinion in Cell Biology, 35, 69–77. https://doi.org/10.1016/j.ceb.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  271. Javeed, N., & Mukhopadhyay, D. (2017). Exosomes and their role in the micro-/macro-environment: a comprehensive review. Journal of Biomedical Research, 31(5), 386–394. https://doi.org/10.7555/JBR.30.20150162.

    Article  PubMed  PubMed Central  Google Scholar 

  272. Burrello, J., Monticone, S., Gai, C., Gomez, Y., Kholia, S., & Camussi, G. (2016). Stem cell-derived extracellular vesicles and immune-modulation. Frontiers in Cell and Development Biology, 4, 83. https://doi.org/10.3389/fcell.2016.00083.

    Article  Google Scholar 

  273. Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F., & Dignat-George, F. (2017). Extracellular vesicles in angiogenesis. Circulation Research, 120(10), 1658–1673. https://doi.org/10.1161/CIRCRESAHA.117.309681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Rajagopal, C., & Harikumar, K. B. (2018). The origin and functions of exosomes in cancer. Frontiers in Oncology, 8, 66. https://doi.org/10.3389/fonc.2018.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  275. Yang, B., Chen, Y., & Shi, J. (2018). Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Advanced Materials, e1802896. https://doi.org/10.1002/adma.201802896.

  276. Colombo, M., Raposo, G., & Théry, C. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology, 30, 255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326.

    Article  CAS  PubMed  Google Scholar 

  277. van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology, 19(4), 213–228. https://doi.org/10.1038/nrm.2017.125.

    Article  CAS  PubMed  Google Scholar 

  278. Abels, E. R., & Breakefield, X. O. (2016). Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cellular and Molecular Neurobiology, 36, 301–312. https://doi.org/10.1007/s10571-016-0366-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Villarroya-Beltri, C., Baixauli, F., Gutiérrez-Vázquez, C., Sánchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13. https://doi.org/10.1016/j.semcancer.2014.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Choi, D. S., Kim, D. K., Kim, Y. K., & Gho, Y. S. (2015). Proteomics of extracellular vesicles: exosomes and ectosomes. Mass Spectrometry Reviews, 34, 474–490. https://doi.org/10.1002/pmic.201200329.

    Article  CAS  PubMed  Google Scholar 

  281. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N., & Lu, Q. (2012). Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proceedings of the National Academy of Sciences of the United States of America, 109, 4146–4151. https://doi.org/10.1073/pnas.1200448109.

    Article  PubMed  PubMed Central  Google Scholar 

  282. Egea-Jimenez, A. L., & Zimmermann, P. (2018). Phospholipase D and phosphatidic acid in the biogenesis and cargo loading of extracellular vesicles. Journal of Lipid Research, jlr.R083964. https://doi.org/10.1194/jlr.R083964.

  283. Kajimoto, T., Okada, T., Miya, S., Zhang, L., & Nakamura, S. (2013). Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multi-vesicular endosomes. Nature Communications, 4, 2712. https://doi.org/10.1038/ncomms3712.

    Article  CAS  PubMed  Google Scholar 

  284. Shen, B., Fang, Y., Wu, N., & Gould, S. J. (2011). Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. The Journal of Biological Chemistry, 286, 44162–44176. https://doi.org/10.1074/jbc.M111.274803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Guo, B. B., Bellingham, S. A., & Hill, A. F. (2015). The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. The Journal of Biological Chemistry, 290, 3455–3467. https://doi.org/10.1074/jbc.M115.684258.

    Article  CAS  PubMed  Google Scholar 

  286. Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.

    Article  CAS  Google Scholar 

  287. Janas, T., Janas, M. M., Sapoń, K., & Janas, T. (2015). Mechanisms of RNA loading into exosomes. FEBS Letters, 589(13), 1391–1398. https://doi.org/10.1016/j.febslet.2015.04.036.

    Article  CAS  PubMed  Google Scholar 

  288. Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980.

    Article  CAS  PubMed  Google Scholar 

  289. Gezer, U., Özgür, E., Cetinkaya, M., Isin, M., & Dalay, N. (2014). Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biology International, 38(9), 1076–1079. https://doi.org/10.1002/cbin.10301.

    Article  CAS  PubMed  Google Scholar 

  290. Hessvik, N. P., & Llorente, A. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 75(2), 193–208. https://doi.org/10.1007/s00018-017-2595-9.

    Article  CAS  PubMed  Google Scholar 

  291. Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686. https://doi.org/10.1002/pmic.201200562.

    Article  CAS  PubMed  Google Scholar 

  292. Kowal, J., Arras, G., Colombo, M., Jouve, M., Morath, J. P., Primdal-Bengtson, B., et al. (2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America, 113, E968–E977. https://doi.org/10.1073/pnas.1521230113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Skotland, T., Hessvik, N. P., Sandvig, K., & Llorente, A. (2018). Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, jlr.R084343. https://doi.org/10.1194/jlr.R084343.

  295. Sharma, R., Huang, X., Brekken, R. A., & Schroit, A. J. (2017). Detection of phosphatidylserine-positive exosomes for the diagnosis of early-stage malignancies. British Journal of Cancer, 117, 545–552. https://doi.org/10.1038/bjc.2017.183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Lesur, A., & Domon, B. (2015). Advances in high-resolution accurate mass spectrometry application to targeted proteomics. Proteomics, 15, 880–890. https://doi.org/10.1002/pmic.201400450.

    Article  CAS  PubMed  Google Scholar 

  297. Schey, K. L., Luther, J. M., & Rose, K. L. (2015). Proteomics characterization of exosome cargo. Methods, 87, 75–82. https://doi.org/10.1016/j.ymeth.2015.03.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Zöller, M. (2009). Tetraspanins: push and pull in suppressing and promoting metastasis. Nature Reviews. Cancer, 9, 40–55. https://doi.org/10.1038/nrc2543.

    Article  CAS  PubMed  Google Scholar 

  299. Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  300. Greening, D. W., Xu, R., Gopal, S. K., Rai, A., & Simpson, R. J. (2017). Proteomic insights into extracellular vesicle biology—defining exosomes and shed microvesicles. Expert Review of Proteomics, 14(1), 69–95. https://doi.org/10.1080/14789450.2017.1260450.

    Article  CAS  PubMed  Google Scholar 

  301. Rosa-Fernandes, L., Rocha, V. B., Carregari, V. C., Urbani, A., & Palmisano, G. (2017). A perspective on extracellular vesicles proteomics. Frontiers in Chemistry, 5, 102. https://doi.org/10.3389/fchem.2017.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  302. Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.

    Article  CAS  PubMed  Google Scholar 

  303. Al-Nedawi, K., Meehan, B., Micallef, J., Lhotak, V., May, L., Guha, A., et al. (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nature Cell Biology, 10, 619–624. https://doi.org/10.1038/ncb1725.

    Article  CAS  PubMed  Google Scholar 

  304. Osteikoetxea, X., Benke, M., Rodriguez, M., Pálóczi, K., Sódar, B. W., Szvicsek, Z., et al. (2018). Detection and proteomic characterization of extracellular vesicles in human pancreatic juice. Biochemical and Biophysical Research Communications, 499(1), 37–43. https://doi.org/10.1016/j.bbrc.2018.03.107.

    Article  CAS  PubMed  Google Scholar 

  305. Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.

    Article  CAS  PubMed  Google Scholar 

  306. Matsumoto, K., Umitsu, M., De Silva, D. M., Roy, A., & Bottaro, D. P. (2017). Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Science, 108(3), 296–307. https://doi.org/10.1111/cas.13156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355. https://doi.org/10.1074/mcp.M112.022806.

    Article  CAS  Google Scholar 

  308. Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Anami, K., Oue, N., Noguchi, T., Sakamoto, N., Sentani, K., Hayashi, T., et al. (2016). TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer, 19(2), 370–380. https://doi.org/10.1007/s10120-015-0478-z.

    Article  CAS  PubMed  Google Scholar 

  310. Hoshino, A., Costa-Silva, B., Shen, T. L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., et al. (2015). Tumour exosome integrins determine organotropic metastasis. Nature, 527(7578), 329–335. https://doi.org/10.1038/nature15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Paolillo, M., & Schinelli, S. (2017). Integrins and exosomes, a dangerous liaison in cancer progression. Cancers (Basel), 9(8), E95. https://doi.org/10.3390/cancers9080095.

    Article  CAS  Google Scholar 

  312. Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.

    Article  PubMed  Google Scholar 

  313. Marimpietri, D., Petretto, A., Raffaghello, L., Pezzolo, A., Gagliani, C., Tacchetti, C., et al. (2013). Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One, 8(9), e75054. https://doi.org/10.1371/journal.pone.0075054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Rappa, G., Mercapide, J., Anzanello, F., Pope, R. M., & Lorico, A. (2013). Biochemical and biological characterization of exosomes containing prominin-1/CD133. Molecular Cancer, 12, 62. https://doi.org/10.1186/1476-4598-12-62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291.

  316. Zöller, M. (2016). Exosomes in cancer disease. Methods in Molecular Biology, 1381, 111–149. https://doi.org/10.1007/978-1-4939-3204-7_7.

    Article  CAS  PubMed  Google Scholar 

  317. Mulcahy, L. A., Pink, R. C., & Carter, D. R. (2014). Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 3. https://doi.org/10.3402/jev.v3.24641.

  318. Buzás, E. I., Tóth, E. Á., Sódar, B. W., & Szabó-Taylor, K. É. (2018). Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology. https://doi.org/10.1007/s00281-018-0682-0.

  319. Rackov, G., Garcia-Romero, N., Esteban-Rubio, S., Carrión-Navarro, J., Belda-Iniesta, C., & Ayuso-Sacido, A. (2018). Vesicle-mediated control of cell function: the role of extracellular matrix and microenvironment. Frontiers in Physiology, 9, 651. https://doi.org/10.3389/fphys.2018.00651.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Sanderson, R.D., Bandari, S.K., & Vlodavsky, I. (2017). Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol, S0945-053X(17)30311-30316. doi: https://doi.org/10.1016/j.matbio.2017.10.007.

  321. Mu, W., Rana, S., & Zöller, M. (2013). Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia, 15, 875–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Wang, L., Hu, L., Zhou, X., Xiong, Z., Zhang, C., Shehada, H. M. A., et al. (2017). Exosomes secreted by human adipose mesenchymal stem cells promote scarless cutaneous repair by regulating extracellular matrix remodelling. Scientific Reports, 7(1), 13321. https://doi.org/10.1038/s41598-017-12919-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A., & Weaver, A. M. (2015). Directional cell movement through tissues is controlled by exosome secretion. Nature Communications, 6, 7164. https://doi.org/10.1038/ncomms8164.

    Article  CAS  PubMed  Google Scholar 

  324. Del Vecchio, F., Lee, G. H., Hawezi, J., Bhome, R., Pugh, S., Sayan, E., et al. (2018). Long non-coding RNAs within the tumour microenvironment and their role in tumour-stroma cross-talk. Cancer Letters, 421, 94–102. https://doi.org/10.1016/j.canlet.2018.02.022.

    Article  CAS  PubMed  Google Scholar 

  325. French, K. C., Antonyak, M. A., & Cerione, R. A. (2017). Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Seminars in Cell & Developmental Biology, 67, 48–55. https://doi.org/10.1016/j.semcdb.2017.01.002.

    Article  CAS  Google Scholar 

  326. Moller-Tank, S., & Maury, W. (2014). Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology, 468-470, 565–580. https://doi.org/10.1016/j.virol.2014.09.009.

    Article  CAS  PubMed  Google Scholar 

  327. Christianson, H. C., Svensson, K. J., van Kuppevelt, T. H., Li, J. P., & Belting, M. (2013). Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proceedings of the National Academy of Sciences of the United States of America, 110, 17380–17385. https://doi.org/10.1073/pnas.1304266110.

    Article  PubMed  PubMed Central  Google Scholar 

  328. Fei, F., Joo, E. J., Tarighat, S. S., Schiffer, I., Paz, H., Fabbri, M., et al. (2015). B-cell precursor acute lymphoblastic leukemia and stromal cells communicate through Galectin-3. Oncotarget, 6, 11378–11394. https://doi.org/10.18632/oncotarget.3409.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Gomes, J., Gomes-Alves, P., Carvalho, S. B., Peixoto, C., Alves, P. M., Altevogt, P., et al. (2015). Extracellular vesicles from ovarian carcinoma cells display specific glycosignatures. Biomolecules, 5, 1741–1761. https://doi.org/10.3390/biom5031741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Rana, S., Yue, S., Stadel, D., & Zöller, M. (2012). Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. The International Journal of Biochemistry & Cell Biology, 44(9), 1574–1584. https://doi.org/10.1016/j.biocel.2012.06.018.

    Article  CAS  Google Scholar 

  331. Montecalvo, A., Larregina, A. T., Shufesky, W. J., Stolz, D. B., Sullivan, M. L., Karlsson, J. M., et al. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119, 756–766. https://doi.org/10.1182/blood-2011-02-338004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Del Conde, I., Shrimpton, C. N., Thiagarajan, P., & López, J. A. (2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood, 106, 1604–1611. https://doi.org/10.1182/blood-2004-03-1095.

    Article  CAS  PubMed  Google Scholar 

  333. Tian, T., Zhu, Y. L., Hu, F. H., Wang, Y. Y., Huang, N. P., & Xiao, Z. D. (2013). Dynamics of exosome internalization and trafficking. Journal of Cellular Physiology, 228, 1487–1495. https://doi.org/10.1002/jcp.24304.

    Article  CAS  PubMed  Google Scholar 

  334. Feng, D., Zhao, W. L., Ye, Y. Y., Bai, X. C., Liu, R. Q., Chang, L. F., et al. (2010). Cellular internalization of exosomes occurs through phagocytosis. Traffic, 11, 675–687. https://doi.org/10.1111/j.1600-0854.2010.01041.x.

    Article  CAS  PubMed  Google Scholar 

  335. Freeman, S. A., & Grinstein, S. (2014). Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological Reviews, 262, 193–215. https://doi.org/10.1111/imr.12212.

    Article  CAS  PubMed  Google Scholar 

  336. Nakase, I., Kobayashi, N. B., Takatani-Nakase, T., & Yoshida, T. (2015). Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Scientific Reports, 5, 10300. https://doi.org/10.1038/srep10300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Thuma, F., & Zöller, M. (2014). Outsmart tumor exosomes to steal the cancer initiating cell its niche. Seminars in Cancer Biology, 28, 39–50. https://doi.org/10.1016/j.semcancer.2014.02.011.

    Article  CAS  PubMed  Google Scholar 

  338. Nanbo, A., Kawanishi, E., Yoshida, R., & Yoshiyama, H. (2013). Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. Journal of Virology, 87, 10334–10347. https://doi.org/10.1128/JVI.01310-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Lakkaraju, A., & Rodriguez-Boulan, E. (2008). Itinerant exosomes: emerging roles in cell and tissue polarity. Trends in Cell Biology, 18, 199–209. https://doi.org/10.1016/j.tcb.2008.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Leone, D. A., Peschel, A., Brown, M., Schachner, H., Ball, M. J., Gyuraszova, M., et al. (2017). Surface LAMP-2 is an endocytic receptor that diverts antigen internalized by human dendritic cells into highly immunogenic exosomes. Journal of Immunology, 199, 531–546. https://doi.org/10.4049/jimmunol.1601263.

    Article  CAS  Google Scholar 

  341. Holder, B., Jones, T., Sancho Shimizu, V., Rice, T. F., Donaldson, B., Bouqueau, M., et al. (2016). Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging. Traffic, 17, 168–178. https://doi.org/10.1111/tra.12352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Heusermann, W., Hean, J., Trojer, D., Steib, E., von Bueren, S., Graff-Meyer, A., et al. (2016). Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. The Journal of Cell Biology, 213, 173–184. https://doi.org/10.1083/jcb.201506084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152. https://doi.org/10.1073/pnas.1104261108.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Zhang, X., Wang, X., Zhu, H., Kranias, E. G., Tang, Y., Peng, T., et al. (2012). Hsp20 functions as a novel cardiokine in promoting angiogenesis via activation of VEGFR2. PLoS One, 7(3), e32765. https://doi.org/10.1371/journal.pone.0032765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.

    Article  PubMed  PubMed Central  Google Scholar 

  346. Atay, S., Gercel-Taylor, C., & Taylor, D. D. (2011). Human trophoblast-derived exosomal fibronectin induces pro-inflammatory IL-1β production by macrophages. American Journal of Reproductive Immunology, 66(4), 259–269. https://doi.org/10.1111/j.1600-0897.2011.00995.x.

    Article  CAS  PubMed  Google Scholar 

  347. Fedele, C., Singh, A., Zerlanko, B. J., Iozzo, R. V., & Languino, L. R. (2015). The αvβ6 integrin is transferred intercellularly via exosomes. The Journal of Biological Chemistry, 290, 4545–4551. https://doi.org/10.1074/jbc.C114.617662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Gu, X., Erb, U., Büchler, M. W., & Zöller, M. (2015). Improved vaccine efficacy of tumor exosome compared to tumor lysate loaded dendritic cells in mice. International Journal of Cancer, 136, E74–E84. https://doi.org/10.1002/ijc.29100.

    Article  CAS  PubMed  Google Scholar 

  349. Lamichhane, T. N., Jeyaram, A., Patel, D. B., Parajuli, B., Livingston, N. K., Arumugasaamy, N., et al. (2016). Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cellular and Molecular Bioengineering, 9, 315–324. https://doi.org/10.1007/s12195-016-0457-4.

    Article  CAS  PubMed  Google Scholar 

  350. Saari, H., Lázaro-Ibáñez, E., Viitala, T., Vuorimaa-Laukkanen, E., Siljander, P., & Yliperttula, M. (2015). Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. Journal of Controlled Release, 220(Pt B), 727–737. https://doi.org/10.1016/j.jconrel.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  351. Kapustin, A. N., Schoppet, M., Schurgers, L. J., Reynolds, J. L., McNair, R., Heiss, A., et al. (2017). Prothrombin loading of vascular smooth muscle cell-derived exosomes regulates coagulation and calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, e22–e32. https://doi.org/10.1161/ATVBAHA.116.308886.

    Article  CAS  PubMed  Google Scholar 

  352. Zarovni, N., Corrado, A., Guazzi, P., Zocco, D., Lari, E., Radano, G., et al. (2015). Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 87, 46–58. https://doi.org/10.1016/j.ymeth.2015.05.028.

    Article  CAS  PubMed  Google Scholar 

  353. Théry, C., Duban, L., Segura, E., Véron, P., Lantz, O., & Amigorena, S. (2002). Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nature Immunology, 3, 1156–1162. https://doi.org/10.1038/ni854.

    Article  CAS  PubMed  Google Scholar 

  354. Simhadri, V. R., Reiners, K. S., Hansen, H. P., Topolar, D., Simhadri, V. L., Nohroudi, K., et al. (2008). Dendritic cells release HLA-B-associated transcript-3 positive exosomes to regulate natural killer function. PLoS One, 3, e3377. https://doi.org/10.1371/journal.pone.0003377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Viaud, S., Terme, M., Flament, C., Taieb, J., André, F., Novault, S., et al. (2009). Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS, 4(3), e4942. https://doi.org/10.1371/journal.pone.0004942.

    Article  CAS  Google Scholar 

  356. Vulpis, E., Cecere, F., Molfetta, R., Soriani, A., Fionda, C., Peruzzi, G., et al. (2017). Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis. Oncoimmunology, 6, e1279372. https://doi.org/10.1080/2162402X.2017.1279372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Budnik, V., Ruiz-Cañada, C., & Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews. Neuroscience, 17, 160–172. https://doi.org/10.1038/nrn.2015.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Gong, J., Körner, R., Gaitanos, L., & Klein, R. (2016). Exosomes mediate cell contact-independent ephrin-Eph signaling during axon guidance. The Journal of Cell Biology, 214, 35–44. https://doi.org/10.1083/jcb.201601085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Fitzgerald, T. L., & McCubrey, J. A. (2014). Pancreatic cancer stem cells: association with cell surface markers, prognosis, resistance, metastasis and treatment. Adv Biol Regul, 56, 45–50. https://doi.org/10.1016/j.jbior.2014.05.001.

    Article  CAS  PubMed  Google Scholar 

  360. Cherciu, I., Bărbălan, A., Pirici, D., Mărgăritescu, C., & Săftoiu, A. (2014). Stem cells, colorectal cancer and cancer stem cell markers correlations. Current Health Sciences Journal, 40(3), 153–161. https://doi.org/10.12865/CHSJ.40.03.01.

    Article  PubMed  PubMed Central  Google Scholar 

  361. Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.

    Article  CAS  PubMed  Google Scholar 

  362. Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Kanatsu-Shinohara, M., Takashima, S., Ishii, K., & Shinohara, T. (2011). Dynamic changes in EPCAM expression during spermatogonial stem cell differentiation in the mouse testis. PLoS One, 6(8), e23663. https://doi.org/10.1371/journal.pone.0023663.

    Article  CAS