Skip to main content

Acidosis and cancer: from mechanism to neutralization

Abstract

The extracellular pH of solid tumors is unequivocally acidic due to a combination of high rates of lactic acid production (a consequence of fermentative glycolytic metabolism) and poor perfusion. This has been documented by us and others in a wide variety of solid tumor models, primarily using magnetic resonance spectroscopic imaging (MRSI). This acidity contributes to tumor progression by inducing genome instability, promoting local invasion and metastases, inhibiting anti-tumor immunity, and conferring resistance to chemo- and radio-therapies. Systemic buffer therapies can neutralize tumor acidity and has been shown to inhibit local invasion and metastasis and improve immune surveillance in a variety of cancer model systems. This review will revisit the causes and consequences of acidosis by summarizing strategies used by cancer cells to adapt to acidosis, and how this acidity associated with carcinogenesis, metastasis, and immune function. Finally, this review will discuss how neutralization of acidity can be used to inhibit carcinogenesis and metastasis and improve anti-cancer immunotherapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Gillies, R. J., Liu, Z., & Bhujwalla, Z. (1994). 31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate. The American Journal of Physiology, 267(1 Pt 1), C195–C203. https://doi.org/10.1152/ajpcell.1994.267.1.C195.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Zhang, X., Lin, Y., & Gillies, R. J. (2010). Tumor pH and its measurement. Journal of Nuclear Medicine, 51(8), 1167–1170. https://doi.org/10.2967/jnumed.109.068981.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66(10), 5216–5223. https://doi.org/10.1158/0008-5472.CAN-05-4193.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mizushima, N., & Klionsky, D. J. (2007). Protein turnover via autophagy: implications for metabolism. Annual Review of Nutrition, 27, 19–40. https://doi.org/10.1146/annurev.nutr.27.061406.093749.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Marino, M. L., Pellegrini, P., Di Lernia, G., Djavaheri-Mergny, M., Brnjic, S., Zhang, X., Hagg, M., Linder, S., Fais, S., Codogno, P., & De Milito, A. (2012). Autophagy is a protective mechanism for human melanoma cells under acidic stress. The Journal of Biological Chemistry, 287(36), 30664–30676.

    CAS  Article  Google Scholar 

  6. 6.

    Wojtkowiak, J. W., Rothberg, J. M., Kumar, V., Schramm, K. J., Haller, E., Proemsey, J. B., Lloyd, M. C., Sloane, B. F., & Gillies, R. J. (2012). Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments. Cancer Research, 72(16), 3938–3947. https://doi.org/10.1158/0008-5472.CAN-11-3881.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wojtkowiak, J. W., & Gillies, R. J. (2012). Autophagy on acid. Autophagy., 8(11), 1688–1689. https://doi.org/10.4161/auto.21501.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Pellegrini, P., Strambi, A., Zipoli, C., Hagg-Olofsson, M., Buoncervello, M., Linder, S., & De Milito, A. (2014). Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy, 10(4), 562–571. https://doi.org/10.4161/auto.27901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Sousa, C. M., Biancur, D. E., Wang, X., Halbrook, C. J., Sherman, M. H., Zhang, L., Kremer, D., Hwang, R. F., Witkiewicz, A. K., Ying, H., Asara, J. M., Evans, R. M., Cantley, L. C., Lyssiotis, C. A., & Kimmelman, A. C. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature., 536(7617), 479–483. https://doi.org/10.1038/nature19084.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Johnson, D. E., Ostrowski, P., Jaumouille, V., & Grinstein, S. (2016). The position of lysosomes within the cell determines their luminal pH. The Journal of Cell Biology, 212(6), 677–692. https://doi.org/10.1083/jcb.201507112.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Glunde, K., Guggino, S. E., Solaiyappan, M., Pathak, A. P., Ichikawa, Y., & Bhujwalla, Z. M. (2003). Extracellular acidification alters lysosomal trafficking in human breast cancer cells. Neoplasia., 5(6), 533–545.

    CAS  Article  Google Scholar 

  12. 12.

    Rozhin, J., Sameni, M., Ziegler, G., & Sloane, B. F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Research, 54(24), 6517–6525.

    CAS  PubMed  Google Scholar 

  13. 13.

    Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T., & Cardelli, J. A. (2009). Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic (Copenhagen, Denmark), 10(6), 737–753. https://doi.org/10.1111/j.1600-0854.2009.00904.x.

    CAS  Article  Google Scholar 

  14. 14.

    Damaghi, M., Tafreshi, N. K., Lloyd, M. C., Sprung, R., Estrella, V., Wojtkowiak, J. W., Morse, D. L., Koomen, J. M., Bui, M. M., Gatenby, R. A., & Gillies, R. J. (2015). Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nature Communications, 6, 8752. https://doi.org/10.1038/ncomms9752.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Dovmark, T. H., Saccomano, M., Hulikova, A., Alves, F., & Swietach, P. (2017). Connexin-43 channels are a pathway for discharging lactate from glycolytic pancreatic ductal adenocarcinoma cells. Oncogene, 36(32), 4538–4550. https://doi.org/10.1038/onc.2017.71.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Li, L., Wang, W., Zhang, R., Liu, J., Yu, J., Wu, X., Xu, Y., Ma, M., & Huang, J. (2017). High expression of LAMP2 predicts poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Biomarkers, 19, 305–311. https://doi.org/10.3233/CBM-160469.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Walton ZE, Patel CH, Brooks RC, Yu Y, Ibrahim-Hashim A, Gillies RJ, Powell JD, Dang CV. Acid suspends the circadian clock in hypoxia through inhibition of mTOR. Cell. 2018;(in press), 174, 72, 87.e32.

  18. 18.

    Delikatny, E. J., Chawla, S., Leung, D. J., & Poptani, H. (2011). MR-visible lipids and the tumor microenvironment. NMR in Biomedicine, 24(6), 592–611. https://doi.org/10.1002/nbm.1661.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Pillai, S., Wojtkowiak, J. W., Damaghi, M., Gatenby, R., & Gillies, R. (2017). Abstract 3538: Enhanced dependence on lipid metabolism is a cellular adaptation to acidic microenvironment. Cancer Research, 77(13 Supplement), 3538. https://doi.org/10.1158/1538-7445.am2017-3538.

    Article  Google Scholar 

  20. 20.

    Tirinato, L., Pagliari, F., Limongi, T., Marini, M., Falqui, A., Seco, J., Candeloro, P., Liberale, C., & Di Fabrizio, E. (2017). An overview of lipid droplets in cancer and cancer stem cells. Stem Cells International, 2017, 1656053. https://doi.org/10.1155/2017/1656053.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Krahmer, N., Farese, R. V., Jr., & Walther, T. C. (2013). Balancing the fat: lipid droplets and human disease. EMBO Molecular Medicine, 5(7), 973–983. https://doi.org/10.1002/emmm.201100671.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Carr, R. M., & Ahima, R. S. (2016). Pathophysiology of lipid droplet proteins in liver diseases. Experimental Cell Research, 340(2), 187–192. https://doi.org/10.1016/j.yexcr.2015.10.021.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Wallstab, C., Eleftheriadou, D., Schulz, T., Damm, G., Seehofer, D., Borlak, J., Holzhutter, H. G., & Berndt, N. (2017). A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis. The FEBS Journal, 284(19), 3245–3261. https://doi.org/10.1111/febs.14189.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Antalis, C. J., Uchida, A., Buhman, K. K., & Siddiqui, R. A. (2011). Migration of MDA-MB-231 breast cancer cells depends on the availability of exogenous lipids and cholesterol esterification. Clinical & Experimental Metastasis, 28(8), 733–741. https://doi.org/10.1007/s10585-011-9405-9.

    CAS  Article  Google Scholar 

  25. 25.

    Persi, E., Duran-Firgola, M., Damaghi, M., Roush, W. R., Aloy, P., Cleveland, J. L., Gillies, R. J., & Ruppin, E. (2018). Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nature Communications (in press).

  26. 26.

    Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews Cancer., 4(11), 891–899. https://doi.org/10.1038/nrc1478.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Wykoff, C. C., Beasley, N., Watson, P. H., Campo, L., Chia, S. K., English, R., Pastorek, J., Sly, W. S., Ratcliffe, P., & Harris, A. L. (2001). Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. The American Journal of Pathology, 158(3), 1011–1019. https://doi.org/10.1016/S0002-9440(10)64048-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gillies, R. J., & Gatenby, R. A. (2007). Adaptive landscapes and emergent phenotypes: why do cancers have high glycolysis? Journal of Bioenergetics and Biomembranes, 39(3), 251–257. https://doi.org/10.1007/s10863-007-9085-y.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Gillies, R. J., Verduzco, D., & Gatenby, R. A. (2012). Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nature Reviews Cancer, 12(7), 487–493. https://doi.org/10.1038/nrc3298.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gatenby, R. A., & Gillies, R. J. (2008). A microenvironmental model of carcinogenesis. Nature reviews Cancer, 8(1), 56–61. https://doi.org/10.1038/nrc2255.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Gillies, R. J., Brown, J. S., Anderson, A. R. A., & Gatenby, R. A. (2018). Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nature Reviews Cancer, 18, 576–585. https://doi.org/10.1038/s41568-018-0030-7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Rothberg, J. M., Bailey, K. M., Wojtkowiak, J. W., Ben-Nun, Y., Bogyo, M., Weber, E., Moin, K., Blum, G., Mattingly, R. R., Gillies, R. J., & Sloane, B. F. (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia., 15(10), 1125–1137.

    Article  Google Scholar 

  33. 33.

    Avnet, S., Di Pompo, G., Chano, T., Errani, C., Ibrahim-Hashim, A., Gillies, R. J., Donati, D. M., & Baldini, N. (2017). Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-kappaB activation. International Journal of Cancer, 140(6), 1331–1345. https://doi.org/10.1002/ijc.30540.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tafreshi, N. K., Bui, M. M., Bishop, K., Lloyd, M. C., Enkemann, S. A., Lopez, A. S., Abrahams, D., Carter, B. W., Vagner, J., Grobmyer, S. R., Gillies, R. J., & Morse, D. L. (2012). Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 18(1), 207–219. https://doi.org/10.1158/1078-0432.CCR-11-0238.

    CAS  Article  Google Scholar 

  35. 35.

    Tafreshi, N. K., Lloyd, M., Bui, M., Gillies, R. J., & Morse, D. (2013). Carbonic Anhydrase IX as an Imaging and Therapeutic Target for Tumors and Metastases. In S. Frost & R. McKenna (Eds.), Carbonic Anhydrases.

    Google Scholar 

  36. 36.

    Lloyd, M. C., Alfarouk, K. O., Verduzco, D., Bui, M. M., Gillies, R. J., Ibrahim, M. E., Brown, J. S., & Gatenby, R. A. (2014). Vascular measurements correlate with estrogen receptor status. BMC Cancer, 14(1), 279. https://doi.org/10.1186/1471-2407-14-279.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Research, 76(11), 3136–3144. https://doi.org/10.1158/0008-5472.CAN-15-2962.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tafreshi, N. K., Lloyd, M. C., Bui, M. M., Gillies, R. J., & Morse, D. L. (2014). Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. Sub-cellular biochemistry, 75, 221–254. https://doi.org/10.1007/978-94-007-7359-2_12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., & Gillies, R. J. (2013). Acidity generated by the tumor microenvironment drives local invasion. Cancer Research, 73(5), 1524–1535. https://doi.org/10.1158/0008-5472.CAN-12-2796.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Gerlinger, M., Rowan, A. J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N. Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C. R., Nohadani, M., Eklund, A. C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P. A., & Swanton, C. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366(10), 883–892. https://doi.org/10.1056/NEJMoa1113205.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    van Sluis, R., Bhujwalla, Z. M., Raghunand, N., Ballesteros, P., Alvarez, J., Cerdan, S., Galons, J. P., & Gillies, R. J. (1999). In vivo imaging of extracellular pH using 1H MRSI. Magnetic Resonance in Medicine, 41(4), 743–750.

    Article  Google Scholar 

  42. 42.

    O'Connor, J. P., Rose, C. J., Waterton, J. C., Carano, R. A., Parker, G. J., & Jackson, A. (2015). Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome. Clinical Cancer Research, 21(2), 249–257. https://doi.org/10.1158/1078-0432.CCR-14-0990.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Wu, J., Cao, G., Sun, X., Lee, J., Rubin, D. L., Napel, S., Kurian, A. W., Daniel, B. L., & Li, R. (2018). Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology., 288(1), 26–35. https://doi.org/10.1148/radiol.2018172462.

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Grove, O., Berglund, A. E., Schabath, M. B., Aerts, H. J., Dekker, A., Wang, H., Velazquez, E. R., Lambin, P., Gu, Y., Balagurunathan, Y., Eikman, E., Gatenby, R. A., Eschrich, S., & Gillies, R. J. (2015). Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One, 10(3), e0118261. https://doi.org/10.1371/journal.pone.0118261.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Beig, N., Khorrami, M., Alilou, M., Prasanna, P., Braman, N., Orooji, M., Rakshit, S., Bera, K., Rajiah, P., Ginsberg, J., Donatelli, C., Thawani, R., Yang, M., Jacono, F., Tiwari, P., Velcheti, V., Gilkeson, R., Linden, P., & Madabhushi, A. (2018). Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology, 180910. https://doi.org/10.1148/radiol.2018180910.

  46. 46.

    Gatenby, R. A., Grove, O., & Gillies, R. J. (2013). Quantitative imaging in cancer evolution and ecology. Radiology, 269(1), 8–15. https://doi.org/10.1148/radiol.13122697.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Gillies, R. J., Kinahan, P. E., & Hricak, H. (2016). Radiomics: images are more than pictures, they are data. Radiology, 278(2), 563–577. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  48. 48.

    Farhidzadeh, H., Chaudhury, B., Scott, J. G., Goldgof, D., Hall, L. O., Gatenby, R. A., Gillies, R. J., & Raghavan, M. (2016). Signal intensity analysis of ecological defined habitat in soft tissue sarcomas to predict metastasis development. SPIE Medial Imaging, 2016. https://doi.org/10.1117/12.2216961.

  49. 49.

    Stoyanova, R., Pollack, A., Takhar, M., Lynne, C., Parra, N., Lam, L. L., Alshalalfa, M., Buerki, C., Castillo, R., Jorda, M., Ashab, H. A., Kryvenko, O. N., Punnen, S., Parekh, D. J., Abramowitz, M. C., Gillies, R. J., Davicioni, E., Erho, N., & Ishkanian, A. (2016). Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget, 7, 53362–53376. https://doi.org/10.18632/oncotarget.10523.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Aerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P., Cavalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., & Lambin, P. (2014). Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nature Communications, 5, 4006. https://doi.org/10.1038/ncomms5006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Damgaci, S., Ibrahim-Hashim, A., Enriquez-Navas, P. M., Pilon-Thomas, S., Guvenis, A., & Gillies, R. J. (2018). Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology, 154(3), 354–362. https://doi.org/10.1111/imm.12917.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Lardner, A. (2001). The effects of extracellular pH on immune function. Journal of Leukocyte Biology, 69(4), 522–530.

    CAS  PubMed  Google Scholar 

  53. 53.

    Huber, V., Camisaschi, C., Berzi, A., Ferro, S., Lugini, L., Triulzi, T., Tuccitto, A., Tagliabue, E., Castelli, C., & Rivoltini, L. (2017). Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 43, 74–89. https://doi.org/10.1016/j.semcancer.2017.03.001.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Husain, Z., Huang, Y. N., Seth, P., & Sukhatme, V. P. (2013). Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. Journal of Immunology, 191(3), 1486–1495. https://doi.org/10.4049/jimmunol.1202702.

    CAS  Article  Google Scholar 

  55. 55.

    Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mule, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Research, 76(6), 1381–1390. https://doi.org/10.1158/0008-5472.CAN-15-1743.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., Huber, V., Parmiani, G., Generoso, L., Santinami, M., Borghi, M., Fais, S., Bellone, M., & Rivoltini, L. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research, 72(11), 2746–2756. https://doi.org/10.1158/0008-5472.CAN-11-1272.

    Article  PubMed  Google Scholar 

  57. 57.

    Damaghi, M., Wojtkowiak, J. W., & Gillies, R. J. (2013). pH sensing and regulation in cancer. Frontiers in Physiology, 4, 370. https://doi.org/10.3389/fphys.2013.00370.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Tong, J., Wu, W. N., Kong, X., Wu, P. F., Tian, L., Du, W., Fang, M., Zheng, F., Chen, J. G., Tan, Z., & Gong, F. (2011). Acid-sensing ion channels contribute to the effect of acidosis on the function of dendritic cells. Journal of Immunology, 186(6), 3686–3692. https://doi.org/10.4049/jimmunol.1001346.

    CAS  Article  Google Scholar 

  59. 59.

    Mahoney, B. P., Raghunand, N., Baggett, B., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochemical Pharmacology, 66(7), 1207–1218.

    CAS  Article  Google Scholar 

  60. 60.

    Raghunand, N., Mahoney, B. P., & Gillies, R. J. (2003). Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents. Biochemical Pharmacology, 66(7), 1219–1229.

    CAS  Article  Google Scholar 

  61. 61.

    Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., Hashim, A. I., Morse, D. L., Raghunand, N., Gatenby, R. A., & Gillies, R. J. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69(6), 2260–2268. https://doi.org/10.1158/0008-5472.CAN-07-5575.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Ibrahim Hashim, A., Cornnell, H. H., Coelho Ribeiro Mde, L., Abrahams, D., Cunningham, J., Lloyd, M., Martinez, G. V., Gatenby, R. A., & Gillies, R. J. (2011). Reduction of metastasis using a non-volatile buffer. Clinical & Experimental Metastasis, 28(8), 841–849. https://doi.org/10.1007/s10585-011-9415-7.

    CAS  Article  Google Scholar 

  63. 63.

    Ribeiro, M., Silva, A. S., Bailey, K., Kumar, N. B., Sellers, T. A., Gatenby, R. A., Ibrahim Hashim, A., & Gillies, R. J. (2012). Buffer therapy for cancer. Journal of Nutrition & Food Sciences, S2, 1–7.

    Google Scholar 

  64. 64.

    Ibrahim-Hashim, A., Cornnell, H. H., Abrahams, D., Lloyd, M., Bui, M., Gillies, R. J., & Gatenby, R. A. (2012). Systemic buffers inhibit carcinogenesis in TRAMP mice. The Journal of Urology, 188(2), 624–631. https://doi.org/10.1016/j.juro.2012.03.113.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Ibrahim-Hashim, A., Robertson-Tessi, M., Enriquez-Navas, P. M., Damaghi, M., Balagurunathan, Y., Wojtkowiak, J. W., Russell, S., Yoonseok, K., Lloyd, M. C., Bui, M. M., Brown, J. S., Anderson, A. R. A., Gillies, R. J., & Gatenby, R. A. (2017). Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Research, 77(9), 2242–2254. https://doi.org/10.1158/0008-5472.CAN-16-2844.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Ibrahim-Hashim, A., Wojtkowiak, J. W., de Lourdes Coelho Ribeiro, M., Estrella, V., Bailey, K. M., Cornnell, H. H., Gatenby, R. A., & Gillies, R. J. (2011). Free base lysine increases survival and reduces metastasis in prostate cancer model. J Cancer Sci Ther, 4(Suppl 1).

  67. 67.

    Ibrahim-Hashim, A., Abrahams, D., Enriquez-Navas, P. M., Luddy, K., Gatenby, R. A., & Gillies, R. J. (2017). Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Medicine, 6(7), 1720–1729. https://doi.org/10.1002/cam4.1032.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ibrahim Hashim, A., Zhang, X., Wojtkowiak, J. W., Martinez, G. V., & Gillies, R. J. (2011). Imaging pH and metastasis. NMR in Biomedicine, 24(6), 582–591. https://doi.org/10.1002/nbm.1644.

    Article  Google Scholar 

  69. 69.

    Bohme, I., & Bosserhoff, A. K. (2016). Acidic tumor microenvironment in human melanoma. Pigment Cell & Melanoma Research, 29, 508–523. https://doi.org/10.1111/pcmr.12495.

    CAS  Article  Google Scholar 

  70. 70.

    Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mule, J. J., Ibrahim-Hashim, A., & Gillies, R. J. (2015). Neutralization of tumor acidity improves antitumor responses to immunotherapeutic interventions. Cancer Research, 76, 1381–1390. https://doi.org/10.1158/0008-5472.CAN-15-1743.

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Pilot, C., Mahipal, A., & Gillies, R. J. (2018). Buffer Therapy-->Buffer Diet. K Nutr. Food Science, 8(2), 684–688.

    Google Scholar 

  72. 72.

    Tian, B., Wong, W. Y., Hegmann, E., Gaspar, K., Kumar, P., & Chao, H. (2015). Production and characterization of a camelid single domain antibody-urease enzyme conjugate for the treatment of cancer. Bioconjugate Chemistry, 26(6), 1144–1155. https://doi.org/10.1021/acs.bioconjchem.5b00237.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arig Ibrahim-Hashim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibrahim-Hashim, A., Estrella, V. Acidosis and cancer: from mechanism to neutralization. Cancer Metastasis Rev 38, 149–155 (2019). https://doi.org/10.1007/s10555-019-09787-4

Download citation

Keywords

  • Acidosis
  • Carcinogenesis
  • Metastasis
  • Neutralization
  • Immunotherapy