Abstract
RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers “smart” targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.
Similar content being viewed by others
References
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806–811. https://doi.org/10.1038/35888.
Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498. https://doi.org/10.1038/35078107.
Davis, M. E., Zuckerman, J. E., Choi, C. H., Seligson, D., Tolcher, A., Alabi, C. A., et al. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 464(7291), 1067–1070. https://doi.org/10.1038/nature08956.
Tatiparti, K., Sau, S., Kashaw, S. K., & Iyer, A. K. (2017). siRNA delivery strategies: a comprehensive review of recent developments. Nanomaterials (Basel), 7(4). https://doi.org/10.3390/nano7040077.
Costa, F. F. (2007). Non-coding RNAs: lost in translation? Gene, 386(1–2), 1–10. https://doi.org/10.1016/j.gene.2006.09.028.
Mansoori, B., Sandoghchian Shotorbani, S., & Baradaran, B. (2014). RNA interference and its role in cancer therapy. Advanced Pharmaceutical Bulletin, 4(4), 313–321. https://doi.org/10.5681/apb.2014.046.
Cao, J. (2014). The functional role of long non-coding RNAs and epigenetics. Biological Procedures Online, 16, 11. https://doi.org/10.1186/1480-9222-16-11.
Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.
Rao, D. D., Vorhies, J. S., Senzer, N., & Nemunaitis, J. (2009). siRNA vs. shRNA: similarities and differences. Advanced Drug Delivery Reviews, 61(9), 746–759. https://doi.org/10.1016/j.addr.2009.04.004.
Macfarlane, L. A., & Murphy, P. R. (2010). MicroRNA: biogenesis, function and role in cancer. Current Genomics, 11(7), 537–561. https://doi.org/10.2174/138920210793175895.
Smith, I., Procter, M., Gelber, R. D., Guillaume, S., Feyereislova, A., Dowsett, M., et al. (2007). 2-year follow-up of trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer: a randomised controlled trial. Lancet, 369(9555), 29–36. https://doi.org/10.1016/S0140-6736(07)60028-2.
Druker, B. J., Guilhot, F., O'Brien, S. G., Gathmann, I., Kantarjian, H., Gattermann, N., et al. (2006). Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. The New England Journal of Medicine, 355(23), 2408–2417. https://doi.org/10.1056/NEJMoa062867.
Weiss, W. A., Taylor, S. S., & Shokat, K. M. (2007). Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nature Chemical Biology, 3(12), 739–744. https://doi.org/10.1038/nchembio1207-739.
Eggert, U. S., Field, C. M., & Mitchison, T. J. (2006). Small molecules in an RNAi world. Molecular BioSystems, 2(2), 93–96. https://doi.org/10.1039/b515335b.
Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: progressing toward the reality. Chemistry & Biology, 21(9), 1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001.
Rupaimoole, R., Calin, G. A., Lopez-Berestein, G., & Sood, A. K. (2016). miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discovery, 6(3), 235–246. https://doi.org/10.1158/2159-8290.CD-15-0893.
Esteller, M. (2011). Non-coding RNAs in human disease. Nature Reviews. Genetics, 12(12), 861–874. https://doi.org/10.1038/nrg3074.
Kozak, K. (2013). Annotation and specificity of existing genome-wide small interfering RNA libraries. Nucleic Acid Therapeutics, 23(1), 71–80. https://doi.org/10.1089/nat.2012.0387.
Mohr, S. E., & Perrimon, N. (2012). RNAi screening: new approaches, understandings, and organisms. Wiley Interdisciplinary Reviews RNA, 3(2), 145–158. https://doi.org/10.1002/wrna.110.
Rupaimoole, R., Han, H. D., Lopez-Berestein, G., & Sood, A. K. (2011). MicroRNA therapeutics: principles, expectations, and challenges. Chinese Journal of Cancer, 30(6), 368–370.
Xie, W., Zhao, M., Zhou, W., Guo, L., Huang, L., Yu, W., et al. (2013). Targeting of integrin-linked kinase with small interfering RNA inhibits VEGF-induced angiogenesis in retinal endothelial cells. Ophthalmic Research, 49(3), 139–149. https://doi.org/10.1159/000345070.
Cao, Y., E, G., Wang, E., Pal, K., Dutta, S. K., Bar-Sagi, D., et al. (2012). VEGF exerts an angiogenesis-independent function in cancer cells to promote their malignant progression. Cancer Research, 72(16), 3912–3918. https://doi.org/10.1158/0008-5472.CAN-11-4058.
Xi, H. Q., Zhang, K. C., Li, J. Y., Cui, J. X., Gao, Y. H., Wei, B., et al. (2017). RNAi-mediated inhibition of Lgr5 leads to decreased angiogenesis in gastric cancer. Oncotarget, 8(19), 31581–31591. https://doi.org/10.18632/oncotarget.15770.
Zhang, X. D., Wu, Q., & Yang, S. H. (2017). Effects of siRNA-mediated HIF-1alpha gene silencing on angiogenesis in osteosarcoma. Pakistan Journal of Medical Sciences, 33(2), 341–346. https://doi.org/10.12669/pjms.332.12587.
Kim, M. G., Jo, S. D., Yhee, J. Y., Lee, B. S., Lee, S. J., Park, S. G., et al. (2017). Synergistic anti-tumor effects of bevacizumab and tumor targeted polymerized VEGF siRNA nanoparticles. Biochemical and Biophysical Research Communications, 489(1), 35–41. https://doi.org/10.1016/j.bbrc.2017.05.103.
Palazzo, A. F., & Lee, E. S. (2015). Non-coding RNA: what is functional and what is junk? Frontiers in Genetics, 6, 2. https://doi.org/10.3389/fgene.2015.00002.
Qu, K., Zhang, X., Lin, T., Liu, T., Wang, Z., Liu, S., et al. (2017). Circulating miRNA-21-5p as a diagnostic biomarker for pancreatic cancer: evidence from comprehensive miRNA expression profiling analysis and clinical validation. Scientific Reports, 7(1), 1692. https://doi.org/10.1038/s41598-017-01904-z.
Homami, A., & Ghazi, F. (2016). MicroRNAs as biomarkers associated with bladder cancer. Medical Journal of the Islamic Republic of Iran, 30, 475.
Wang, L., Zheng, J., Sun, C., Wang, L., Jin, G., Xin, L., et al. (2017). MicroRNA expression levels as diagnostic biomarkers for intraductal papillary mucinous neoplasm. Oncotarget, 8(35), 58765–58770. https://doi.org/10.18632/oncotarget.17679.
Yao, Y., Hu, J., Shen, Z., Yao, R., Liu, S., Li, Y., et al. (2015). MiR-200b expression in breast cancer: a prognostic marker and act on cell proliferation and apoptosis by targeting Sp1. Journal of Cellular and Molecular Medicine, 19(4), 760–769. https://doi.org/10.1111/jcmm.12432.
Lu, Y. B., Hu, J. J., Sun, W. J., Duan, X. H., & Chen, X. (2015). Prognostic value of miR-141 downregulation in gastric cancer. Genetics and Molecular Research, 14(4), 17305–17311. https://doi.org/10.4238/2015.December.16.31.
Torres, A., Torres, K., Pesci, A., Ceccaroni, M., Paszkowski, T., Cassandrini, P., et al. (2013). Diagnostic and prognostic significance of miRNA signatures in tissues and plasma of endometrioid endometrial carcinoma patients. International Journal of Cancer, 132(7), 1633–1645. https://doi.org/10.1002/ijc.27840.
Zhu, Z. M., Xu, Y. F., Su, Q. J., Du, J. D., Tan, X. L., Tu, Y. L., et al. (2014). Prognostic significance of microRNA-141 expression and its tumor suppressor function in human pancreatic ductal adenocarcinoma. Molecular and Cellular Biochemistry, 388(1–2), 39–49. https://doi.org/10.1007/s11010-013-1897-y.
Winther, M., Knudsen, S., Dahlgaard, J., Jensen, T., Hansen, A., Jensen, P. B., et al. (2016). Clinical impact of a novel microRNA chemo-sensitivity predictor in gastrooesophageal cancer. PLoS One, 11(2), e0148070. https://doi.org/10.1371/journal.pone.0148070.
Simmer, F., Venderbosch, S., Dijkstra, J. R., Vink-Borger, E. M., Faber, C., Mekenkamp, L. J., et al. (2015). MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget, 6(26), 22996–23007. https://doi.org/10.18632/oncotarget.4035.
Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222. https://doi.org/10.1038/nrd.2016.246.
Guan, H., Zhao, P., Dai, Z., Liu, X., & Wang, X. (2016). SH3GL1 inhibition reverses multidrug resistance in colorectal cancer cells by downregulation of MDR1/P-glycoprotein via EGFR/ERK/AP-1 pathway. Tumour Biology, 37(9), 12153–12160. https://doi.org/10.1007/s13277-016-5092-0.
Martucci, N. M., Migliaccio, N., Ruggiero, I., Albano, F., Cali, G., Romano, S., et al. (2016). Nanoparticle-based strategy for personalized B-cell lymphoma therapy. International Journal of Nanomedicine, 11, 6089–6101. https://doi.org/10.2147/IJN.S118661.
Liu, Y., Fei, T., Zheng, X., Brown, M., Zhang, P., Liu, X. S., et al. (2016). An integrative pharmacogenomic approach identifies two-drug combination therapies for personalized cancer medicine. Scientific Reports, 6, 22120. https://doi.org/10.1038/srep22120.
Prussia, A., Thepchatri, P., Snyder, J. P., & Plemper, R. K. (2011). Systematic approaches towards the development of host-directed antiviral therapeutics. International Journal of Molecular Sciences, 12(6), 4027–4052. https://doi.org/10.3390/ijms12064027.
Voinnet, O. (2005). Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews. Genetics, 6(3), 206–220. https://doi.org/10.1038/nrg1555.
Blake, S. J., Bokhari, F. F., & McMillan, N. A. (2012). RNA interference for viral infections. Current Drug Targets, 13(11), 1411–1420.
Choi, J. G., Bharaj, P., Abraham, S., Ma, H., Yi, G., Ye, C., et al. (2015). Multiplexing seven miRNA-based shRNAs to suppress HIV replication. Molecular Therapy, 23(2), 310–320. https://doi.org/10.1038/mt.2014.205.
Nathans, R., Chu, C. Y., Serquina, A. K., Lu, C. C., Cao, H., & Rana, T. M. (2009). Cellular microRNA and P bodies modulate host-HIV-1 interactions. Molecular Cell, 34(6), 696–709. https://doi.org/10.1016/j.molcel.2009.06.003.
Tchurikov, N. A., Fedoseeva, D. M., Gashnikova, N. M., Sosin, D. V., Gorbacheva, M. A., Alembekov, I. R., et al. (2016). Conserved sequences in the current strains of HIV-1 subtype A in Russia are effectively targeted by artificial RNAi in vitro. Gene, 583(1), 78–83. https://doi.org/10.1016/j.gene.2016.03.001.
Kravatsky, Y. V., Chechetkin, V. R., Fedoseeva, D. M., Gorbacheva, M. A., Kretova, O. V., & Tchurikov, N. A. (2016). Mutation frequencies in HIV-1 subtype-A genome in regions containing efficient RNAi targets. Molekuliarnaia Biologiia (Mosk), 50(3), 480–485. https://doi.org/10.7868/S0026898416020117.
Cornu, T. I., Mussolino, C., Bloom, K., & Cathomen, T. (2015). Editing CCR5: a novel approach to HIV gene therapy. Advances in Experimental Medicine and Biology, 848, 117–130. https://doi.org/10.1007/978-1-4939-2432-5_6.
Zhang, W., Yang, H., Kong, X., Mohapatra, S., San Juan-Vergara, H., Hellermann, G., et al. (2005). Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 11(1), 56–62. https://doi.org/10.1038/nm1174.
DeVincenzo, J., Cehelsky, J. E., Alvarez, R., Elbashir, S., Harborth, J., Toudjarska, I., et al. (2008). Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Research, 77(3), 225–231. https://doi.org/10.1016/j.antiviral.2007.11.009.
Ballarin-Gonzalez, B., Thomsen, T. B., & Howard, K. A. (2013). Clinical translation of RNAi-based treatments for respiratory diseases. Drug Delivery and Translational Research, 3(1), 84–99. https://doi.org/10.1007/s13346-012-0098-7.
Barik, S., & Lu, P. (2015). Therapy of respiratory viral infections with intranasal siRNAs. Methods in Molecular Biology, 1218, 251–262. https://doi.org/10.1007/978-1-4939-1538-5_14.
Malekshahi, S. S., Salimi, V., Arefian, E., Fatemi-Nasab, G., Adjaminejad-Fard, S., Yavarian, J., et al. (2016). Inhibition of respiratory syncytial virus replication by simultaneous targeting of mRNA and genomic RNA using dual-targeting siRNAs. Molecular Biotechnology, 58(11), 767–775. https://doi.org/10.1007/s12033-016-9976-4.
Gane, E. J. (2017). Future anti-HBV strategies. Liver International, 37(Suppl 1), 40–44. https://doi.org/10.1111/liv.13304.
Ebert, G., Poeck, H., Lucifora, J., Baschuk, N., Esser, K., Esposito, I., et al. (2011). 5′ Triphosphorylated small interfering RNAs control replication of hepatitis B virus and induce an interferon response in human liver cells and mice. Gastroenterology, 141(2), 696–706, 706 e691–693. https://doi.org/10.1053/j.gastro.2011.05.001.
Yamamoto, N., Sato, Y., Munakata, T., Kakuni, M., Tateno, C., Sanada, T., et al. (2016). Novel pH-sensitive multifunctional envelope-type nanodevice for siRNA-based treatments for chronic HBV infection. Journal of Hepatology, 64(3), 547–555. https://doi.org/10.1016/j.jhep.2015.10.014.
Lee, C. H., Kim, J. H., & Lee, S. W. (2016). The role of microRNA in pathogenesis and as markers of HCV chronic infection. Current Drug Targets, 18(7), 756–765. https://doi.org/10.2174/1389450117666160401125213.
Zekri, A. N., Youssef, A. S., El-Desouky, E. D., Ahmed, O. S., Lotfy, M. M., Nassar, A. A., et al. (2016). Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biology, 37(9), 12273–12286. https://doi.org/10.1007/s13277-016-5097-8.
Shaker, O. G., & Senousy, M. A. (2017). Serum microRNAs as predictors for liver fibrosis staging in hepatitis C virus-associated chronic liver disease patients. Journal of Viral Hepatitis, 24(8), 636–644. https://doi.org/10.1111/jvh.12696.
Jiao, X., Fan, Z., Chen, H., He, P., Li, Y., Zhang, Q., et al. (2017). Serum and exosomal miR-122 and miR-199a as a biomarker to predict therapeutic efficacy of hepatitis C patients. Journal of Medical Virology, 89(9),1597–1605. https://doi.org/10.1002/jmv.24829.
Luna, J. M., Scheel, T. K., Danino, T., Shaw, K. S., Mele, A., Fak, J. J., et al. (2015). Hepatitis C virus RNA functionally sequesters miR-122. Cell, 160(6), 1099–1110. https://doi.org/10.1016/j.cell.2015.02.025.
Janssen, H. L., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368(18), 1685–1694. https://doi.org/10.1056/NEJMoa1209026.
Hoelscher, S. C., Doppler, S. A., Dressen, M., Lahm, H., Lange, R., & Krane, M. (2017). MicroRNAs: pleiotropic players in congenital heart disease and regeneration. Journal of Thoracic Disease, 9(Suppl 1), S64–S81. https://doi.org/10.21037/jtd.2017.03.149.
Kwekkeboom, R. F., Lei, Z., Doevendans, P. A., Musters, R. J., & Sluijter, J. P. (2014). Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clinical Science (London, England), 127(6), 351–365. https://doi.org/10.1042/CS20140005.
Tadin-Strapps, M., Robinson, M., Le Voci, L., Andrews, L., Yendluri, S., Williams, S., et al. (2015). Development of lipoprotein(a) siRNAs for mechanism of action studies in non-human primate models of atherosclerosis. Journal of Cardiovascular Translational Research, 8(1), 44–53. https://doi.org/10.1007/s12265-014-9605-1.
Zhou, F., Jia, X., Yang, Q., Yang, Y., Zhao, Y., Fan, Y., et al. (2016). Targeted delivery of microRNA-126 to vascular endothelial cells via REDV peptide modified PEG-trimethyl chitosan. Biomaterials Science, 4(5), 849–856. https://doi.org/10.1039/c5bm00629e.
Zhou, F., Jia, X., Yang, Y., Yang, Q., Gao, C., Hu, S., et al. (2016). Nanofiber-mediated microRNA-126 delivery to vascular endothelial cells for blood vessel regeneration. Acta Biomaterialia, 43, 303–313. https://doi.org/10.1016/j.actbio.2016.07.048.
Navickas, R., Gal, D., Laucevicius, A., Taparauskaite, A., Zdanyte, M., & Holvoet, P. (2016). Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review. Cardiovascular Research, 111(4), 322–337. https://doi.org/10.1093/cvr/cvw174.
Kasner, M., Gast, M., Galuszka, O., Stroux, A., Rutschow, S., Wang, X., et al. (2016). Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. International Journal of Cardiology, 215, 402–405. https://doi.org/10.1016/j.ijcard.2016.04.018.
Eliasson, L., & Esguerra, J. L. (2014). Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiologica (Oxford, England), 211(2), 273–284. https://doi.org/10.1111/apha.12285.
Guglielmi, V., D'Adamo, M., Menghini, R., Cardellini, M., Gentileschi, P., Federici, M., et al. (2017). MicroRNA 21 is up-regulated in adipose tissue of obese diabetic subjects. Nutrition Healthy Aging, 4(2), 141–145. https://doi.org/10.3233/NHA-160020.
Kaviani, M., Azarpira, N., Karimi, M. H., & Al-Abdullah, I. (2016). The role of microRNAs in islet beta-cell development. Cell Biology International, 40(12), 1248–1255. https://doi.org/10.1002/cbin.10691.
Pishavar, E., & Behravan, J. (2017). miR-126 as a therapeutic agent for diabetes mellitus. Current Pharmaceutical Design, 23(22),3309–3314. https://doi.org/10.2174/1381612823666170424120121.
de Gonzalo-Calvo, D., van der Meer, R. W., Rijzewijk, L. J., Smit, J. W., Revuelta-Lopez, E., Nasarre, L., et al. (2017). Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Scientific Reports, 7(1), 47. https://doi.org/10.1038/s41598-017-00070-6.
Zou, H. L., Wang, Y., Gang, Q., Zhang, Y., & Sun, Y. (2017). Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 255(6), 1159–1166. https://doi.org/10.1007/s00417-017-3638-5.
Willeit, P., Skroblin, P., Moschen, A. R., Yin, X., Kaudewitz, D., Zampetaki, A., et al. (2017). Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes, 66(2), 347–357. https://doi.org/10.2337/db16-0731.
Zhu, Y., Tian, F., Li, H., Zhou, Y., Lu, J., & Ge, Q. (2015). Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. International Journal of Gynaecology and Obstetrics, 130(1), 49–53. https://doi.org/10.1016/j.ijgo.2015.01.010.
Sam, M. R., Azadbakhsh, A. S., Farokhi, F., Rezazadeh, K., Sam, S., Zomorodipour, A., et al. (2016). Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids. Biologicals, 44(3), 170–177. https://doi.org/10.1016/j.biologicals.2016.01.002.
Wang, W., Li, C., Li, W., Kong, L., Qian, A., Hu, N., et al. (2014). MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thrombosis Research, 133(4), 590–598. https://doi.org/10.1016/j.thromres.2013.12.038.
Huleihel, L., Sellares, J., Cardenes, N., Alvarez, D., Faner, R., Sakamoto, K., et al. (2017). Modified mesenchymal stem cells using miRNA transduction alter lung injury in a bleomycin model. American Journal of Physiology Lung Cellular and Molecular Physiology, 313(1), L92–L103. https://doi.org/10.1152/ajplung.00323.2016.
Qu, Y., Zhang, Q., Cai, X., Li, F., Ma, Z., Xu, M., et al. (2017). Exosomes derived from miR-181-5p-modified adipose-derived mesenchymal stem cells prevent liver fibrosis via autophagy activation. Journal of Cellular and Molecular Medicine, 21(10), 2491–2502. https://doi.org/10.1111/jcmm.13170.
Wei, G. J., An, G., Shi, Z. W., Wang, K. F., Guan, Y., Wang, Y. S., et al. (2017). Suppression of microRNA-383 enhances therapeutic potential of human bone-marrow-derived mesenchymal stem cells in treating spinal cord injury via GDNF. Cellular Physiology and Biochemistry, 41(4), 1435–1444. https://doi.org/10.1159/000468057.
Pan, Y., Shu, X., Sun, L., Yu, L., Sun, L., Yang, Z., et al. (2017). miR196a5p modulates gastric cancer stem cell characteristics by targeting Smad4. International Journal of Oncology, 50(6), 1965–1976. https://doi.org/10.3892/ijo.2017.3965.
Wang, L., Wang, J., Li, Z., Liu, Y., Jiang, M., Li, Y., et al. (2016). Silencing stem cell factor attenuates stemness and inhibits migration of cancer stem cells derived from Lewis lung carcinoma cells. Tumour Biology, 37(6), 7213–7227. https://doi.org/10.1007/s13277-015-4577-6.
Whitehead, K. A., Langer, R., & Anderson, D. G. (2009). Knocking down barriers: advances in siRNA delivery. Nature Reviews. Drug Discovery, 8(2), 129–138. https://doi.org/10.1038/nrd2742.
Hickerson, R. P., Vlassov, A. V., Wang, Q., Leake, D., Ilves, H., Gonzalez-Gonzalez, E., et al. (2008). Stability study of unmodified siRNA and relevance to clinical use. Oligonucleotides, 18(4), 345–354. https://doi.org/10.1089/oli.2008.0149.
Sarett, S. M., Kilchrist, K. V., Miteva, M., & Duvall, C. L. (2015). Conjugation of palmitic acid improves potency and longevity of siRNA delivered via endosomolytic polymer nanoparticles. Journal of Biomedical Materials Research. Part A, 103(9), 3107–3116. https://doi.org/10.1002/jbm.a.35413.
Bramsen, J. B., & Kjems, J. (2010). Chemical modification of small interfering RNA. Methods in Molecular Biology, 721, 77–103. https://doi.org/10.1007/978-1-61779-037-9_5.
Lee, S. J., Son, S., Yhee, J. Y., Choi, K., Kwon, I. C., Kim, S. H., et al. (2013). Structural modification of siRNA for efficient gene silencing. Biotechnology Advances, 31(5), 491–503. https://doi.org/10.1016/j.biotechadv.2012.09.002.
Tokatlian, T., & Segura, T. (2010). siRNA applications in nanomedicine. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2(3), 305–315. https://doi.org/10.1002/wnan.81.
Behlke, M. A. (2008). Chemical modification of siRNAs for in vivo use. Oligonucleotides, 18(4), 305–319. https://doi.org/10.1089/oli.2008.0164.
Bramsen, J. B., & Kjems, J. (2013). Engineering small interfering RNAs by strategic chemical modification. Methods in Molecular Biology, 942, 87–109. https://doi.org/10.1007/978-1-62703-119-6_5.
Wang, J., Lu, Z., Wientjes, M. G., & Au, J. L. (2010). Delivery of siRNA therapeutics: barriers and carriers. The AAPS Journal, 12(4), 492–503. https://doi.org/10.1208/s12248-010-9210-4.
Danquah, M. K., Zhang, X. A., & Mahato, R. I. (2011). Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews, 63(8), 623–639. https://doi.org/10.1016/j.addr.2010.11.005.
Raouane, M., Desmaele, D., Urbinati, G., Massaad-Massade, L., & Couvreur, P. (2012). Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconjugate Chemistry, 23(6), 1091–1104. https://doi.org/10.1021/bc200422w.
Layek, B., Lipp, L., & Singh, J. (2015). Cell penetrating peptide conjugated chitosan for enhanced delivery of nucleic acid. International Journal of Molecular Sciences, 16(12), 28912–28930. https://doi.org/10.3390/ijms161226142.
O'Loughlin, A. J., Mager, I., de Jong, O. G., Varela, M. A., Schiffelers, R. M., El Andaloussi, S., et al. (2017). Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Molecular Therapy, 25(7), 1580–1587. https://doi.org/10.1016/j.ymthe.2017.03.021.
Powell, D., Chandra, S., Dodson, K., Shaheen, F., Wiltz, K., Ireland, S., et al. (2017). Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. European Journal of Pharmaceutics and Biopharmaceutics, 114, 108–118. https://doi.org/10.1016/j.ejpb.2017.01.011.
Bruck, J., Pascolo, S., Fuchs, K., Kellerer, C., Glocova, I., Geisel, J., et al. (2015). Cholesterol modification of p40-specific small interfering RNA enables therapeutic targeting of dendritic cells. Journal of Immunology, 195(5), 2216–2223. https://doi.org/10.4049/jimmunol.1402989.
Wang, Y., Chen, X., Tian, B., Liu, J., Yang, L., Zeng, L., et al. (2017). Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 7(5), 1360–1372. https://doi.org/10.7150/thno.16532.
Akhtar, S., & Benter, I. F. (2007). Nonviral delivery of synthetic siRNAs in vivo. The Journal of Clinical Investigation, 117(12), 3623–3632. https://doi.org/10.1172/JCI33494.
Semple, S. C., Akinc, A., Chen, J., Sandhu, A. P., Mui, B. L., Cho, C. K., et al. (2010). Rational design of cationic lipids for siRNA delivery. Nature Biotechnology, 28(2), 172–176. https://doi.org/10.1038/nbt.1602.
Meng, Z., Zhang, X., Wu, J., Pei, R., Xu, Y., Yang, D., et al. (2013). RNAi induces innate immunity through multiple cellular signaling pathways. PLoS One, 8(5), e64708. https://doi.org/10.1371/journal.pone.0064708.
Meng, Z., & Lu, M. (2017). RNA interference-induced innate immunity, off-target effect, or immune adjuvant? Frontiers in Immunology, 8, 331. https://doi.org/10.3389/fimmu.2017.00331.
Jackson, A. L., & Linsley, P. S. (2010). Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Reviews. Drug Discovery, 9(1), 57–67. https://doi.org/10.1038/nrd3010.
Schluep, T., Lickliter, J., Hamilton, J., Lewis, D. L., Lai, C. L., Lau, J. Y., et al. (2017). Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B virus infection, in healthy volunteers. Clinical Pharmacol Drug Development, 6(4), 350–362.https://doi.org/10.1002/cpdd.318.
Beg, M. S., Brenner, A. J., Sachdev, J., Borad, M., Kang, Y. K., Stoudemire, J., et al. (2017). Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investigational New Drugs, 35(2), 180–188. https://doi.org/10.1007/s10637-016-0407-y.
Valenzuela, R. A., Suter, S. R., Ball-Jones, A. A., Ibarra-Soza, J. M., Zheng, Y., & Beal, P. A. (2015). Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem, 16(2), 262–267. https://doi.org/10.1002/cbic.201402551.
Grimm, D. (2009). Small silencing RNAs: state-of-the-art. Advanced Drug Delivery Reviews, 61(9), 672–703. https://doi.org/10.1016/j.addr.2009.05.002.
Giacca, M., & Zacchigna, S. (2012). Virus-mediated gene delivery for human gene therapy. Journal of Controlled Release, 161(2), 377–388. https://doi.org/10.1016/j.jconrel.2012.04.008.
Keller, M. (2009). Nanomedicinal delivery approaches for therapeutic siRNA. International Journal of Pharmaceutics, 379(2), 210–211. https://doi.org/10.1016/j.ijpharm.2009.03.038.
Rezaee, M., Oskuee, R. K., Nassirli, H., & Malaekeh-Nikouei, B. (2016). Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. Journal of Controlled Release, 236, 1–14. https://doi.org/10.1016/j.jconrel.2016.06.023.
Chapoy-Villanueva, H., Martinez-Carlin, I., Lopez-Berestein, G., & Chavez-Reyes, A. (2015). Therapeutic silencing of HPV 16 E7 by systemic administration of siRNA-neutral DOPC nanoliposome in a murine cervical cancer model with obesity. Journal of BUON, 20(6), 1471–1479.
Dunne, P. D., Dasgupta, S., Blayney, J. K., McArt, D. G., Redmond, K. L., Weir, J. A., et al. (2016). EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clinical Cancer Research, 22(1), 230–242. https://doi.org/10.1158/1078-0432.CCR-15-0603.
Song, W., Hwang, Y., Youngblood, V. M., Cook, R. S., Balko, J. M., Chen, J., et al. (2017). Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene, 36(40), 5620–5630. https://doi.org/10.1038/onc.2017.170.
Landen Jr., C. N., Chavez-Reyes, A., Bucana, C., Schmandt, R., Deavers, M. T., Lopez-Berestein, G., et al. (2005). Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research, 65(15), 6910–6918. https://doi.org/10.1158/0008-5472.CAN-05-0530.
Wagner, M. J., Mitra, R., McArthur, M. J., Baze, W., Barnhart, K., Wu, S. Y., et al. (2017). Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Molecular Cancer Therapeutics, 16(6), 1114–1123. https://doi.org/10.1158/1535-7163.MCT-16-0541.
Fan, Y., Chen, C., Huang, Y., Zhang, F., & Lin, G. (2017). Study of the pH-sensitive mechanism of tumor-targeting liposomes. Colloids and Surfaces. B, Biointerfaces, 151, 19–25. https://doi.org/10.1016/j.colsurfb.2016.11.042.
Gujrati, M., Vaidya, A. M., Mack, M., Snyder, D., Malamas, A., & Lu, Z. R. (2016). Targeted dual pH-sensitive lipid ECO/siRNA self-assembly nanoparticles facilitate in vivo cytosolic sieIF4E delivery and overcome paclitaxel resistance in breast cancer therapy. Advanced Healthcare Materials, 5(22), 2882–2895. https://doi.org/10.1002/adhm.201600677.
Iversen, F., Yang, C., Dagnaes-Hansen, F., Schaffert, D. H., Kjems, J., & Gao, S. (2013). Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice. Theranostics, 3(3), 201–209. https://doi.org/10.7150/thno.5743.
Nag, O. K., & Awasthi, V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics, 5(4), 542–569. https://doi.org/10.3390/pharmaceutics5040542.
Chauhan, H., Mohapatra, S., Munt, D. J., Chandratre, S., & Dash, A. (2016). Physical-chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech, 17(3), 640–651. https://doi.org/10.1208/s12249-015-0394-x.
Botto, C., Mauro, N., Amore, E., Martorana, E., Giammona, G., & Bondi, M. L. (2017). Surfactant effect on the physicochemical characteristics of cationic solid lipid nanoparticles. International Journal of Pharmaceutics, 516(1–2), 334–341. https://doi.org/10.1016/j.ijpharm.2016.11.052.
Lobovkina, T., Jacobson, G. B., Gonzalez-Gonzalez, E., Hickerson, R. P., Leake, D., Kaspar, R. L., et al. (2011). In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano, 5(12), 9977–9983. https://doi.org/10.1021/nn203745n.
Yu, Y. H., Kim, E., Park, D. E., Shim, G., Lee, S., Kim, Y. B., et al. (2012). Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. European Journal of Pharmaceutics and Biopharmaceutics, 80(2), 268–273. https://doi.org/10.1016/j.ejpb.2011.11.002.
Jin, J., Bae, K. H., Yang, H., Lee, S. J., Kim, H., Kim, Y., et al. (2011). In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles. Bioconjugate Chemistry, 22(12), 2568–2572. https://doi.org/10.1021/bc200406n.
Xue, H. Y., Tran, N., & Wong, H. L. (2016). A biodistribution study of solid lipid-polyethyleneimine hybrid nanocarrier for cancer RNAi therapy. European Journal of Pharmaceutics and Biopharmaceutics, 108, 68–75. https://doi.org/10.1016/j.ejpb.2016.08.014.
Naseri, N., Valizadeh, H., & Zakeri-Milani, P. (2015). Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull, 5(3), 305–313. https://doi.org/10.15171/apb.2015.043.
Han, Y., Li, Y., Zhang, P., Sun, J., Li, X., Sun, X., et al. (2016). Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharmaceutical Development and Technology, 21(3), 277–281. https://doi.org/10.3109/10837450.2014.996900.
Shao, Z., Shao, J., Tan, B., Guan, S., Liu, Z., Zhao, Z., et al. (2015). Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA. International Journal of Nanomedicine, 10, 1223–1233. https://doi.org/10.2147/IJN.S77837.
Taratula, O., Kuzmov, A., Shah, M., Garbuzenko, O. B., & Minko, T. (2013). Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. Journal of Controlled Release, 171(3), 349–357. https://doi.org/10.1016/j.jconrel.2013.04.018.
Xue, H. Y., & Wong, H. L. (2011). Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials, 32(10), 2662–2672. https://doi.org/10.1016/j.biomaterials.2010.12.029.
Breunig, M., Lungwitz, U., Liebl, R., & Goepferich, A. (2007). Breaking up the correlation between efficacy and toxicity for nonviral gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 104(36), 14454–14459. https://doi.org/10.1073/pnas.0703882104.
Dominska, M., & Dykxhoorn, D. M. (2010). Breaking down the barriers: siRNA delivery and endosome escape. Journal of Cell Science, 123(Pt 8), 1183–1189. https://doi.org/10.1242/jcs.066399.
Gomes-da-Silva, L. C., Fonseca, N. A., Moura, V., Pedroso de Lima, M. C., Simoes, S., & Moreira, J. N. (2012). Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Accounts of Chemical Research, 45(7), 1163–1171. https://doi.org/10.1021/ar300048p.
Tros de Ilarduya, C., Sun, Y., & Duzgunes, N. (2010). Gene delivery by lipoplexes and polyplexes. European Journal of Pharmaceutical Sciences, 40(3), 159–170. https://doi.org/10.1016/j.ejps.2010.03.019.
Yang, C., Gao, S., Dagnaes-Hansen, F., Jakobsen, M., & Kjems, J. (2017). Impact of PEG chain length on the physical properties and bioactivity of PEGylated chitosan/siRNA nanoparticles in vitro and in vivo. ACS Applied Materials & Interfaces, 9(14), 12203–12216. https://doi.org/10.1021/acsami.6b16556.
Sun, P., Huang, W., Kang, L., Jin, M., Fan, B., Jin, H., et al. (2017). siRNA-loaded poly(histidine-arginine)6-modified chitosan nanoparticle with enhanced cell-penetrating and endosomal escape capacities for suppressing breast tumor metastasis. International Journal of Nanomedicine, 12, 3221–3234. https://doi.org/10.2147/IJN.S129436.
Gu, J., Al-Bayati, K., & Ho, E. A. (2017). Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes. Drug Delivery and Translational Research, 7(4), 497–506. https://doi.org/10.1007/s13346-017-0368-5.
Gao, L. Y., Liu, X. Y., Chen, C. J., Wang, J. C., Feng, Q., Yu, M. Z., et al. (2014). Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery. Biomaterials, 35(6), 2066–2078. https://doi.org/10.1016/j.biomaterials.2013.11.046.
Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., et al. (2015). Co-delivery of HIF1alpha siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 46, 13–25. https://doi.org/10.1016/j.biomaterials.2014.12.028.
Yang, X. Z., Dou, S., Wang, Y. C., Long, H. Y., Xiong, M. H., Mao, C. Q., et al. (2012). Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano, 6(6), 4955–4965. https://doi.org/10.1021/nn300500u.
Li, Y., Huang, X., Lee, R. J., Qi, Y., Wang, K., Hao, F., et al. (2016). Synthesis of polymer-lipid nanoparticles by microfluidic focusing for siRNA delivery. Molecules, 21(10). https://doi.org/10.3390/molecules21101314.
Ki, M. H., Kim, J. E., Lee, Y. N., Noh, S. M., An, S. W., Cho, H. J., et al. (2014). Chitosan-based hybrid nanocomplex for siRNA delivery and its application for cancer therapy. Pharmaceutical Research, 31(12), 3323–3334. https://doi.org/10.1007/s11095-014-1422-3.
Zhong, J., Huang, H. L., Li, J., Qian, F. C., Li, L. Q., Niu, P. P., et al. (2015). Development of hybrid-type modified chitosan derivative nanoparticles for the intracellular delivery of midkine-siRNA in hepatocellular carcinoma cells. Hepatobiliary & Pancreatic Diseases International, 14(1), 82–89.
Ju, Z., Ma, J., Wang, C., Yu, J., Qiao, Y., & Hei, F. (2017). Exosomes from iPSCs delivering siRNA attenuate intracellular adhesion molecule-1 expression and neutrophils adhesion in pulmonary microvascular endothelial cells. Inflammation, 40(2), 486–496. https://doi.org/10.1007/s10753-016-0494-0.
Thery, C., Zitvogel, L., & Amigorena, S. (2002). Exosomes: composition, biogenesis and function. Nature Reviews. Immunology, 2(8), 569–579. https://doi.org/10.1038/nri855.
Lee, H. M., Choi, E. J., Kim, J. H., Kim, T. D., Kim, Y. K., Kang, C., et al. (2010). A membranous form of ICAM-1 on exosomes efficiently blocks leukocyte adhesion to activated endothelial cells. Biochemical and Biophysical Research Communications, 397(2), 251–256. https://doi.org/10.1016/j.bbrc.2010.05.094.
Yang, T., Martin, P., Fogarty, B., Brown, A., Schurman, K., Phipps, R., et al. (2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharmaceutical Research, 32(6), 2003–2014. https://doi.org/10.1007/s11095-014-1593-y.
Yim, N., Ryu, S. W., Choi, K., Lee, K. R., Lee, S., Choi, H., et al. (2016). Exosome engineering for efficient intracellular delivery of soluble proteins using optically reversible protein-protein interaction module. Nature Communications, 7, 12277. https://doi.org/10.1038/ncomms12277.
Kooijmans, S. A., Vader, P., van Dommelen, S. M., van Solinge, W. W., & Schiffelers, R. M. (2012). Exosome mimetics: a novel class of drug delivery systems. International Journal of Nanomedicine, 7, 1525–1541. https://doi.org/10.2147/IJN.S29661.
Ha, D., Yang, N., & Nadithe, V. (2016). Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B, 6(4), 287–296. https://doi.org/10.1016/j.apsb.2016.02.001.
Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., et al. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390. https://doi.org/10.1016/j.biomaterials.2013.11.083.
Cooper, J. M., Wiklander, P. B., Nordin, J. Z., Al-Shawi, R., Wood, M. J., Vithlani, M., et al. (2014). Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Movement Disorders, 29(12), 1476–1485. https://doi.org/10.1002/mds.25978.
Sterzenbach, U., Putz, U., Low, L. H., Silke, J., Tan, S. S., & Howitt, J. (2017). Engineered exosomes as vehicles for biologically active proteins. Molecular Therapy, 25(6), 1269–1278. https://doi.org/10.1016/j.ymthe.2017.03.030.
Luan, X., Sansanaphongpricha, K., Myers, I., Chen, H., Yuan, H., & Sun, D. (2017). Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica, 38(6), 754–763. https://doi.org/10.1038/aps.2017.12.
Ohno, S. I., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., et al. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 21(1), 185–191. https://doi.org/10.1038/mt.2012.180.
Lacko, A. G., Sabnis, N. A., Nagarajan, B., & McConathy, W. J. (2015). HDL as a drug and nucleic acid delivery vehicle. Frontiers in Pharmacology, 6, 247. https://doi.org/10.3389/fphar.2015.00247.
Mooberry, L. K., Sabnis, N. A., Panchoo, M., Nagarajan, B., & Lacko, A. G. (2016). Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Frontiers in Pharmacology, 7, 466. https://doi.org/10.3389/fphar.2016.00466.
Shahzad, M. M., Mangala, L. S., Han, H. D., Lu, C., Bottsford-Miller, J., Nishimura, M., et al. (2011). Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia, 13(4), 309–319.
Ding, Y., Wang, W., Feng, M., Wang, Y., Zhou, J., Ding, X., et al. (2012). A biomimetic nanovector-mediated targeted cholesterol-conjugated siRNA delivery for tumor gene therapy. Biomaterials, 33(34), 8893–8905. https://doi.org/10.1016/j.biomaterials.2012.08.057.
Pan, B., Ren, H., Lv, X., Zhao, Y., Yu, B., He, Y., et al. (2012). Hypochlorite-induced oxidative stress elevates the capability of HDL in promoting breast cancer metastasis. Journal of Translational Medicine, 10, 65. https://doi.org/10.1186/1479-5876-10-65.
Tang, J., Kuai, R., Yuan, W., Drake, L., Moon, J. J., & Schwendeman, A. (2017). Effect of size and pegylation of liposomes and peptide-based synthetic lipoproteins on tumor targeting. Nanomedicine, 13(6), 1869–1878.https://doi.org/10.1016/j.nano.2017.04.009.
Lakhin, A. V., Tarantul, V. Z., & Gening, L. V. (2013). Aptamers: problems, solutions and prospects. Acta Naturae, 5(4), 34–43.
Li, X., Zhao, Q., & Qiu, L. (2013). Smart ligand: aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Journal of Controlled Release, 171(2), 152–162. https://doi.org/10.1016/j.jconrel.2013.06.006.
Bagalkot, V., & Gao, X. (2011). siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing. ACS Nano, 5(10), 8131–8139. https://doi.org/10.1021/nn202772p.
Lai, W. Y., Wang, W. Y., Chang, Y. C., Chang, C. J., Yang, P. C., & Peck, K. (2014). Synergistic inhibition of lung cancer cell invasion, tumor growth and angiogenesis using aptamer-siRNA chimeras. Biomaterials, 35(9), 2905–2914. https://doi.org/10.1016/j.biomaterials.2013.12.054.
Li, L., Hou, J., Liu, X., Guo, Y., Wu, Y., Zhang, L., et al. (2014). Nucleolin-targeting liposomes guided by aptamer AS1411 for the delivery of siRNA for the treatment of malignant melanomas. Biomaterials, 35(12), 3840–3850. https://doi.org/10.1016/j.biomaterials.2014.01.019.
Binzel, D. W., Shu, Y., Li, H., Sun, M., Zhang, Q., Shu, D., et al. (2016). Specific delivery of MiRNA for high efficient inhibition of prostate cancer by RNA nanotechnology. Molecular Therapy, 24(7), 1267–1277. https://doi.org/10.1038/mt.2016.85.
Lee, S. K., Siefert, A., Beloor, J., Fahmy, T. M., & Kumar, P. (2012). Cell-specific siRNA delivery by peptides and antibodies. Methods in Enzymology, 502, 91–122. https://doi.org/10.1016/B978-0-12-416039-2.00005-7.
Rengaswamy, V., Zimmer, D., Suss, R., & Rossler, J. (2016). RGD liposome-protamine-siRNA (LPR) nanoparticles targeting PAX3-FOXO1 for alveolar rhabdomyosarcoma therapy. Journal of Controlled Release, 235, 319–327. https://doi.org/10.1016/j.jconrel.2016.05.063.
Palanca-Wessels, M. C., Booth, G. C., Convertine, A. J., Lundy, B. B., Berguig, G. Y., Press, M. F., et al. (2016). Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 7(8), 9561–9575. https://doi.org/10.18632/oncotarget.7076.
Guo, J., Russell, E. G., Darcy, R., Cotter, T. G., McKenna, S. L., Cahill, M. R., et al. (2017). Antibody-targeted cyclodextrin-based nanoparticles for siRNA delivery in the treatment of acute myeloid leukemia: Physicochemical characteristics, in vitro mechanistic studies, and ex vivo patient derived therapeutic efficacy. Molecular Pharmaceutics, 14(3), 940–952. https://doi.org/10.1021/acs.molpharmaceut.6b01150.
Jones, S. K., Lizzio, V., & Merkel, O. M. (2016). Folate receptor targeted delivery of siRNA and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules, 17(1), 76–87. https://doi.org/10.1021/acs.biomac.5b01189.
Kanasty, R., Dorkin, J. R., Vegas, A., & Anderson, D. (2013). Delivery materials for siRNA therapeutics. Nature Materials, 12(11), 967–977. https://doi.org/10.1038/nmat3765.
Wang, J., Mi, P., Lin, G., Wang, Y. X., Liu, G., & Chen, X. (2016). Imaging-guided delivery of RNAi for anticancer treatment. Advanced Drug Delivery Reviews, 104, 44–60. https://doi.org/10.1016/j.addr.2016.01.008.
Wang, F., Song, X., Li, X., Xin, J., Wang, S., Yang, W., et al. (2013). Noninvasive visualization of microRNA-16 in the chemoresistance of gastric cancer using a dual reporter gene imaging system. PLoS One, 8(4), e61792. https://doi.org/10.1371/journal.pone.0061792.
Lin, Q., Huang, H., Chen, J., & Zheng, G. (2016). Using fluorescence imaging to track drug delivery and guide treatment planning in vivo. Methods in Molecular Biology, 1444, 153–166. https://doi.org/10.1007/978-1-4939-3721-9_14.
Sita, T. L., Kouri, F. M., Hurley, L. A., Merkel, T. J., Chalastanis, A., May, J. L., et al. (2017). Dual bioluminescence and near-infrared fluorescence monitoring to evaluate spherical nucleic acid nanoconjugate activity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 114(16), 4129–4134. https://doi.org/10.1073/pnas.1702736114.
Chen, Y., Wang, X., Liu, T., Zhang, D. S., Wang, Y., Gu, H., et al. (2015). Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. International Journal of Nanomedicine, 10, 2579–2594. https://doi.org/10.2147/IJN.S78774.
Veiseh, O., Kievit, F. M., Fang, C., Mu, N., Jana, S., Leung, M. C., et al. (2010). Chlorotoxin bound magnetic nanovector tailored for cancer cell targeting, imaging, and siRNA delivery. Biomaterials, 31(31), 8032–8042. https://doi.org/10.1016/j.biomaterials.2010.07.016.
Wang, P., & Moore, A. (2016). In vivo magnetic resonance imaging of small interfering RNA nanodelivery to pancreatic islets. Methods in Molecular Biology, 1372, 25–36. https://doi.org/10.1007/978-1-4939-3148-4_2.
Gottesman, M. M., & Ling, V. (2006). The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Letters, 580(4), 998–1009. https://doi.org/10.1016/j.febslet.2005.12.060.
Sims, J. T., Ganguly, S. S., Bennett, H., Friend, J. W., Tepe, J., & Plattner, R. (2013). Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-kappaB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One, 8(1), e55509. https://doi.org/10.1371/journal.pone.0055509.
Higgins, C. F. (2007). Multiple molecular mechanisms for multidrug resistance transporters. Nature, 446(7137), 749–757. https://doi.org/10.1038/nature05630.
Takara, K., Sakaeda, T., & Okumura, K. (2006). An update on overcoming MDR1-mediated multidrug resistance in cancer chemotherapy. Current Pharmaceutical Design, 12(3), 273–286.
Palmeira, A., Vasconcelos, M. H., Paiva, A., Fernandes, M. X., Pinto, M., & Sousa, E. (2012). Dual inhibitors of P-glycoprotein and tumor cell growth: (re)discovering thioxanthones. Biochemical Pharmacology, 83(1), 57–68. https://doi.org/10.1016/j.bcp.2011.10.004.
Xu, X., Ho, W., Zhang, X., Bertrand, N., & Farokhzad, O. (2015). Cancer nanomedicine: from targeted delivery to combination therapy. Trends in Molecular Medicine, 21(4), 223–232. https://doi.org/10.1016/j.molmed.2015.01.001.
Nastiuk, K. L., & Krolewski, J. J. (2016). Opportunities and challenges in combination gene cancer therapy. Advanced Drug Delivery Reviews, 98, 35–40. https://doi.org/10.1016/j.addr.2015.12.005.
Zheng, W., Yin, T., Chen, Q., Qin, X., Huang, X., Zhao, S., et al. (2016). Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III beta-tubulin in drug-resistant breast cancers. Acta Biomaterialia, 31, 197–210. https://doi.org/10.1016/j.actbio.2015.11.041.
Mitchell, M. J., Chen, C. S., Ponmudi, V., Hughes, A. D., & King, M. R. (2012). E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of Controlled Release, 160(3), 609–617. https://doi.org/10.1016/j.jconrel.2012.02.018.
Pradhan, P., Giri, J., Rieken, F., Koch, C., Mykhaylyk, O., Doblinger, M., et al. (2010). Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. Journal of Controlled Release, 142(1), 108–121. https://doi.org/10.1016/j.jconrel.2009.10.002.
Li, Y., Wang, H., Wang, K., Hu, Q., Yao, Q., Shen, Y., et al. (2017). Targeted co-delivery of PTX and TR3 siRNA by PTP peptide modified dendrimer for the treatment of pancreatic cancer. Small, 13(2). https://doi.org/10.1002/smll.201602697.
Khanna, A., Mahalingam, K., Chakrabarti, D., & Periyasamy, G. (2011). Ets-1 expression and gemcitabine chemoresistance in pancreatic cancer cells. Cellular & Molecular Biology Letters, 16(1), 101–113. https://doi.org/10.2478/s11658-010-0043-z.
Kars, M. D., Iseri, O. D., & Gunduz, U. (2010). Drug resistant breast cancer cells overexpress ETS1 gene. Biomedicine & Pharmacotherapy, 64(7), 458–462. https://doi.org/10.1016/j.biopha.2010.01.008.
Wu, M., Liu, X., Jin, W., Li, Y., Li, Y., Hu, Q., et al. (2017). Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. Journal of Controlled Release, 253, 110–121. https://doi.org/10.1016/j.jconrel.2017.03.011.
Gottesman, M. M., & Pastan, I. H. (2015). The role of multidrug resistance efflux pumps in cancer: revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. Journal of the National Cancer Institute, 107(9), djv222. https://doi.org/10.1093/jnci/djv222.
Borst, P., Evers, R., Kool, M., & Wijnholds, J. (2000). A family of drug transporters: the multidrug resistance-associated proteins. Journal of the National Cancer Institute, 92(16), 1295–1302.
Jang, M., Han, H. D., & Ahn, H. J. (2016). A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy. Scientific Reports, 6, 32363. https://doi.org/10.1038/srep32363.
Acknowledgments
The University of Texas MD Anderson Cancer Center is supported in part by the National Institutes of Health through Cancer Center Support Grant P30CA016672, CA217685, P50 CA098258, UH3 TR000943, U01 CA213759, R35 CA209904), the Ovarian Cancer Research Fund, Inc., CPRIT grant RP120214, DP150091, V-Foundation, the Frank McGraw Memorial Chair in Cancer Research, and the American Cancer Society Research Professor Award.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflicts of interest related to the topics discussed here.
Rights and permissions
About this article
Cite this article
Chen, X., Mangala, L.S., Rodriguez-Aguayo, C. et al. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37, 107–124 (2018). https://doi.org/10.1007/s10555-017-9717-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10555-017-9717-6