Timar, J., Vizkeleti, L., Doma, V., Barbai, T., & Rásó, E. (2016). Genetic progression of malignant melanoma. Cancer Metastasis Reviews, 35, 93–107.
Article
PubMed
CAS
Google Scholar
Welsh, S. J., Rizos, H., Scolyer, R. A., & Long, G. V. (2016). Resistance to combination BRAF and MEK inhibition in metastatic melanoma: where to next? European Journal of Cancer, 62, 76–85.
Article
PubMed
CAS
Google Scholar
Hayward, N. K., Wilmott, J. S., Waddell, N., Johansson, P. A., Field, M. A., Nones, K., Patch, A. M., Kakavand, H., Alexandrov, L. B., Burke, H., Jakrot, V., Kazakoff, S., Holmes, O., Leonard, C., Sabarinathan, R., Mularoni, L., Wood, S., Xu, Q., Waddell, N., Tembe, V., Pupo, G. M., de Paoli-Iseppi, R., Vilain, R. E., Shang, P., Lau, L. M. S., Dagg, R. A., Schramm, S. J., Pritchard, A., Dutton-Regester, K., Newell, F., Fitzgerald, A., Shang, C. A., Grimmond, S. M., Pickett, H. A., Yang, J. Y., Stretch, J. R., Behren, A., Kefford, R. F., Hersey, P., Long, G. V., Cebon, J., Shackleton, M., Spillane, A. J., Saw, R. P. M., López-Bigas, N., Pearson, J. V., Thompson, J. F., Scolyer, R. A., & Mann, G. J. (2017). Whole-genome landscapes of major melanoma subtypes. Nature, 545, 175–180.
Article
PubMed
CAS
Google Scholar
Timar, J., Tóvári, J., Rásó, E., Mészáros, L., Bereczky, B., & Lapis, K. (2005). Platelet mimicry of cancer cells: epiphenomenon with clinical significance. Oncology, 69, 185–201.
Article
PubMed
Google Scholar
Kenessei, I., Bánki, B., Márk, A., Varga, N., Tóvári, J., et al. (2012). Revisiting CB1 receptor as drug target in human melanoma. Pathology Oncology Research, 18, 857–866.
Article
CAS
Google Scholar
Ullah, N., Mansha, M., & Casey, P. J. (2016). Protein geranylgeranyltransferase type 1 as a target in cancer. Current Cancer Drug Targets, 16, 563–571.
Article
PubMed
CAS
Google Scholar
Garay, T., Kenessey, I., Molnár, E., Juhász, E., Réti, A., et al. (2015). Prenylation-induced cell death in melanoma: reduced sensitivity in BRAF mutant/PTEN wild-type melanoma cells. PLoS One, 10, e0117021.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franklin, C., Livingstone, E., Riesch, A., Schilling, B., & Schadendorf, D. (2017). Immunotherapy in melanoma: recent advances and future directions. European Journal of Surgical Oncology, 43, 604–611.
Article
PubMed
CAS
Google Scholar
Gide, T. N., Wilmott, J. S., Scolyer, R. A., & Long, G. V. (2018). Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clinical Cancer Research, 24, 1260–1270.
Article
PubMed
CAS
Google Scholar
Carlino, M. S., Long, G. V., Kefford, R. F., & Rizos, H. (2015). Targeting oncogenic BRAF and aberrant MAPK activation in the treatment of cutaneous melanoma. Critical Reviews in Oncology/Hematology, 96, 385–398.
Article
PubMed
Google Scholar
Kunz, M., & Hölzel, M. (2017). The impact of melanoma genetics on treatment response and resistance in clinical and experimental studies. Cancer Metastasis Reviews, 36, 53–75.
Article
PubMed
CAS
Google Scholar
Posch, C., Moslehi, H., Feeney, L., Green, G. A., Ebae, A., et al. (2013). Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. PNAS, 110, 4015–4020.
Article
PubMed
Google Scholar
Gallagher, S. J., Gunatilake, D., Beaumont, K. A., Sharp, D. M., Tiffen, J. C., Heinemann, A., Weninger, W., Haass, N. K., Wilmott, J. S., Madore, J., Ferguson, P. M., Rizos, H., & Hersey, P. (2018). HDAC inhibitors restore BRAF-inhibitor sensitivity by altering PI3K and survival signalling in a subset of melanoma. International Journal of Cancer, 142, 1926–1937.
Article
PubMed
CAS
Google Scholar
Kim, S., Kim, H. T., & Suh, H. S. (2017). Combination therapy of BRAF inhibitors for advanced melanoma with BRAF V600 mutation: a systematic review and meta-analysis. Journal of Dermatological Treatment, 31, 1–8.
CAS
Google Scholar
Xue, G., Romano, E., Massi, D., & Mandala, M. (2016). Wnt/b-catenin signaling in melanoma: preclinical rationale and novel therapeutic insights. Cancer Treatment Reviews, 49, 1–12.
Article
PubMed
CAS
Google Scholar
Serini, S., Zinzi, A., Ottes-Vasconcelos, R., Fasano, E., Rillo, M. G., et al. (2016). Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma. Journal of Dermatological Science, 84, 149–159.
Article
PubMed
CAS
Google Scholar
Maresca, V., Flori, E., Camera, E., Bellei, B., Aspite, N., et al. (2013). Link ing αMSH with PPRγ in B16-F10 melanoma. Pigment Cell & Melanoma Research, 26, 113–127.
Article
CAS
Google Scholar
Ribeling, C., Müller, C., & Geilen, C. C. (2003). Expression and regulation of phospholipase D isoenzymes in human melanoma cells and primary melanocytes. Melanoma Research, 13, 555–562.
Article
Google Scholar
Oka, M., Hitomi, T., Okada, T., Nakamura, S., Nagai, H., et al. (2002). Dual regulation of phospholipase D1 by protein kinase C alpha in vivo. Biochemical and Biophysical Research Communications, 294, 1109–1113.
Article
PubMed
CAS
Google Scholar
Strache, M. L., Krutzch, H. C., Unsworth, E. J., Arestad, A., Cioce, C., et al. (1992). Identification purification and partial sequence analysis of autotaxin, a novel motility stimulating protein. The Journal of Biological Chemistry, 267, 2524–2529.
Google Scholar
Watanabe, H., Carmi, P., Hogan, V., Raz, T., Siletti, S., et al. (1991). Purification of human tumor cell autocrine motility factor and molecular cloning of its receptor. The Journal of Biological Chemistry, 266, 13,442–13,448.
CAS
Google Scholar
Jongsma, M., Matas-Rico, E., Rzadkowski, A., Jalink, K., & Moolenaar, W. H. (2011). LPA is a chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One, 6, e29260.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee, S. C., Fujiwara, Y., Liu, J., Yue, J., Shimizu, Y., et al. (2014). Autotaxin and LPA1 and LPA5 receptors exert disparate functions in tumor cells versus the host tissue microenvironment in melanoma invasion and metastasis. Molecular Cancer Research, 13, 174–185.
Article
PubMed
CAS
Google Scholar
Oda, S. K., Strauch, P., Fujiwara, Y., Al-Shami, A., Oravecz, T., et al. (2013). Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. Cancer Immunology Research, 1, 245–255.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altman, M. K., Gopal, V., Jia, W., Yu, S., Hall, H., et al. (2010). Targeting melanoma growth and viability reveals dualistic functionality of the phosphothionate analogue of carba cyclic phosphatidic acid. Molecular Cancer, 9, 140.
Article
PubMed
PubMed Central
CAS
Google Scholar
Susanto, O., YWH, K., Morrice, N., Tumanov, S., Thomason, P. A., et al. (2017). LPP3 mediates self-generation of chemotactic LPA gradients by melanoma cells. Journal of Cell Science, 130, 3455–3466.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kurano, M., Miyagaki, T., Miyagawa, T., Igarashi, K., Shimamoto, S., Ikeda, H., Aoki, J., Sato, S., & Yatomi, Y. (2018). Association between serum autotaxin or phosphatidylserine-specific phospholipase A1 levels and melanoma. The Journal of Dermatology, 45, 571–579.
Article
PubMed
CAS
Google Scholar
Gupte, R., Patil, R., Liu, J., Wang, Y., lee, S. C., et al. (2011). Benzyl and naphthalene methylphosphonic acid inhibitors of autotaxin with anti-invasive and anti-metastatic activity. ChemMedChem, 6, 922–935.
Article
PubMed
PubMed Central
CAS
Google Scholar
Banerjee, S., Norman, D. D., Lee, S. C., Parrill, A. L., Pham, T. C., et al. Highly potent non-carboxylic acid autotaxin inhibitors reduce melanoma metastasis and chemotherapeutic resistance of breast cancer stam cells. Journal of Medicinal Chemistry, 60, 1309–1324.
Baba, Y., Funakoshi, T., Mori, M., Emoto, K., Masugi, Y., et al. (2017). Expression of monoacylglycerol lipase as a marker of tumor invasion and progression in malignant melanoma. Journal of the European Academy of Dermatology and Venereology, 31, 2038–2045.
Article
PubMed
CAS
Google Scholar
Lazar, I., Clement, E., Dauvillier, S., Milhas, D., Ducoux-Petit, M., et al. (2016). Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer. Cancer Research, 76, 4051–4057.
Article
PubMed
CAS
Google Scholar
Viswanathan, V. S., Zyan, M. J., Dhruv, H. D., Gill, S., Eichoff, O. M., et al. (2017). Dependency of therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 547, 453–457.
Article
PubMed
PubMed Central
CAS
Google Scholar
Goulet, A. C., Einsphar, J. G., Alberts, D. S., Beas, A., Burk, C., et al. (2003). Analysis of cyclooxygenase 2 (COX-2) expression during malignant melanoma progression. Cancer Biology & Therapy, 2, 713–718.
Article
CAS
Google Scholar
Meyer, S., Fuchs, T. J., Bosserhoff, A. K., Hofstadter, F., Pauer, A., et al. (2012). A seven-marker signature and clinical outcome in malignant melanoma: a large-scale tissue-microarray study with two independent patient cohorts. PlosOne, 7, e38222.
Article
CAS
Google Scholar
Kuzbicki, L., Lange, D., Stanek-Widera, A., & Chwirot, B. W. (2016). Intratumoral expression of cyclooxygenase-2 (COX-2) is a negative prognostic marker for patients with cutaneous melanoma. Melanoma Research, 26, 448–456.
Article
PubMed
CAS
Google Scholar
Panza, E., De Cicco, P., Ercolano, G., Amogida, C., Scognamiglio, G., et al. (2016). Differential expression of cyclooxygenase-2 in metastatic melanoma affects progression free survival. Oncotarget, 7, 57,077–57,085.
Article
Google Scholar
Soares, C. D., Borges, C. F., Sena-Filho, M., Almeida, O. P., Stelini, R. F., et al. Prognostic significance of cyclooxygenase 2 and phosphorylated AKT1 overexpression in primary nonmetastatic and metastatic cutaneous melanomas. Melanoma Research, 27, 448–456.
Hennequart, M., Pilotte, L., Cane, S., Hoffmann, D., Stroobant, V., et al. (2017). Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunology Research, 5, 695–709.
Article
PubMed
CAS
Google Scholar
Kim, S. H., Hashimoto, Y., Cho, S. N., Roszik, J., Milton, D. R., et al. (2016). Microsomal PGE2 synthase-1 regulates melanoma cell survival and associates with melanoma disease progression. Pigment Cell & Melanoma Research, 29, 297–308.
Article
CAS
Google Scholar
Inada, M., Takita, M., Yokoyama, S., Watanabe, K., Tominari, T., et al. Direct melanoma cell contact induces stromal cell autocrine prostaglandin EP2-EP4 receptor signaling that drives tumor growth, angiogenesis and metastasis. The Journal of Biological Chemistry, 290, 29,781–29,793.
Zelenay, S., van der Veen, A. G., Böttcher, J. P., Snelgrove, K. J., Rogers, N., et al. (2015). Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell, 162, 1257–1270.
Article
PubMed
PubMed Central
CAS
Google Scholar
Botti, G., Fratangelo, F., Cerrone, M., Liquori, G., Cantile, M., et al. (2017). COX-2 expression positively correlates with PDL1 expression in human melanoma cells. Journal of Translational Medicine, 15, 46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Seo, S. K., Seo, D. I., Park, W. S., Jung, W. K., Lee, D. S., et al. (2014). Attenuation of IFN-g-induced B7-H1 expression by 15-deoxy-delta(12,14)-prostaglandin J2 via downregulation of the JAK/STAT/IRF1 signaling pathway. Life Sciences, 112, 82–89.
Article
PubMed
CAS
Google Scholar
Neumann, S., Shirley, S. A., Kemp, R. A., & Hook, S. M. (2016). Improved antitumor activity of a therapeutic melanoma vaccine through the use of the dual COX2/5-LO inhibitor Licofelone. Frontiers in Immunology, 7, 537.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vaid, M., Singh, T., Prasad, R., Kappes, J. C., & Katiyar, S. K. Therapeutic intervention of proanthocyanidins on the migration capacity of melanoma cells is mediated through PGE2 receptors and β-catenin signaling molecules. American Journal of Cancer Research, 5, 3325–3338.
Singh, T., & Katiyar, S. K. (2011). Green tee catechins reduce invasive potential of human melanoma cells by targeting COX-2, PGE2 receptors and epithelial-mesenchymal transition. PlosOne, 6, e25224.
Article
CAS
Google Scholar
Gowda, R., Sharma, A., & Roberttson, G. P. (2017). Synergistic inhibitory effects of Celwexocib and Plumbagin on melanoma tumor growth. Cancer Letters, 385, 243–250.
Article
PubMed
CAS
Google Scholar
Rachidi, S., Wallace, K., Li, H., Lautenschlaeger, T., & Li, Z. (2018). Postdiagnostic aspirin use and overal survival in patients with melanoma. Journal of the American Academy of Dermatology, 78, 949–956.e1.
Article
PubMed
CAS
Google Scholar
Rásó, E., Tóvári, J., Tóth, K., Paku, S., Trikha, M., et al. (2001). Ectopic alphaIIb beta3 integrin signaling involves 12-lipoxygenase- and PKC-mediated serine phosphorylation events in melanoma cells. Thrombosis and Haemostasis, 85, 1037–1047.
Article
PubMed
Google Scholar
Silletti, S., Tímár, J., Honn, K. V., & Raz, A. (1994). Autocrine motility factor induces differential 12-lipoxygenase expression and activity in high- and low-metastatic K1735 melanoma cell variants. Cancer Research, 54, 5752–5756.
PubMed
CAS
Google Scholar
Tímár, J., Rásó, E., Honn, K. V., & Hagmann, W. (1999). 12-Lipoxygenase expression in human melanoma cell lines. Advances in Experimental Medicine and Biology, 469, 617–622.
Article
PubMed
Google Scholar
Rásó, E., Döme, B., Somlai, B., Zacharek, A., Hagmann, W., et al. (2004). Molecular identification, localisation and function of platelet-type 12-lipoxygenase in human melanoma progression under experimental and clinical conditions. Melanoma Research, 14, 245–250.
Article
PubMed
CAS
Google Scholar
Winer, I., Normolle, D. P., Shureiqi, I., Sondak, V. K., Johnson, T., et al. (2002). Expression of 12-lipoxygenase as a biomarker for melanoma carcinogenesis. Melanoma Research, 12, 429–434.
Article
PubMed
CAS
Google Scholar
Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33, 231–269.
Article
PubMed
PubMed Central
Google Scholar
Timar, J., Chen, Y. Q., Liu, B., Bazaz, R., Talor, J. D., & Honn, K. V. (1992). The lipoxygenase metabolite 12(S)-HETE promotes aplphaIIb beta3 integrin-mediated tumor cell spreading on fibronectin. International Journal of Cancer, 52, 594–603.
Article
PubMed
CAS
Google Scholar
Timár, J., Bazaz, R., Kimpler, V., Haddad, M., Tang, D. G., et al. (1995). Immunomorphological characterization and effects of 12-(S)-HETE on a dynamic intracellular pool of the alphaIIb beta3 integrin in melanoma cells. Journal of Cell Science, 108, 2175–2186.
PubMed
Google Scholar
Tímár, J., Trikha, M., Szekeres, K., Bazaz, R., & Honn, K. V. (1998). Expression and function of the high affinity alphaIIb beta3 integrin in murine melanoma cells. Clinical & Experimental Metastasis, 16, 437–445.
Article
Google Scholar
Liu, B., Khan, W. A., Hannun, Y. A., Tímár, J., Taylor, J. D., et al. (1995). 12(S)-Hydroxyeicosatetraenoic acid and 13(S)-hydroxyoctadecadienoic acid regulation of protein kinase C-alpha in melanoma cells: role of receptor mediated hydrolysis of inositol phospholipids. PNAS, 92, 9323–9327.
Article
PubMed
CAS
Google Scholar
Guo, Y., Zhang, W., Giroux, C., Cai, Y., Ekambaram, P., et al. (2011). Identification of the orphan G protein-coupled receptor GPR31 as a receptor for 12(S)-hydroxyeicosatetraenoic acid. The Journal of Biological Chemistry, 286, 33,832–33,840.
Article
CAS
Google Scholar
Nguyen, C. H., Stadler, S., Brenner, S., Huttary, N., Krieger, S., et al. 2016, Cancer cell-derived 12(S)-HETE signals via 12-HETE receptor, RHO, ROCK and MLC2 to induce lymph endothelial barrier breaching. British Journal of Cancer, 115, 364–370.
Tímár, J., Silletti, S., Bazaz, R., Raz, A., & Honn, K. V. (1993). Regulation of melanoma-cell motility by the lipoxygenase metabolite 12(S)-HETE. International Journal of Cancer, 55, 1003–1010.
Article
PubMed
Google Scholar
Tímár, J., Trikha, M., Szekeres, K., Bazaz, R., Tóvári, J., et al. (1996). Autocrine motility factor signals integrin-mediated metastatic melanoma cell adhesion and invasion. Cancer Research, 56, 1902–1908.
PubMed
Google Scholar
Tímár, J., Sz, T., Tóvári, J., Paku, S., & Raz, A. (1999). Autocrine motility factor (neuroleukin, phosphohexose isomerase) induces cell movement through 12-lipoxygenase-dependent tyrosine phosphorylation and serine dephosphorylation events. Clinical and Experimental Metastasis, 17, 809–816.
Article
PubMed
Google Scholar
Yeung, J., Apopa, P. L., Vesci, J., Kenyon, V., Rai, G., et al. (2012). Protein kinase C regulation of 12-lipoxygenase-mediated human platelet activation. Molecular Pharmacology, 81, 420–430.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dilly, A. K., Tang, K., Guo, Y., Joshi, S., Ekambaram, P., et al. (2017). Convergence of eicosanoid and integrin biology: role of SRC in 12-LOX activation. Experimental Cell Research, 351, 1–10.
Article
PubMed
CAS
Google Scholar
Tang, D. G., Li, L., Zhu, Z., Joshi, B., Johnson, C. R., et al. (1998). BMD188: a novel hydroxamic acid compound, demosntrates potent anti-prostate cancer effects in vitro and in vivo by inducing apoptosis: requirements for mitochondria, reactive oxygen species and proteases. Pathology Oncology Research, 4, 179–190.
Article
PubMed
CAS
Google Scholar
Adili, R., Tourdot, B. E., Mast, K., Yeung, J., Freedman, J. C., et al. (2017). First selective 12-LOX inhibitor ML355 impairs thrombus formation and vessel occlusion in vivo with minimal effects on hemostasis. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1828–1838.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tam, J., Hinden, L., Drori, A., Azar, S., & Baraghithy, S. (2018). The therapeutic potential of targeting the pripheral endocannabinoid/CB1 receptor system. European Journal of Internal Medicine, 49, 23–29.
Article
PubMed
CAS
Google Scholar
Mouslech, Z., & Valla, V. (2009). Endocannabinoid system: an overview of its potential in current medical practice. Neuro Endocrinology Letters, 30, 153–179.
PubMed
CAS
Google Scholar
Liu, J., Wang, L., Harvey-White, J., Huang, B. X., Kim, H. Y., et al. (2008). Multiple pathways involved in the biosynthesis of anadamide. Neuropharmacol, 54, 1–7.
Article
CAS
Google Scholar
Wang, J., & Ueda, N. (2009). Biology of endocannabinoid synthesis system. Prostaglandins & Other Lipid Mediators, 89, 112–119.
Article
CAS
Google Scholar
Bifulco, D., & Di Marzo, V. (2002). Targeting the endocannabinoid system in cancer therapy: a call for further research. Nature Medicine, 8, 547–550.
Article
PubMed
CAS
Google Scholar
Schwarz, R., Ramer, R., & Hinz, B. (2018). Targeting the endocannabinoid system as a potential anticancer approach. Drug Metabolism Reviews, 50, 26–53.
Article
PubMed
CAS
Google Scholar
Fonseca, B. M., Teixeira, N. A., & Correia-da-Silva, G. (2017). Cannabinoids as modulators of cell death: clinical applications and future directions. Reviews of Physiology, Biochemistry and Pharmacology, 173, 63–88.
Article
PubMed
CAS
Google Scholar
Carpi, S., Fogli, S., Polini, B., Montagnani, V., Podesta, A., et al. (2017). Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicology In Vitro, 40, 272–279.
Article
PubMed
CAS
Google Scholar
Magina, S., Esteves-Pinto, C., Moura, E., Serrao, M. P., Moura, D., et al. (2011). Inhibition of basal and ultraviolet B-induced melanogenesis by cannbinoid CB1 receptors: a keratinocyte-dependent effect. Archives of Dermatological Research, 303, 201–210.
Article
PubMed
CAS
Google Scholar
Sailler, S., Schmitz, K., Jager, E., Ferreiros, N., Wicker, S., et al. (2014). Regulation of circulating endocannabinoids associated with cancer and metastases in mice and humans. Oncoscience, 1, 272–282.
Article
PubMed
PubMed Central
Google Scholar
Adinolfi, B., Romanini, A., Vanni, A., Martinotti, E., Chicca, A., et al. (2013). Anticancer activity of anandamide in human cutaneous melanoma cells. European Journal of Pharmacology, 718, 154–159.
Article
PubMed
CAS
Google Scholar
Grimaldi, C., Pisanti, S., Laezza, C., Malfitano, A. M., Santoro, A., et al. (2006). Anadamide inhibits adhesion and migration of breast cancer cells. Experimental Cell Research, 312, 363–373.
Article
PubMed
CAS
Google Scholar
Ramer, R., & Hinz, B. (2008). Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinase-1. Journal of the National Cancer Institute, 100, 59–69.
Article
PubMed
CAS
Google Scholar
Madhunapantula, S. V., & Robertson, G. P. (2017). Targeting protein kinase-b3 (akt3) signaling in melanoma. Expert Opinion on Therapeutic Targets, 21, 273–290.
Article
PubMed
CAS
Google Scholar
Deli, T., Varga, N., Ádám, A., Kenessey, I., Rásó, E., et al. (2007). Functional genomics of calcium channels in human melanoma cells. International Journal of Cancer, 121, 55–65.
Article
PubMed
CAS
Google Scholar
Ando, H., Kawaai, K., Bonneau, B., & Mikoshiba, K. (2017). Remodeling of Ca2+ signaling in cancer: regulation of inositol 1,4,5-triphosphate receptors through oncogenes and tumor suppressors. Advances in Biological Regulation, 2018,(68), 64–76.
Marom, M., Haklai, R., Ben-Baruch, G., Marciano, D., Egozi, Y., & Kloog, Y. (1995). Selective inhibition of Ras-dependent cell growth by farnesylthiosalisylic acid. The Journal of Biological Chemistry, 270, 22,263–22,270.
Article
CAS
Google Scholar
Smalley, K. S., & Eisen, T. G. (2003). Farnesyl transferase inhibitor SCH66336 is cytostatic, pro-apoptotic and enhances chemosensitivity to cisplatin in melanoma cells. International Journal of Cancer, 105, 165–175.
Article
PubMed
CAS
Google Scholar
Niessner, H., Beck, D., Sinnberg, T., Lasithiotakis, K., Maczey, E., et al. (2011). The farnesyl transferase inhibitor lonafarnib inhibits mTOR signaling and enforces sorafenib-induced apoptosis in melanoma cells. The Journal of Investigative Dermatology, 131, 468–479.
Gajewski, T. F., Niedzwiecki, D., Johnson, J., Linette, G., Bucher, C., et al. (2006). Phase II study of farnezyltransferase inhibitor R115777 in advanced melanoma CALGB500104. Journal of Clinical Oncology S24, abstr8014.
Mangoli, K. A., Moon, J., Flaherty, L. E., Lao, C. D., Akerley, W. L., et al. (2012). Randomized phase II trial of sorafenib with temsirolimus or tipifarnib in untreated metastatic melanoma (S0438). Clinical Cancer Research, 18, 1129–1137.
Article
Google Scholar
Amin, D., Cornell, S. A., Gustafson, S. K., Needle, S. J., Ullrich, J. W., & E, G. (1992). Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. Journal of Lipid Research, 33, 1657–1663.
PubMed
CAS
Google Scholar
van Beek, E., Pieterman, E., Cohen, L., Lowik, C., & Papapoulos, S. (1999). Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochemical and Biophysical Research Communications, 264, 108–111.
Article
PubMed
Google Scholar
Gnant, M., Mlineritsch, B., Stoeger, H., Luschin-Ebengreuth, G., Knauer, M., et al. (2015). Zoledronic acid combined with adjuvant endocrine therapy of tamoxifen versus anastrozol plus ovarian function suppression in premenopausal early breast cancer: final analysis of the Austrian Breast and Colorectal Cancer Study Group Trial 12. Annals of Oncology, 26, 313–320.
Article
PubMed
CAS
Google Scholar
Forsea, A. M., Muller, C., Riebeling, C., Orfanos, C. E., & Geilen, C. C. (2004). Nitrogen-containing bisphosphonates inhibit cell cycle progression in human melanoma cells. British Journal of Cancer, 91, 803–810.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laggner, U., Lopez, J. S., Perera, G., Warbey, V. S., Sita-Lumsden, A., et al. (2009). Regression of melanoma metastases following treatment with the n-bisphosphonate zoledronate and localized radiotherapy. Clinical Immunology, 131, 367–373.
Article
PubMed
CAS
Google Scholar
Tanimori, Y., Tsubaki, M., Yamazoe, Y., Satou, T., Itoh, T., et al. (2010). Nitrogen-containing bisphosphonate, YM529/ONO-5920, inhibits tumor metastasis in mouse melanoma through suppression of the Rho/ROCK pathway. Clinical & Experimental Metastasis, 27, 529–538.
Article
CAS
Google Scholar
Riebeling, C., Forsea, A. M., Raisova, M., Orfanos, C. E., & Geilen, C. C. (2002). The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro. British Journal of Cancer, 87, 366–371.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shellman, Y. G., Ribble, D., Miller, L., Gendall, J., Vanbuskirk, K., et al. (2005). Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Research, 15, 83–89.
Article
PubMed
CAS
Google Scholar
Glynn, S. A., O’Sullivan, D., Eustace, A. J., Clynes, M., & O’Donovan, N. (2008). The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells. BMC Cancer, 8, 9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saito, A., Saito, N., Mol, W., Furukawa, H., Tsutsumida, A., et al. (2008). Simvastatin inhibits growth via apoptosis and the induction of cell cycle arrest in human melanoma cells. Melanoma Research, 18, 85–94.
Article
PubMed
CAS
Google Scholar
Sarrabayrouse, G., Synaeve, C., Leveque, K., Favre, G., & Tilkin-Mariame, A. F. (2007). Statins stimulate in vitro membrane FasL expression and lymphocyte apoptosis through RhoA/ROCK pathway in murine melanoma cells. Neoplasia, 9, 1078–1090.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kidera, Y., Tsubaki, M., Yamazoe, Y., Shoji, K., Nakamura, H., et al. (2010). Reduction of lung metastasis, cell invasion, and adhesion in mouse melanoma by statin-induced blockade of the Rho/Rho-associated coiled-coil-containing protein kinase pathway. Journal of Experimental & Clinical Cancer Research, 29, 127.
Article
CAS
Google Scholar
Tsubaki, M., Takeda, T., Kino, T., Obata, N., Itoh, T., et al. (2015). Statins improve survival by inhibiting spontaneous metastasis and tumor growth in a mouse melanoma model. American Journal of Cancer Research, 5, 3186–3197.
PubMed
PubMed Central
CAS
Google Scholar
Kretzer, I. F., Maria, D. A., Guido, M. C., Contente, T. C., & Maranhao, R. C. (2016). Simvastatin increases the antineoplastic actions of paclitaxel carried in lipid nanoemulsions in melanoma-bearing mice. International Journal of Nanomedicine, 11, 885–904.
PubMed
PubMed Central
CAS
Google Scholar
Feleszko, W., Mlynarczuk, I., Olszewska, D., Jalili, A., Grzela, T., et al. (2002). Lovastatin potentiates antitumor activity of doxorubicin in murine melanoma via an apoptosis-dependent mechanism. International Journal of Cancer, 100, 111–118.
Article
PubMed
CAS
Google Scholar
Efimova, E. V., Ricco, N., Labay, E., Mauceri, H. J., Flor, A. C., et al. (2018). HMG-CoA Reductase inhibition delays DNA repair and promotes senescence after tumor irradiation. Molecular Cancer Therapeutics, 17, 407–418.
Article
PubMed
CAS
Google Scholar
Livingstone, E., Hollestein, L. M., Herk-Sukel, M. P. P., Poll-Franse, A., Joosse, B., et al. (2014). Statin use and its effect on all-cause mortality of melanoma patients: a population-based Dutch cohort study. Cancer Medicine, 3, 1284–1293.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Schuckmann, L. A., Smith, D., Hughes, M. C. B., Malt, M., van der Pols, J. C., et al. (2017). Associations of statins and diabetes with diagnosis of ulcerated cutaneous melanoma. The Journal of Investigative Dermatology, 137, 2599–2605.
Article
CAS
Google Scholar