Skip to main content

Advertisement

Log in

Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3′-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new “players” in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anampa, J., Makower, D., & Sparano, J. A. (2015). Progress in adjuvant chemotherapy for breast cancer: an overview. BMC Medicine, 13, 195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 65, 87–108.

    Google Scholar 

  3. Jemal, A., Center, M. M., DeSantis, C., & Ward, E. M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology, Biomarkers & Prevention: a Publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 19, 1893–1907.

    Article  Google Scholar 

  4. Kimbung, S., Loman, N., & Hedenfalk, I. (2015). Clinical and molecular complexity of breast cancer metastases. Seminars in Cancer Biology, 35, 85–95.

    Article  PubMed  CAS  Google Scholar 

  5. DeSantis, C. E., Fedewa, S. A., Goding Sauer, A., Kramer, J. L., Smith, R. A., & Jemal, A. (2016). Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA: a Cancer Journal for Clinicians, 66, 31–42.

    Google Scholar 

  6. U.S. Cancer Statistics Working Group. (2015). United States Cancer Statistics: 1999–2012 incidence and mortality web-based report. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.

    Google Scholar 

  7. Leone, J. P., & Leone, B. A. (2015). Breast cancer brain metastases: the last frontier. Experimental Hematology & Oncology, 4, 33.

    Article  Google Scholar 

  8. Fan, J., Chen, D., Du, H., Shen, C., & Che, G. (2015). Prognostic factors for resection of isolated pulmonary metastases in breast cancer patients: a systematic review and meta-analysis. Journal of Thoracic Disease, 7, 1441–1451.

    PubMed  PubMed Central  Google Scholar 

  9. Croset, M., Kan, C., & Clezardin, P. (2015). Tumour-derived miRNAs and bone metastasis. BoneKEy Reports, 4, 688.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews. Molecular Cell Biology, 6, 635–645.

    Article  PubMed  CAS  Google Scholar 

  11. Bredemeier, M., Kasimir-Bauer, S., Kolberg, H. C., Herold, T., Synoracki, S., Hauch, S., Edimiris, P., Bankfalvi, A., Tewes, M., Kimmig, R., & Aktas, B. (2017). Comparison of the PI3KCA pathway in circulating tumor cells and corresponding tumor tissue of patients with metastatic breast cancer. Molecular Medicine Reports, 15, 2957–2968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hu, J., Banerjee, A., & Goss, D. J. (2005). Assembly of b/HLH/z proteins c-Myc, Max, and Mad1 with cognate DNA: importance of protein-protein and protein-DNA interactions. Biochemistry, 44, 11855–11863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim, D., Hong, A., Park, H. I., Shin, W. H., Yoo, L., Jeon, S. J., & Chung, K. C. (2017). Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. Journal of Cellular Physiology, 232, 3664–3676.

    Article  PubMed  CAS  Google Scholar 

  14. McGee, S. R., Tibiche, C., Trifiro, M., & Wang, E. (2017). Network analysis reveals a signaling regulatory loop in the PIK3CA-mutated breast cancer predicting survival outcome. Genomics, Proteomics & Bioinformatics, 15, 121–129.

    Article  Google Scholar 

  15. Ren, J., Jin, F., Yu, Z., Zhao, L., Wang, L., Bai, X., Zhao, H., Yao, W., Mi, X., Wang, E., Olopade, O. I., & Wei, M. (2013). MYC overexpression and poor prognosis in sporadic breast cancer with BRCA1 deficiency. Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 34, 3945–3958.

    Article  CAS  Google Scholar 

  16. Samimi, G., Bernardini, M. Q., Brody, L. C., Caga-Anan, C. F., Campbell, I. G., Chenevix-Trench, G., Couch, F. J., Dean, M., de Hullu, J. A., Domchek, S. M., Drapkin, R., Spencer Feigelson, H., Friedlander, M., Gaudet, M. M., Harmsen, M. G., Hurley, K., James, P. A., Kwon, J. S., Lacbawan, F., Lheureux, S., Mai, P. L., Mechanic, L. E., Minasian, L. M., Myers, E. R., Robson, M. E., Ramus, S. J., Rezende, L. F., Shaw, P. A., Slavin, T. P., Swisher, E. M., Takenaka, M., Bowtell, D. D., & Sherman, M. E. (2017). Traceback: a proposed framework to increase identification and genetic counseling of BRCA1 and BRCA2 mutation carriers through family-based outreach. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 2329–2337.

    Article  Google Scholar 

  17. Zacksenhaus, E., Liu, J. C., Jiang, Z., Yao, Y., Xia, L., Shrestha, M., & Ben-David, Y. (2017). Transcription factors in breast cancer—lessons from recent genomic analyses and therapeutic implications. Advances in Protein Chemistry and Structural Biology, 107, 223–273.

    Article  PubMed  CAS  Google Scholar 

  18. Pulverer, B., Sommer, A., McArthur, G. A., Eisenman, R. N., & Luscher, B. (2000). Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. Journal of Cellular Physiology, 183, 399–410.

    Article  PubMed  CAS  Google Scholar 

  19. Gomez-Cambronero, J. (2014). Phosphatidic acid, phospholipase D and tumorigenesis. Advances in Biological Regulation, 54, 197–206.

    Article  PubMed  CAS  Google Scholar 

  20. Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. The Journal of Biological Chemistry, 269, 20312–20317.

    PubMed  CAS  Google Scholar 

  21. Speranza, F., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2014). The molecular basis of leukocyte adhesion involving phosphatidic acid and phospholipase D. The Journal of Biological Chemistry, 289, 28885–28897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Henkels, K. M., Boivin, G. P., Dudley, E. S., Berberich, S. J., & Gomez-Cambronero, J. (2013). Phospholipase D (PLD) drives cell invasion, tumor growth and metastasis in a human breast cancer xenograph model. Oncogene, 32, 5551–5562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Meats, J. E., Steele, L., & Bowen, J. G. (1993). Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions, 39 Spec No, C14–C16.

    Article  PubMed  CAS  Google Scholar 

  24. Joseph, T., Wooden, R., Bryant, A., Zhong, M., Lu, Z., & Foster, D. A. (2001). Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochemical and Biophysical Research Communications, 289, 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  25. Park, J. B., Lee, C. S., Jang, J. H., Ghim, J., Kim, Y. J., You, S., Hwang, D., Suh, P. G., & Ryu, S. H. (2012). Phospholipase signalling networks in cancer. Nature Reviews. Cancer, 12, 782–792.

    Article  PubMed  CAS  Google Scholar 

  26. Foster, D. A., & Xu, L. (2003). Phospholipase D in cell proliferation and cancer. Molecular Cancer Research, 1, 789–800.

    PubMed  CAS  Google Scholar 

  27. Gomez-Cambronero, J. (2014). Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. The Journal of Biological Chemistry, 289, 22557–22566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Knoepp, S. M., Chahal, M. S., Xie, Y., Zhang, Z., Brauner, D. J., Hallman, M. A., Robinson, S. A., Han, S., Imai, M., Tomlinson, S., & Meier, K. E. (2008). Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Molecular Pharmacology, 74, 574–584.

    Article  PubMed  CAS  Google Scholar 

  29. Fite, K., & Gomez-Cambronero, J. (2016). Down-regulation of microRNAs (MiRs) 203, 887, 3619 and 182 prevents vimentin-triggered, phospholipase D (PLD)-mediated cancer cell invasion. The Journal of Biological Chemistry, 291, 719–730.

    Article  PubMed  CAS  Google Scholar 

  30. Frondorf, K., Henkels, K. M., Frohman, M. A., & Gomez-Cambronero, J. (2010). Phosphatidic acid (PA) is a leukocyte chemoattractant that acts through S6 kinase signaling. The Journal of Biological Chemistry, 285, 15837–15847.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mahankali, M., Peng, H. J., Cox, D., & Gomez-Cambronero, J. (2011). The mechanism of cell membrane ruffling relies on a phospholipase D2 (PLD2), Grb2 and Rac2 association. Cellular Signalling, 23, 1291–1298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Hatton, N., Lintz, E., Mahankali, M., Henkels, K. M., & Gomez-Cambronero, J. (2015). Phosphatidic acid increases epidermal growth factor receptor expression by stabilizing mRNA decay and by inhibiting lysosomal and proteasomal degradation of the internalized receptor. Molecular and Cellular Biology, 35, 3131–3144.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Mahankali, M., Farkaly, T., Bedi, S., Hostetler, H. A., & Gomez-Cambronero, J. (2015). Phosphatidic acid (PA) can displace PPARalpha/LXRalpha binding to the EGFR promoter causing its transrepression in luminal cancer cells. Scientific Reports, 5, 15379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Henkels, K., Taylor, T. E., Ganesan, R., Wilkins, B. A., Fite, K., & Gomez-Cambronero, J. (2016). A phosphatidic acid (PA) conveyor system of continuous intracellular transport from cell membrane to nucleus maintains EGF receptor homeostasis. Oncotarget Accepted, in press.

  35. Mahankali, M., Henkels, K. M., Speranza, F., & Gomez-Cambronero, J. (2015). A non-mitotic role for aurora kinase A as a direct activator of cell migration upon interaction with PLD, FAK and Src. Journal of Cell Science, 128, 516–526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Lee, C. S., Bae, Y. S., Lee, S. D., Suh, P. G., & Ryu, S. H. (2001). ATP-induced mitogenesis is modulated by phospholipase D2 through extracellular signal regulated protein kinase dephosphorylation in rat pheochromocytoma PC12 cells. Neuroscience Letters, 313, 117–120.

    Article  PubMed  CAS  Google Scholar 

  37. Kang, D. W., Lee, J. Y., Oh, D. H., Park, S. Y., Woo, T. M., Kim, M. K., Park, M. H., Jang, Y. H., & Min do, S. (2009). Triptolide-induced suppression of phospholipase D expression inhibits proliferation of MDA-MB-231 breast cancer cells. Experimental & Molecular Medicine, 41, 678–685.

    Article  CAS  Google Scholar 

  38. Min, D. S., Kwon, T. K., Park, W. S., Chang, J. S., Park, S. K., Ahn, B. H., Ryoo, Z. Y., Lee, Y. H., Lee, Y. S., Rhie, D. J., Yoon, S. H., Hahn, S. J., Kim, M. S., & Jo, Y. H. (2001). Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis, 22, 1641–1647.

    Article  PubMed  CAS  Google Scholar 

  39. Burkhardt, U., Beyer, S., & Klein, J. (2015). Role of phospholipases D1 and 2 in astroglial proliferation: effects of specific inhibitors and genetic deletion. European Journal of Pharmacology, 761, 398–404.

    Article  PubMed  CAS  Google Scholar 

  40. Burkhardt, U., Wojcik, B., Zimmermann, M., & Klein, J. (2013). Phospholipase D is a target for inhibition of astroglial proliferation by ethanol. Neuropharmacology, 79C, 1–9.

    Google Scholar 

  41. Chen, Q., Hongu, T., Sato, T., Zhang, Y., Ali, W., Cavallo, J. A., van der Velden, A., Tian, H., Di Paolo, G., Nieswandt, B., Kanaho, Y., & Frohman, M. A. (2012). Key roles for the lipid signaling enzyme phospholipase d1 in the tumor microenvironment during tumor angiogenesis and metastasis. Science Signaling, 5, ra79.

    PubMed  PubMed Central  Google Scholar 

  42. Kantonen, S., Hatton, N., Mahankali, M., Henkels, K. M., Park, H., Cox, D., & Gomez-Cambronero, J. (2011). A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Molecular and Cellular Biology, 31, 4524–4537.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Knapek, K., Frondorf, K., Post, J., Short, S., Cox, D., & Gomez-Cambronero, J. (2010). The molecular basis of phospholipase D2-induced chemotaxis: elucidation of differential pathways in macrophages and fibroblasts. Molecular and Cellular Biology, 30, 4492–4506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yamada, Y., Hamajima, N., Kato, T., Iwata, H., Yamamura, Y., Shinoda, M., Suyama, M., Mitsudomi, T., Tajima, K., Kusakabe, S., Yoshida, H., Banno, Y., Akao, Y., Tanaka, M., & Nozawa, Y. (2003). Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. Journal of Molecular Medicine, 81, 126–131.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao, Y., Ehara, H., Akao, Y., Shamoto, M., Nakagawa, Y., Banno, Y., Deguchi, T., Ohishi, N., Yagi, K., & Nozawa, Y. (2000). Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochemical and Biophysical Research Communications, 278, 140–143.

    Article  PubMed  CAS  Google Scholar 

  46. Cho, J. H., Hong, S. K., Kim, E. Y., Park, S. Y., Park, C. H., Kim, J. M., Kwon, O. J., Kwon, S. J., Lee, K. S., & Han, J. S. (2008). Overexpression of phospholipase D suppresses taxotere-induced cell death in stomach cancer cells. Biochimica et Biophysica Acta, 1783, 912–923.

    Article  PubMed  CAS  Google Scholar 

  47. Riebeling, C., Muller, C., & Geilen, C. C. (2003). Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Research, 13, 555–562.

    Article  PubMed  CAS  Google Scholar 

  48. Chen, Y., Zheng, Y., & Foster, D. A. (2003). Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene, 22, 3937–3942.

    Article  PubMed  CAS  Google Scholar 

  49. Noh, D. Y., Ahn, S. J., Lee, R. A., Park, I. A., Kim, J. H., Suh, P. G., Ryu, S. H., Lee, K. H., & Han, J. S. (2000). Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Letters, 161, 207–214.

    Article  PubMed  CAS  Google Scholar 

  50. Sanematsu, F., Nishikimi, A., Watanabe, M., Hongu, T., Tanaka, Y., Kanaho, Y., Cote, J. F., & Fukui, Y. (2013). Phosphatidic acid-dependent recruitment and function of the Rac activator DOCK1 during dorsal ruffle formation. The Journal of Biological Chemistry.

  51. Nishikimi, A., Fukuhara, H., Su, W., Hongu, T., Takasuga, S., Mihara, H., Cao, Q., Sanematsu, F., Kanai, M., Hasegawa, H., Tanaka, Y., Shibasaki, M., Kanaho, Y., Sasaki, T., Frohman, M. A., & Fukui, Y. (2009). Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science, 324, 384–387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Henkels, K. M., Peng, H. J., Frondorf, K., & Gomez-Cambronero, J. (2010). A comprehensive model that explains the regulation of phospholipase D2 activity by phosphorylation-dephosphorylation. Molecular and Cellular Biology, 30, 2251–2263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Henkels, K. M., Short, S., Peng, H. J., Di Fulvio, M., & Gomez-Cambronero, J. (2009). PLD2 has both enzymatic and cell proliferation-inducing capabilities, that are differentially regulated by phosphorylation and dephosphorylation. Biochemical and Biophysical Research Communications, 389, 224–228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Di Fulvio, M., Frondorf, K., & Gomez-Cambronero, J. (2008). Mutation of Y179 on phospholipase D2 (PLD2) upregulates DNA synthesis in a PI3K-and Akt-dependent manner. Cellular Signalling, 20, 176–185.

    Article  PubMed  CAS  Google Scholar 

  55. Garcia-Teijido, P., Cabal, M. L., Fernandez, I. P., & Perez, Y. F. (2016). Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clinical Medicine Insights. Oncology, 10, 31–39.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Brady, N. J., Chuntova, P., & Schwertfeger, K. L. (2016). Macrophages: regulators of the inflammatory microenvironment during mammary gland development and breast cancer. Mediators of Inflammation, 2016, 4549676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Buchsbaum, R. J., & Oh, S. Y. (2016). Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers, 8.

  58. Bozorgi, A., Khazaei, M., & Khazaei, M. R. (2015). New findings on breast cancer stem cells: a review. Journal of Breast Cancer, 18, 303–312.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim, I. S., & Zhang, X. H. (2016). One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Reviews, 35, 601–629.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lewis, C. E., Leek, R., Harris, A., & McGee, J. O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages. Journal of Leukocyte Biology, 57, 747–751.

    Article  PubMed  CAS  Google Scholar 

  61. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology, 196, 254–265.

    Article  PubMed  CAS  Google Scholar 

  62. DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., Gallagher, W. M., Wadhwani, N., Keil, S. D., Junaid, S. A., Rugo, H. S., Hwang, E. S., Jirstrom, K., West, B. L., & Coussens, L. M. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Beck, A. H., Espinosa, I., Edris, B., Li, R., Montgomery, K., Zhu, S., Varma, S., Marinelli, R. J., van de Rijn, M., & West, R. B. (2009). The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 15, 778–787.

    Article  CAS  Google Scholar 

  64. Campbell, M. J., Tonlaar, N. Y., Garwood, E. R., Huo, D., Moore, D. H., Khramtsov, A. I., Au, A., Baehner, F., Chen, Y., Malaka, D. O., Lin, A., Adeyanju, O. O., Li, S., Gong, C., McGrath, M., Olopade, O. I., & Esserman, L. J. (2011). Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome. Breast Cancer Research and Treatment, 128, 703–711.

    Article  PubMed  Google Scholar 

  65. Sharma, M., Beck, A. H., Webster, J. A., Espinosa, I., Montgomery, K., Varma, S., van de Rijn, M., Jensen, K. C., & West, R. B. (2010). Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Research and Treatment, 123, 397–404.

    Article  PubMed  CAS  Google Scholar 

  66. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124, 263–266.

    Article  PubMed  CAS  Google Scholar 

  67. De Palma, M., & Lewis, C. E. (2013). Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 23, 277–286.

    Article  PubMed  CAS  Google Scholar 

  68. Noy, R., & Pollard, J. W. (2014). Tumor-associated macrophages: from mechanisms to therapy. Immunity, 41, 49–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lin, E. Y., & Pollard, J. W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Research, 67, 5064–5066.

    Article  PubMed  CAS  Google Scholar 

  70. Lin, E. Y., Li, J. F., Bricard, G., Wang, W., Deng, Y., Sellers, R., Porcelli, S. A., & Pollard, J. W. (2007). Vascular endothelial growth factor restores delayed tumor progression in tumors depleted of macrophages. Molecular Oncology, 1, 288–302.

    Article  PubMed  PubMed Central  Google Scholar 

  71. DeNardo, D. G., Barreto, J. B., Andreu, P., Vasquez, L., Tawfik, D., Kolhatkar, N., & Coussens, L. M. (2009). CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 16, 91–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., Graf, T., Pollard, J. W., Segall, J., & Condeelis, J. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.

    Article  PubMed  CAS  Google Scholar 

  73. Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W., Zhang, J., Cui, X., Zheng, F., Li, H., Yao, H., Su, F., & Song, E. (2014). A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 25, 605–620.

    Article  PubMed  CAS  Google Scholar 

  74. Ojalvo, L. S., Whittaker, C. A., Condeelis, J. S., & Pollard, J. W. (2010). Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. Journal of Immunology, 184, 702–712.

    Article  CAS  Google Scholar 

  75. Yang, M., Chen, J., Su, F., Yu, B., Su, F., Lin, L., Liu, Y., Huang, J. D., & Song, E. (2011). Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Molecular Cancer, 10, 117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Qian, B. Z., & Pollard, J. W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell, 141, 39–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Qian, B. Z., Li, J., Zhang, H., Kitamura, T., Zhang, J., Campion, L. R., Kaiser, E. A., Snyder, L. A., & Pollard, J. W. (2011). CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 475, 222–225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Qian, B., Deng, Y., Im, J. H., Muschel, R. J., Zou, Y., Li, J., Lang, R. A., & Pollard, J. W. (2009). A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 4, e6562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Gratchev, A., Kzhyshkowska, J., Kannookadan, S., Ochsenreiter, M., Popova, A., Yu, X., Mamidi, S., Stonehouse-Usselmann, E., Muller-Molinet, I., Gooi, L., & Goerdt, S. (2008). Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II. Journal of Immunology, 180, 6553–6565.

    Article  CAS  Google Scholar 

  80. Hu, X., Chung, A. Y., Wu, I., Foldi, J., Chen, J., Ji, J. D., Tateya, T., Kang, Y. J., Han, J., Gessler, M., Kageyama, R., & Ivashkiv, L. B. (2008). Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity, 29, 691–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ravasi, T., Wells, C., Forest, A., Underhill, D. M., Wainwright, B. J., Aderem, A., Grimmond, S., & Hume, D. A. (2002). Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. Journal of Immunology, 168, 44–50.

    Article  CAS  Google Scholar 

  82. Riches, D. W. (1995). Signalling heterogeneity as a contributing factor in macrophage functional diversity. Seminars in Cell Biology, 6, 377–384.

    Article  PubMed  CAS  Google Scholar 

  83. Stout, R. D., Jiang, C., Matta, B., Tietzel, I., Watkins, S. K., & Suttles, J. (2005). Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. Journal of Immunology, 175, 342–349.

    Article  CAS  Google Scholar 

  84. Shaul, M. E., Bennett, G., Strissel, K. J., Greenberg, A. S., & Obin, M. S. (2010). Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes, 59, 1171–1181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., De Nardo, D., Gohel, T. D., Emde, M., Schmidleithner, L., Ganesan, H., Nino-Castro, A., Mallmann, M. R., Labzin, L., Theis, H., Kraut, M., Beyer, M., Latz, E., Freeman, T. C., Ulas, T., & Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Pucci, F., Venneri, M. A., Biziato, D., Nonis, A., Moi, D., Sica, A., Di Serio, C., Naldini, L., & De Palma, M. (2009). A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood “resident” monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood, 114, 901–914.

    Article  PubMed  CAS  Google Scholar 

  87. Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117, 1155–1166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., Saccani, A., Sironi, M., Bottazzi, B., Doni, A., Vincenzo, B., Pasqualini, F., Vago, L., Nebuloni, M., Mantovani, A., & Sica, A. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.

    Article  PubMed  CAS  Google Scholar 

  89. Hagemann, T., Lawrence, T., McNeish, I., Charles, K. A., Kulbe, H., Thompson, R. G., Robinson, S. C., & Balkwill, F. R. (2008). “Re-educating” tumor-associated macrophages by targeting NF-kappaB. The Journal of Experimental Medicine, 205, 1261–1268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Sierra, J. R., Corso, S., Caione, L., Cepero, V., Conrotto, P., Cignetti, A., Piacibello, W., Kumanogoh, A., Kikutani, H., Comoglio, P. M., Tamagnone, L., & Giordano, S. (2008). Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. The Journal of Experimental Medicine, 205, 1673–1685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Torroella-Kouri, M., Silvera, R., Rodriguez, D., Caso, R., Shatry, A., Opiela, S., Ilkovitch, D., Schwendener, R. A., Iragavarapu-Charyulu, V., Cardentey, Y., Strbo, N., & Lopez, D. M. (2009). Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Research, 69, 4800–4809.

    Article  PubMed  CAS  Google Scholar 

  92. Lewis, C. E., & Pollard, J. W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605–612.

    Article  PubMed  CAS  Google Scholar 

  93. Ruffell, B., Affara, N. I., & Coussens, L. M. (2012). Differential macrophage programming in the tumor microenvironment. Trends in Immunology, 33, 119–126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Van Overmeire, E., Laoui, D., Keirsse, J., Van Ginderachter, J. A., & Sarukhan, A. (2014). Mechanisms driving macrophage diversity and specialization in distinct tumor microenvironments and parallelisms with other tissues. Frontiers in Immunology, 5, 127.

    PubMed  PubMed Central  Google Scholar 

  95. Egeblad, M., Ewald, A. J., Askautrud, H. A., Truitt, M. L., Welm, B. E., Bainbridge, E., Peeters, G., Krummel, M. F., & Werb, Z. (2008). Visualizing stromal cell dynamics in different tumor microenvironments by spinning disk confocal microscopy. Disease Models & Mechanisms, 1, 155–167 discussion 165.

    Article  Google Scholar 

  96. Huang, Y., Yuan, J., Righi, E., Kamoun, W. S., Ancukiewicz, M., Nezivar, J., Santosuosso, M., Martin, J. D., Martin, M. R., Vianello, F., Leblanc, P., Munn, L. L., Huang, P., Duda, D. G., Fukumura, D., Jain, R. K., & Poznansky, M. C. (2012). Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 109, 17561–17566.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., & Li, M. O. (2014). The cellular and molecular origin of tumor-associated macrophages. Science, 344, 921–925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Hagemann, T., Wilson, J., Burke, F., Kulbe, H., Li, N. F., Pluddemann, A., Charles, K., Gordon, S., & Balkwill, F. R. (2006). Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. Journal of Immunology, 176, 5023–5032.

    Article  CAS  Google Scholar 

  99. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.

    Article  PubMed  CAS  Google Scholar 

  100. Roca, H., Varsos, Z. S., Sud, S., Craig, M. J., Ying, C., & Pienta, K. J. (2009). CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. The Journal of Biological Chemistry, 284, 34342–34354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Hsu, D. S., Wang, H. J., Tai, S. K., Chou, C. H., Hsieh, C. H., Chiu, P. H., Chen, N. J., & Yang, M. H. (2014). Acetylation of snail modulates the cytokinome of cancer cells to enhance the recruitment of macrophages. Cancer Cell, 26, 534–548.

    Article  PubMed  CAS  Google Scholar 

  102. Sinha, P., Clements, V. K., Bunt, S. K., Albelda, S. M., & Ostrand-Rosenberg, S. (2007). Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. Journal of Immunology, 179, 977–983.

    Article  CAS  Google Scholar 

  103. Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., Mack, M., Pipeleers, D., In't Veld, P., De Baetselier, P., & Van Ginderachter, J. A. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Research, 70, 5728–5739.

    Article  PubMed  CAS  Google Scholar 

  104. Murdoch, C., Giannoudis, A., & Lewis, C. E. (2004). Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 104, 2224–2234.

    Article  PubMed  CAS  Google Scholar 

  105. Obeid, E., Nanda, R., Fu, Y. X., & Olopade, O. I. (2013). The role of tumor-associated macrophages in breast cancer progression (review). International Journal of Oncology, 43, 5–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Pyonteck, S. M., Akkari, L., Schuhmacher, A. J., Bowman, R. L., Sevenich, L., Quail, D. F., Olson, O. C., Quick, M. L., Huse, J. T., Teijeiro, V., Setty, M., Leslie, C. S., Oei, Y., Pedraza, A., Zhang, J., Brennan, C. W., Sutton, J. C., Holland, E. C., Daniel, D., & Joyce, J. A. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 19, 1264–1272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Galdiero, M. R., Bonavita, E., Barajon, I., Garlanda, C., Mantovani, A., & Jaillon, S. (2013). Tumor associated macrophages and neutrophils in cancer. Immunobiology, 218, 1402–1410.

    Article  PubMed  CAS  Google Scholar 

  109. Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66, 1–9.

    Article  PubMed  Google Scholar 

  110. Laoui, D., Movahedi, K., Van Overmeire, E., Van den Bossche, J., Schouppe, E., Mommer, C., Nikolaou, A., Morias, Y., De Baetselier, P., & Van Ginderachter, J. A. (2011). Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. The International Journal of Developmental Biology, 55, 861–867.

    Article  PubMed  Google Scholar 

  111. Achyut, B. R., & Arbab, A. S. (2016). Myeloid cell signatures in tumor microenvironment predicts therapeutic response in cancer. OncoTargets and Therapy, 9, 1047–1055.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Italiani, P., & Boraschi, D. (2014). From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Frontiers in Immunology, 5, 514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Mukhtar, R. A., Nseyo, O., Campbell, M. J., & Esserman, L. J. (2011). Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Review of Molecular Diagnostics, 11, 91–100.

    Article  PubMed  CAS  Google Scholar 

  114. Gregory, A. D., & Houghton, A. M. (2011). Tumor-associated neutrophils: new targets for cancer therapy. Cancer Research, 71, 2411–2416.

    Article  PubMed  CAS  Google Scholar 

  115. De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 10, 4895–4900.

    Article  Google Scholar 

  116. De Larco, J. E., Wuertz, B. R., Yee, D., Rickert, B. L., & Furcht, L. T. (2003). Atypical methylation of the interleukin-8 gene correlates strongly with the metastatic potential of breast carcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 13988–13993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sparmann, A., & Bar-Sagi, D. (2004). Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447–458.

    Article  PubMed  CAS  Google Scholar 

  118. Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.

    Article  PubMed  CAS  Google Scholar 

  119. Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.

    PubMed  CAS  Google Scholar 

  120. Bingle, L., Lewis, C. E., Corke, K. P., Reed, M. W., & Brown, N. J. (2006). Macrophages promote angiogenesis in human breast tumour spheroids in vivo. British Journal of Cancer, 94, 101–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596.

    Article  PubMed  CAS  Google Scholar 

  122. Pekarek, L. A., Starr, B. A., Toledano, A. Y., & Schreiber, H. (1995). Inhibition of tumor growth by elimination of granulocytes. The Journal of Experimental Medicine, 181, 435–440.

    Article  PubMed  CAS  Google Scholar 

  123. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 12493–12498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Fritz, J. M., Tennis, M. A., Orlicky, D. J., Lin, H., Ju, C., Redente, E. F., Choo, K. S., Staab, T. A., Bouchard, R. J., Merrick, D. T., Malkinson, A. M., & Dwyer-Nield, L. D. (2014). Depletion of tumor-associated macrophages slows the growth of chemically induced mouse lung adenocarcinomas. Frontiers in Immunology, 5, 587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.

    Article  PubMed  CAS  Google Scholar 

  126. Mantovani, A. (2011). B cells and macrophages in cancer: yin and yang. Nature Medicine, 17, 285–286.

    Article  PubMed  CAS  Google Scholar 

  127. Gallego-Ortega, D., Ledger, A., Roden, D. L., Law, A. M., Magenau, A., Kikhtyak, Z., Cho, C., Allerdice, S. L., Lee, H. J., Valdes-Mora, F., Herrmann, D., Salomon, R., Young, A. I., Lee, B. Y., Sergio, C. M., Kaplan, W., Piggin, C., Conway, J. R., Rabinovich, B., Millar, E. K., Oakes, S. R., Chtanova, T., Swarbrick, A., Naylor, M. J., O'Toole, S., Green, A. R., Timpson, P., Gee, J. M., Ellis, I. O., Clark, S. J., & Ormandy, C. J. (2015). ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biology, 13, e1002330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., Verstegen, N. J., Ciampricotti, M., Hawinkels, L. J., Jonkers, J., & de Visser, K. E. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522, 345–348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Garcia-Mendoza, M. G., Inman, D. R., Ponik, S. M., Jeffery, J. J., Sheerar, D. S., Van Doorn, R. R., & Keely, P. J. (2016). Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Research: BCR, 18, 49.

    Article  PubMed  CAS  Google Scholar 

  130. Tabaries, S., Ouellet, V., Hsu, B. E., Annis, M. G., Rose, A. A., Meunier, L., Carmona, E., Tam, C. E., Mes-Masson, A. M., & Siegel, P. M. (2015). Granulocytic immune infiltrates are essential for the efficient formation of breast cancer liver metastases. Breast Cancer Research: BCR, 17, 45.

    Article  PubMed  CAS  Google Scholar 

  131. Marini, O., Spina, C., Mimiola, E., Cassaro, A., Malerba, G., Todeschini, G., Perbellini, O., Scupoli, M., Carli, G., Facchinelli, D., Cassatella, M., Scapini, P., & Tecchio, C. (2016). Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget.

  132. Cavallo, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Modesti, A., & Forni, G. (1992). Role of neutrophils and CD4+ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene. Journal of Immunology, 149, 3627–3635.

    CAS  Google Scholar 

  133. Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., Belardelli, F., Forni, G., & Modesti, A. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation: a Journal of Technical Methods and Pathology, 74, 146–157.

    CAS  Google Scholar 

  134. Colombo, M. P., & Trinchieri, G. (2002). Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine & Growth Factor Reviews, 13, 155–168.

    Article  CAS  Google Scholar 

  135. Gajewski, T. F., Louahed, J., & Brichard, V. G. (2010). Gene signature in melanoma associated with clinical activity: a potential clue to unlock cancer immunotherapy. Cancer Journal, 16, 399–403.

    Article  CAS  Google Scholar 

  136. Hadden, J. W. (1999). The immunology and immunotherapy of breast cancer: an update. International Journal of Immunopharmacology, 21, 79–101.

    Article  PubMed  CAS  Google Scholar 

  137. Queen, M. M., Ryan, R. E., Holzer, R. G., Keller-Peck, C. R., & Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Research, 65, 8896–8904.

    Article  PubMed  CAS  Google Scholar 

  138. Di Carlo, E., Rovero, S., Boggio, K., Quaglino, E., Amici, A., Smorlesi, A., Forni, G., & Musiani, P. (2001). Inhibition of mammary carcinogenesis by systemic interleukin 12 or p185neu DNA vaccination in Her-2/neu transgenic BALB/c mice. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 7, 830s–837s.

    Google Scholar 

  139. Rimando, J., Campbell, J., Kim, J. H., Tang, S. C., & Kim, S. (2016). The pretreatment neutrophil/lymphocyte ratio is associated with all-cause mortality in black and white patients with non-metastatic breast cancer. Frontiers in Oncology, 6, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Benito-Martin, A., Di Giannatale, A., Ceder, S., & Peinado, H. (2015). The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Frontiers in Immunology, 6, 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Fite, K., Elkhadragy, L., & Gomez-Cambronero, J. (2016). A repertoire of microRNAs regulates cancer cell starvation by targeting phospholipase D in a feedback loop that operates maximally in cancer cells. Molecular and Cellular Biology, 36, 1078–1089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Foster, D. A. (2004). Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Review of Anticancer Therapy, 4, 691–701.

    Article  PubMed  CAS  Google Scholar 

  143. Rodrik, V., Zheng, Y., Harrow, F., Chen, Y., & Foster, D. A. (2005). Survival signals generated by estrogen and phospholipase D in MCF-7 breast cancer cells are dependent on Myc. Molecular and Cellular Biology, 25, 7917–7925.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Mathivanan, S., Ji, H., & Simpson, R. J. (2010). Exosomes: extracellular organelles important in intercellular communication. Journal of Proteomics, 73, 1907–1920.

    Article  PubMed  CAS  Google Scholar 

  145. Nilsson, J., Skog, J., Nordstrand, A., Baranov, V., Mincheva-Nilsson, L., Breakefield, X. O., & Widmark, A. (2009). Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. British Journal of Cancer, 100, 1603–1607.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kvistborg, P., & Yewdell, J. W. (2018). Enhancing responses to cancer immunotherapy. Science, 359, 516–517.

    Article  PubMed  CAS  Google Scholar 

  147. Wolchok, J. D., Rollin, L., & Larkin, J. (2017). Nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 377, 2503–2504.

    Article  PubMed  Google Scholar 

  148. Chowell, D., Morris, L. G., Grigg, C. M., Weber, J. K., Samstein, R. M., Makarov, V., Kuo, F., Kendall, S. M., Requena, D., & Riaz, N. (2018). Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science, 359, 582–587.

    Article  PubMed  CAS  Google Scholar 

  149. Robinson, J., Guethlein, L. A., Cereb, N., Yang, S. Y., Norman, P. J., Marsh, S. G., & Parham, P. (2017). Distinguishing functional polymorphism from random variation in the sequences of > 10,000 HLA-A,-B and-C alleles. PLoS Genetics, 13, e1006862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science, 348, 69–74.

    Article  PubMed  CAS  Google Scholar 

  151. Villarroya-Beltri, C., Baixauli, F., Gutierrez-Vazquez, C., Sanchez-Madrid, F., & Mittelbrunn, M. (2014). Sorting it out: regulation of exosome loading. Seminars in Cancer Biology, 28, 3–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Saenz-Cuesta, M., Mittelbrunn, M., & Otaegui, D. (2015). Editorial: Novel clinical applications of extracellular vesicles. Frontiers in Immunology, 6, 381.

    PubMed  PubMed Central  Google Scholar 

  153. Mittelbrunn, M., & Sanchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews. Molecular Cell Biology, 13, 328–335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Liu, F., Lang, R., Zhao, J., Zhang, X., Pringle, G. A., Fan, Y., Yin, D., Gu, F., Yao, Z., & Fu, L. (2011). CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Research and Treatment, 130, 645–655.

    Article  PubMed  CAS  Google Scholar 

  155. Fatima, F., & Nawaz, M. (2015). Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 34, 541–553.

    Article  PubMed  CAS  Google Scholar 

  156. Zhang, X., Yuan, X., Shi, H., Wu, L., Qian, H., & Xu, W. (2015). Exosomes in cancer: small particle, big player. Journal of Hematology & Oncology, 8, 83.

    Article  CAS  Google Scholar 

  157. Ko, J., Carpenter, E., & Issadore, D. (2016). Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. The Analyst, 141, 450–460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Balaj, L., Lessard, R., Dai, L., Cho, Y. J., Pomeroy, S. L., Breakefield, X. O., & Skog, J. (2011). Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nature Communications, 2, 180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., Yu, Y., Chow, A., O’Connor, S. T., Chin, A. R., Yen, Y., Wang, Y., Marcusson, E. G., Chu, P., Wu, J., Wu, X., Li, A. X., Li, Z., Gao, H., Ren, X., Boldin, M. P., Lin, P. C., & Wang, S. E. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25, 501–515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Melo, S. A., Sugimoto, H., O'Connell, J. T., Kato, N., Villanueva, A., Vidal, A., Qiu, L., Vitkin, E., Perelman, L. T., Melo, C. A., Lucci, A., Ivan, C., Calin, G. A., & Kalluri, R. (2014). Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell, 26, 707–721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Skog, J., Wurdinger, T., van Rijn, S., Meijer, D. H., Gainche, L., Sena-Esteves, M., Curry Jr., W. T., Carter, B. S., Krichevsky, A. M., & Breakefield, X. O. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10, 1470–1476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., Tetta, C., Bussolati, B., & Camussi, G. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71, 5346–5356.

    Article  PubMed  CAS  Google Scholar 

  163. Ghossoub, R., Lembo, F., Rubio, A., Gaillard, C. B., Bouchet, J., Vitale, N., Slavík, J., Machala, M., & Zimmermann, P. (2014). Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nature Communications, 5, 3477.

    Article  PubMed  CAS  Google Scholar 

  164. Laulagnier, K., Grand, D., Dujardin, A., Hamdi, S., Vincent-Schneider, H., Lankar, D., Salles, J.-P., Bonnerot, C., Perret, B., & Record, M. (2004). PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Letters, 572, 11–14.

    Article  PubMed  CAS  Google Scholar 

  165. Muralidharan-Chari, V., Clancy, J., Plou, C., Romao, M., Chavrier, P., Raposo, G., & D’Souza-Schorey, C. (2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology: CB, 19, 1875–1885.

    Article  PubMed  CAS  Google Scholar 

  166. Clayton, A., Mitchell, J. P., Court, J., Mason, M. D., & Tabi, Z. (2007). Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Research, 67, 7458–7466.

    Article  PubMed  CAS  Google Scholar 

  167. Mrizak, D., Martin, N., Barjon, C., Jimenez-Pailhes, A. S., Mustapha, R., Niki, T., Guigay, J., Pancre, V., de Launoit, Y., Busson, P., Morales, O., & Delhem, N. (2015). Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells. Journal of the National Cancer Institute, 107, 363.

    Article  PubMed  CAS  Google Scholar 

  168. Ye, S. B., Li, Z. L., Luo, D. H., Huang, B. J., Chen, Y. S., Zhang, X. S., Cui, J., Zeng, Y. X., & Li, J. (2014). Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget, 5, 5439–5452.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Peinado, H., Aleckovic, M., Lavotshkin, S., Matei, I., Costa-Silva, B., Moreno-Bueno, G., Hergueta-Redondo, M., Williams, C., Garcia-Santos, G., Ghajar, C., Nitadori-Hoshino, A., Hoffman, C., Badal, K., Garcia, B. A., Callahan, M. K., Yuan, J., Martins, V. R., Skog, J., Kaplan, R. N., Brady, M. S., Wolchok, J. D., Chapman, P. B., Kang, Y., Bromberg, J., & Lyden, D. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Nwabo Kamdje, A. H., Seke Etet, P. F., Vecchio, L., Tagne, R. S., Amvene, J. M., Muller, J. M., Krampera, M., & Lukong, K. E. (2014). New targeted therapies for breast cancer: a focus on tumor microenvironmental signals and chemoresistant breast cancers. World Journal of Clinical Cases, 2, 769–786.

    Article  PubMed  Google Scholar 

  171. Neviani, P., & Fabbri, M. (2015). Exosomic microRNAs in the tumor microenvironment. Frontiers in Medicine, 2, 47.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zhang, X. M., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., Landis, M. D., Wiechmann, L., Schiff, R., Giuliano, M., Wong, H. L., Fuqua, S. W., Contreras, A., Gutierrez, C., Huang, J., Mao, S. F., Pavlick, A. C., Froehlich, A. M., Wu, M. F., Tsimelzon, A., Hilsenbeck, S. G., Chen, E. S., Zuloaga, P., Shaw, C. A., Rimawi, M. F., Perou, C. M., Mills, G. B., Chang, J. C., & Lewis, M. T. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ahn, S. G., Jeong, J., Hong, S., & Jung, W. H. (2015). Current issues and clinical evidence in tumor-infiltrating lymphocytes in breast cancer. Journal of Pathology and Translational Medicine, 49, 355–363.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Zhang, X. K., Virtanen, A., & Kleiman, F. E. (2010). To polyadenylate or to deadenylate that is the question. Cell Cycle, 9, 4437–4449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Temme, C., Simonelig, M., & Wahle, E. (2014). Deadenylation of mRNA by the CCR4-NOT complex in Drosophila: molecular and developmental aspects. Frontiers in Genetics, 5.

  176. Martinez, J., Ren, Y. G., Thuresson, A. C., Hellman, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. The Journal of Biological Chemistry, 275, 24222–24230.

    Article  PubMed  CAS  Google Scholar 

  177. Godwin, A. R., Kojima, S., Green, C. B., & Wilusz, J. (2013). Kiss your tail goodbye: the role of PARN, Nocturnin, and Angel deadenylases in mRNA biology. Biochimica et Biophysica Acta, 1829, 571–579.

    Article  PubMed  CAS  Google Scholar 

  178. Martinez, J., Ren, Y. G., Thuresson, A. C., Hellmann, U., Astrom, J., & Virtanen, A. (2000). A 54-kDa fragment of the poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting poly(A)-specific 3′ exonuclease. Journal of Biological Chemistry, 275, 24222–24230.

    Article  PubMed  CAS  Google Scholar 

  179. Wilson, T., & Treisman, R. (1988). Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3′ AU-rich sequences. Nature, 336, 396–399.

    Article  PubMed  CAS  Google Scholar 

  180. Mitchell, P., & Tollervey, D. (2000). mRNA stability in eukaryotes. Current Opinion in Genetics & Development, 10, 193–198.

    Article  CAS  Google Scholar 

  181. Shyu, A. B., Belasco, J. G., & Greenberg, M. E. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes & Development, 5, 221–231.

    Article  CAS  Google Scholar 

  182. Wolf, J., & Passmore, L. A. (2014). mRNA deadenylation by Pan2-Pan3. Biochemical Society Transactions, 42, 184–187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Nousch, M., Techritz, N., Hampel, D., Millonigg, S., & Eckmann, C. R. (2013). The Ccr4-Not deadenylase complex constitutes the main poly(A) removal activity in C. elegans. Journal of Cell Science, 126, 4274–4285.

    Article  PubMed  CAS  Google Scholar 

  184. Funakoshi, Y., Doi, Y., Hosoda, N., Uchida, N., Osawa, M., Shimada, I., Tsujimoto, M., Suzuki, T., Katada, T., & Hoshino, S. (2007). Mechanism of mRNA deadenylation: evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Genes & Development, 21, 3135–3148.

    Article  CAS  Google Scholar 

  185. Mazan-Mamczarz, K., Galban, S., Lopez de Silanes, I., Martindale, J. L., Atasoy, U., Keene, J. D., & Gorospe, M. (2003). RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proceedings of the National Academy of Sciences of the United States of America, 100, 8354–8359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Jalkanen, A. L., Coleman, S. J., & Wilusz, J. (2014). Determinants and implications of mRNA poly(A) tail size—does this protein make my tail look big? Seminars in Cell & Developmental Biology, 34, 24–32.

    Article  CAS  Google Scholar 

  187. Zhang, X., Devany, E., Murphy, M. R., Glazman, G., Persaud, M., & Kleiman, F. E. (2015). PARN deadenylase is involved in miRNA-dependent degradation of TP53 mRNA in mammalian cells. Nucleic Acids Research, 43, 10925–10938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481, 190–194.

    Article  CAS  Google Scholar 

  189. Cevher, M. A., Zhang, X., Fernandez, S., Kim, S., Baquero, J., Nilsson, P., Lee, S., Virtanen, A., & Kleiman, F. E. (2010). Nuclear deadenylation/polyadenylation factors regulate 3′ processing in response to DNA damage. The EMBO Journal, 29, 1674–1687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Devany, E., Zhang, X., Park, J. Y., Tian, B., & Kleiman, F. E. (2013). Positive and negative feedback loops in the p53 and mRNA 3′ processing pathways. Proceedings of the National Academy of Sciences of the United States of America, 110, 3351–3356.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Maragozidis, P., Karangeli, M., Labrou, M., Dimoulou, G., Papaspyrou, K., Salataj, E., Pournaras, S., Matsouka, P., Gourgoulianis, K. I., & Balatsos, N. A. (2012). Alterations of deadenylase expression in acute leukemias: evidence for poly(A)-specific ribonuclease as a potential biomarker. Acta Haematologica, 128, 39–46.

    Article  PubMed  CAS  Google Scholar 

  192. Moraes, K. C., Wilusz, C. J., & Wilusz, J. (2006). CUG-BP binds to RNA substrates and recruits PARN deadenylase. RNA, 12, 1084–1091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Maragozidis, P., Papanastasi, E., Scutelnic, D., Totomi, A., Kokkori, I., Zarogiannis, S. G., Kerenidi, T., Gourgoulianis, K. I., & Balatsos, N. A. (2015). Poly(A)-specific ribonuclease and Nocturnin in squamous cell lung cancer: prognostic value and impact on gene expression. Molecular Cancer, 14, 187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., Barrette, T., Pandey, A., & Chinnaiyan, A. M. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia, 6, 1–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Finak, G., Bertos, N., Pepin, F., Sadekova, S., Souleimanova, M., Zhao, H., Chen, H., Omeroglu, G., Meterissian, S., Omeroglu, A., Hallett, M., & Park, M. (2008). Stromal gene expression predicts clinical outcome in breast cancer. Nature Medicine, 14, 518–527.

    Article  PubMed  CAS  Google Scholar 

  196. Mittal, S., Aslam, A., Doidge, R., Medica, R., & Winkler, G. S. (2011). The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Molecular Biology of the Cell, 22, 748–758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Marx, V. (2018). Meet some code-breakers of noncoding RNAs. Nature Publishing Group.

  198. Telonis, A. G., Magee, R., Loher, P., Chervoneva, I., Londin, E., & Rigoutsos, I. (2017). Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research, 45, 2973–2985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Croce, C. M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nature Reviews. Genetics, 10, 704–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Li, Z. H., & Rana, T. M. (2012). Molecular mechanisms of RNA-triggered gene silencing machineries. Accounts of Chemical Research, 45, 1122–1131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12, 847–865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Ohtsuka, M., Ling, H., Doki, Y., Mori, M., & Calin, G. A. (2015). MicroRNA processing and human cancer. Journal of Clinical Medicine, 4, 1651–1667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  PubMed  CAS  Google Scholar 

  205. Kim, V. N. (2005). MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews. Molecular Cell Biology, 6, 376–385.

    Article  PubMed  CAS  Google Scholar 

  206. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18, 3016–3027.

    Article  CAS  Google Scholar 

  207. Hwang, H. W., Wentzel, E. A., & Mendell, J. T. (2007). A hexanucleotide element directs microRNA nuclear import. Science, 315, 97–100.

    Article  PubMed  CAS  Google Scholar 

  208. Eiring, A. M., Harb, J. G., Neviani, P., Garton, C., Oaks, J. J., Spizzo, R., Liu, S., Schwind, S., Santhanam, R., Hickey, C. J., Becker, H., Chandler, J. C., Andino, R., Cortes, J., Hokland, P., Huettner, C. S., Bhatia, R., Roy, D. C., Liebhaber, S. A., Caligiuri, M. A., Marcucci, G., Garzon, R., Croce, C. M., Calin, G. A., & Perrotti, D. (2010). miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell, 140, 652–665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309, 1577–1581.

    Article  PubMed  CAS  Google Scholar 

  210. Calin, G. A., Liu, C. G., Ferracin, M., Hyslop, T., Spizzo, R., Sevignani, C., Fabbri, M., Cimmino, A., Lee, E. J., Wojcik, S. E., Shimizu, M., Tili, E., Rossi, S., Taccioli, C., Pichiorri, F., Liu, X., Zupo, S., Herlea, V., Gramantieri, L., Lanza, G., Alder, H., Rassenti, L., Volinia, S., Schmittgen, T. D., Kipps, T. J., Negrini, M., & Croce, C. M. (2007). Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell, 12, 215–229.

    Article  PubMed  CAS  Google Scholar 

  211. Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.

    Article  PubMed  CAS  Google Scholar 

  212. Fabbri, M., Paone, A., Calore, F., Galli, R., Gaudio, E., Santhanam, R., Lovat, F., Fadda, P., Mao, C., Nuovo, G. J., Zanesi, N., Crawford, M., Ozer, G. H., Wernicke, D., Alder, H., Caligiuri, M. A., Nana-Sinkam, P., Perrotti, D., & Croce, C. M. (2012). MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 109, E2110–E2116.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Lehmann, S. M., Kruger, C., Park, B., Derkow, K., Rosenberger, K., Baumgart, J., Trimbuch, T., Eom, G., Hinz, M., Kaul, D., Habbel, P., Kalin, R., Franzoni, E., Rybak, A., Nguyen, D., Veh, R., Ninnemann, O., Peters, O., Nitsch, R., Heppner, F. L., Golenbock, D., Schott, E., Ploegh, H. L., Wulczyn, F. G., & Lehnardt, S. (2012). An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nature Neuroscience, 15, 827–835.

    Article  PubMed  CAS  Google Scholar 

  214. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., Peterson, A., Noteboom, J., O'Briant, K. C., Allen, A., Lin, D. W., Urban, N., Drescher, C. W., Knudsen, B. S., Stirewalt, D. L., Gentleman, R., Vessella, R. L., Nelson, P. S., Martin, D. B., & Tewari, M. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., & Calin, G. A. (2011). MicroRNAs in body fluids—the mix of hormones and biomarkers. Nature Reviews. Clinical Oncology, 8, 467–477.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Redis, R. S., Calin, S., Yang, Y., You, M. J., & Calin, G. A. (2012). Cell-to-cell miRNA transfer: from body homeostasis to therapy. Pharmacology & Therapeutics, 136, 169–174.

    Article  CAS  Google Scholar 

  217. Mendell, J. T., & Olson, E. N. (2012). MicroRNAs in stress signaling and human disease. Cell, 148, 1172–1187.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12, 861–874.

    Article  PubMed  CAS  Google Scholar 

  219. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., Teruya-Feldstein, J., Bell, G. W., & Weinberg, R. A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28, 341–347.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., Beringer, G., Brikbak, N. J., Yuan, X., Cantley, L. C., Richardson, A. L., & Pandolfi, P. P. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154, 311–324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Pencheva, N., & Tavazoie, S. F. (2013). Control of metastatic progression by microRNA regulatory networks. Nature Cell Biology, 15, 546–554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Pineau, P., Volinia, S., McJunkin, K., Marchio, A., Battiston, C., Terris, B., Mazzaferro, V., Lowe, S. W., Croce, C. M., & Dejean, A. (2010). miR-221 overexpression contributes to liver tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 107, 264–269.

    Article  PubMed  CAS  Google Scholar 

  223. Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467, 86–90.

    Article  PubMed  CAS  Google Scholar 

  225. Costinean, S., Zanesi, N., Pekarsky, Y., Tili, E., Volinia, S., Heerema, N., & Croce, C. M. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 7024–7029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., Ambesi-Impiombato, A., Califano, A., Migliazza, A., Bhagat, G., & Dalla-Favera, R. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17, 28–40.

    Article  PubMed  CAS  Google Scholar 

  227. Mavrakis, K. J., Van Der Meulen, J., Wolfe, A. L., Liu, X., Mets, E., Taghon, T., Khan, A. A., Setty, M., Rondou, P., Vandenberghe, P., Delabesse, E., Benoit, Y., Socci, N. B., Leslie, C. S., Van Vlierberghe, P., Speleman, F., & Wendel, H. G. (2011). A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nature Genetics, 43, 673–678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. O'Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435, 839–843.

    Article  PubMed  CAS  Google Scholar 

  229. Hui, L., Zheng, Y., Yan, Y., Bargonetti, J., & Foster, D. A. (2006). Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D. Oncogene, 25, 7305–7310.

    Article  PubMed  CAS  Google Scholar 

  230. Shi, M., Zheng, Y., Garcia, A., Xu, L., & Foster, D. A. (2007). Phospholipase D provides a survival signal in human cancer cells with activated H-Ras or K-Ras. Cancer Letters, 258, 268–275.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Jing, Q., Huang, S., Guth, S., Zarubin, T., Motoyama, A., Chen, J. M., Di Padova, F., Lin, S. C., Gram, H., & Han, J. H. (2005). Involvement of MicroRNA in AU-rich element-mediated mRNA instability. Cell, 120, 623–634.

    Article  PubMed  CAS  Google Scholar 

  232. Braun, J. E., Huntzinger, E., & Izaurralde, E. (2012). A molecular link between miRISCs and deadenylases provides new insight into the mechanism of gene silencing by microRNAs. Cold Spring Harbor Perspectives in Biology, 4.

  233. Lavieri, R., Scott, S. A., Lewis, J. A., Selvy, P. E., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part II. Identification of the 1,3,8-triazaspiro[4,5]decan-4-one privileged structure that engenders PLD2 selectivity. Bioorganic & Medicinal Chemistry Letters, 19, 2240–2243.

    Article  CAS  Google Scholar 

  234. Lewis, J. A., Scott, S. A., Lavieri, R., Buck, J. R., Selvy, P. E., Stoops, S. L., Armstrong, M. D., Brown, H. A., & Lindsley, C. W. (2009). Design and synthesis of isoform-selective phospholipase D (PLD) inhibitors. Part I: impact of alternative halogenated privileged structures for PLD1 specificity. Bioorganic & Medicinal Chemistry Letters, 19, 1916–1920.

    Article  CAS  Google Scholar 

  235. Scott, S. A., Selvy, P. E., Buck, J. R., Cho, H. P., Criswell, T. L., Thomas, A. L., Armstrong, M. D., Arteaga, C. L., Lindsley, C. W., & Brown, H. A. (2009). Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nature Chemical Biology, 5, 108–117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Sulzmaier, F. J., Valmiki, M. K. G., Nelson, D. A., Caliva, M. J., Geerts, D., Matter, M. L., White, E. P., & Ramos, J. W. (2012). PEA-15 potentiates H-Ras-mediated epithelial cell transformation through phospholipase D. Oncogene, 31, 3547–3560.

    Article  PubMed  CAS  Google Scholar 

  237. Bruntz, R. C., Taylor, H. E., Lindsley, C. W., & Brown, H. A. (2014). Phospholipase D2 mediates survival signaling through direct regulation of Akt in glioblastoma cells. Journal of Biological Chemistry, 289, 600–616.

    Article  PubMed  CAS  Google Scholar 

  238. Han, X., Yu, R., Zhen, D., Tao, S., Schmidt, M., & Han, L. (2011). β-1, 3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PloS One, 6, e21468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Basiouni, S., Fuhrmann, H., & Schumann, J. (2013). The influence of polyunsaturated fatty acids on the phospholipase D isoforms trafficking and activity in mast cells. International Journal of Molecular Sciences, 14, 9005–9017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Jiang, Y., Sverdlov, M. S., Toth, P. T., Huang, L. S., Du, G. W., Liu, Y. Y., Natarajan, V., & Minshall, R. D. (2016). Phosphatidic acid produced by RalA-activated PLD2 stimulates caveolae-mediated endocytosis and trafficking in endothelial cells. Journal of Biological Chemistry, 291, 20729–20738.

    Article  PubMed  CAS  Google Scholar 

  241. Lavieri, R. R., Scott, S. A., Selvy, P. E., Kim, K., Jadhav, S., Morrison, R. I., Daniels, J. S., Brown, H. A., & Lindsley, C. W. (2010). Design, synthesis, and biological evaluation of halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)benzamides: discovery of an isoform-selective small molecule phospholipase D2 inhibitor. Journal of Medicinal Chemistry, 53, 6706–6719.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Ganesan, R., Mahankali, M., Alter, G., & Gomez-Cambronero, J. (2015). Two sites of action for PLD2 inhibitors: the enzyme catalytic center and an allosteric, phosphoinositide biding pocket. Biochimica et Biophysica Acta, 1851, 261–272.

    Article  PubMed  CAS  Google Scholar 

  243. Henkels, K. M., Muppani, N. R., & Gomez-Cambronero, J. (2016). PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One, 11, e0166553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Chaves-Moreira, D., de Moraes, F. R., Caruso, Í. P., Chaim, O. M., Senff-Ribeiro, A., Ullah, A., da Silva, L. S., Chahine, J., Arni, R. K., & Veiga, S. S. (2017). Potential implications for designing drugs against the brown spider venom phospholipase-D. Journal of Cellular Biochemistry, 118, 726–738.

    Article  PubMed  CAS  Google Scholar 

  245. Bonnefond, M.-L., Lambert, B., Giffard, F., Abeilard, E., Brotin, E., Louis, M.-H., Gueye, M. S., Gauduchon, P., Poulain, L., & N’Diaye, M. (2015). Calcium signals inhibition sensitizes ovarian carcinoma cells to anti-Bcl-xL strategies through Mcl-1 down-regulation. Apoptosis, 20, 535–550.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Monovich, L., Mugrage, B., Quadros, E., Toscano, K., Tommasi, R., LaVoie, S., Liu, E., Du, Z., LaSala, D., Boyar, W., & Steed, P. (2007). Optimization of halopemide for phospholipase D2 inhibition. Bioorganic & Medicinal Chemistry Letters, 17, 2310–2311.

    Article  CAS  Google Scholar 

  247. Stegner, D., Thielmann, I., Kraft, P., Frohman, M. A., Stoll, G., & Nieswandt, B. (2013). Pharmacological inhibition of phospholipase D protects mice from occlusive thrombus formation and ischemic stroke—brief report significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 2212–2217.

    Article  PubMed  CAS  Google Scholar 

  248. Su, W., Yeku, O., Olepu, S., Genna, A., Park, J.-S., Ren, H., Du, G., Gelb, M. H., Morris, A. J., & Frohman, M. A. (2009). 5-Fluoro-2-indolyl des-chlorohalopemide (FIPI), a phospholipase D pharmacological inhibitor that alters cell spreading and inhibits chemotaxis. Molecular Pharmacology, 75, 437–446.

    Article  PubMed  CAS  Google Scholar 

  249. O'connell, J., O’sullivan, G. C., Collins, J. K., & Shanahan, F. (1996). The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. Journal of Experimental Medicine, 184, 1075–1082.

    Article  PubMed  CAS  Google Scholar 

  250. Strand, S., Hofmann, W. J., Hug, H., Müller, M., Otto, G., Strand, D., Mariani, S. M., Stremmel, W., Krammer, P. H., & Galle, P. R. (1996). Lymphocyte apoptosis induced by CD95 (APO–1/Fas) ligand–expressing tumor cells—a mechanism of immune evasion? Nature Medicine, 2, 1361.

    Article  PubMed  CAS  Google Scholar 

  251. Foulkes, W. D., Smith, I. E., & Reis-Filho, J. S. (2010). Triple-negative breast cancer. New England Journal of Medicine, 363, 1938–1948.

    Article  PubMed  CAS  Google Scholar 

  252. Hudis, C. A., & Gianni, L. (2011). Triple-negative breast cancer: an unmet medical need. The Oncologist, 16, 1–11.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Krushangi Sha for help with the reference list.

Funding

This work has been supported in part by a grant from the National Institutes of Health (NIH), HL056653-17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Gomez-Cambronero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez-Cambronero, J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 37, 491–507 (2018). https://doi.org/10.1007/s10555-018-9753-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9753-x

Keywords

Navigation