Skip to main content

Advertisement

Log in

Platelet “first responders” in wound response, cancer, and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Platelets serve as “first responders” during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the “first responder” role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Menter, D. G., Tucker, S. C., Kopetz, S., Sood, A. K., Crissman, J. D., & Honn, K. V. (2014). Platelets and cancer: a casual or causal relationship: revisited. Cancer Metastasis Reviews, 33(1), 231–269.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Menter, D., Davis, J., Tucker, S., Hawk, E., Crissman, J., Sood, A., et al. (2017). Platelets “First Responders” in cancer progression and metastasis. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 1111–1132). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  3. Leunissen, T. C., Wisman, P. P., van Holten, T. C., de Groot, P. G., Korporaal, S. J., Koekman, A. C., et al. (2016). The effect of P2Y12 inhibition on platelet activation assessed with aggregation- and flow cytometry-based assays. Platelets, 1–9.

  4. Liu, X., Li, Y., Zhu, H., Zhao, Z., Zhou, Y., Zaske, A. M., et al. (2015). Use of non-contact hopping probe ion conductance microscopy to investigate dynamic morphology of live platelets. Platelets, 26(5), 480–485.

    Article  CAS  PubMed  Google Scholar 

  5. Lof, A., Muller, J. P., Benoit, M., & Brehm, M. A. (2017). Biophysical approaches promote advances in the understanding of von Willebrand factor processing and function. Advances in Biological Regulation, 63, 81–91.

    Article  PubMed  CAS  Google Scholar 

  6. Heijnen, H., & Korporaal, S. (2017). Platelet morphology and ultrastructure. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 21–37). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  7. O'Brien, S., Kent, N. J., Lucitt, M., Ricco, A. J., McAtamney, C., Kenny, D., et al. (2012). Effective hydrodynamic shaping of sample streams in a microfluidic parallel-plate flow-assay device: matching whole blood dynamic viscosity. IEEE Transactions on Biomedical Engineering, 59(2), 374–382.

    Article  PubMed  Google Scholar 

  8. Jen, C. J., & Tai, Y. W. (1992). Morphological study of platelet adhesion dynamics under whole blood flow conditions. Platelets, 3(3), 145–153.

    Article  CAS  PubMed  Google Scholar 

  9. Folie, B. J., & McIntire, L. V. (1989). Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow. Biophysical Journal, 56(6), 1121–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fedosov, D. A., Noguchi, H., & Gompper, G. (2014). Multiscale modeling of blood flow: from single cells to blood rheology. Biomechanics and Modeling in Mechanobiology, 13(2), 239–258.

    Article  PubMed  Google Scholar 

  11. Kumar, A., & Graham, M. D. (2012). Mechanism of margination in confined flows of blood and other multicomponent suspensions. Physical Review Letters, 109(10), 108102.

    Article  PubMed  CAS  Google Scholar 

  12. Tokarev, A. A., Butylin, A. A., & Ataullakhanov, F. I. (2011). Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophysical Journal, 100(4), 799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tokarev, A. A., Butylin, A. A., Ermakova, E. A., Shnol, E. E., Panasenko, G. P., & Ataullakhanov, F. I. (2011). Finite platelet size could be responsible for platelet margination effect. Biophysical Journal, 101(8), 1835–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. Y., Ferrari, M., & Decuzzi, P. (2009). Design of bio-mimetic particles with enhanced vascular interaction. Journal of Biomechanics, 42(12), 1885–1890.

    Article  PubMed  Google Scholar 

  15. Stukelj, R., Schara, K., Bedina-Zavec, A., Sustar, V., Pajnic, M., Paden, L., et al. (2017). Effect of shear stress in the flow through the sampling needle on concentration of nanovesicles isolated from blood. European Journal of Pharmaceutical Sciences, 98, 17–29.

    Article  CAS  PubMed  Google Scholar 

  16. De Gruttola, S., Boomsma, K., & Poulikakos, D. (2005). Computational simulation of a non-newtonian model of the blood separation process. Artificial Organs, 29(12), 949–959.

    Article  PubMed  Google Scholar 

  17. Nesbitt, W. S., Westein, E., Tovar-Lopez, F. J., Tolouei, E., Mitchell, A., Fu, J., et al. (2009). A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nature Medicine, 15(6), 665–673.

    Article  CAS  PubMed  Google Scholar 

  18. Menter, D. G., Steinert, B. W., Sloane, B. F., Gundlach, N., O'Gara, C. Y., Marnett, L. J., et al. (1987). Role of platelet membrane in enhancement of tumor cell adhesion to endothelial cell extracellular matrix. Cancer Research, 47(24 Pt 1), 6751–6762.

    CAS  PubMed  Google Scholar 

  19. Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., & Honn, K. V. (1988). Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Research, 48(14), 4065–4072.

    CAS  PubMed  Google Scholar 

  20. Walsh, T. G., Metharom, P., & Berndt, M. C. (2015). The functional role of platelets in the regulation of angiogenesis. Platelets, 26(3), 199–211.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, K. H., Barazia, A., & Cho, J. (2013). Real-time imaging of heterotypic platelet-neutrophil interactions on the activated endothelium during vascular inflammation and thrombus formation in live mice. Journal of Visualized Experiments, 74.

  22. Spectre, G., Zhu, L., Ersoy, M., Hjemdahl, P., Savion, N., Varon, D., et al. (2012). Platelets selectively enhance lymphocyte adhesion on subendothelial matrix under arterial flow conditions. Thrombosis and Haemostasis, 108(2), 328–337.

    Article  CAS  PubMed  Google Scholar 

  23. Gardiner, E., & Andrews, R. (2017). Platelet adhesion. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 309–319). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  24. Pothapragada, S., Zhang, P., Sheriff, J., Livelli, M., Slepian, M. J., Deng, Y., et al. (2015). A phenomenological particle-based platelet model for simulating filopodia formation during early activation. International Journal of Numerical Methods in Biomedical Engineering, 31(3), e02702.

    Article  Google Scholar 

  25. Kunert, S., Meyer, I., Fleischhauer, S., Wannack, M., Fiedler, J., Shivdasani, R. A., et al. (2009). The microtubule modulator RanBP10 plays a critical role in regulation of platelet discoid shape and degranulation. Blood, 114(27), 5532–5540.

    Article  CAS  PubMed  Google Scholar 

  26. Jackson, S. P., Nesbitt, W. S., & Westein, E. (2009). Dynamics of platelet thrombus formation. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 17–20.

    Article  CAS  PubMed  Google Scholar 

  27. Italiano Jr., J. E., Bergmeier, W., Tiwari, S., Falet, H., Hartwig, J. H., Hoffmeister, K. M., et al. (2003). Mechanisms and implications of platelet discoid shape. Blood, 101(12), 4789–4796.

    Article  CAS  PubMed  Google Scholar 

  28. Hartwig, J. H., Barkalow, K., Azim, A., & Italiano, J. (1999). The elegant platelet: signals controlling actin assembly. Thrombosis and Haemostasis, 82(2), 392–398.

    CAS  PubMed  Google Scholar 

  29. White, J. G., & Rao, G. H. (1998). Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. The American Journal of Pathology, 152(2), 597–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Polanowska-Grabowska, R., Geanacopoulos, M., & Gear, A. R. (1993). Platelet adhesion to collagen via the alpha 2 beta 1 integrin under arterial flow conditions causes rapid tyrosine phosphorylation of pp125FAK. Biochemical Journal, 296(Pt 3), 543–547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Falet, H. (2017). Anatomy of the platelet cytoskeleton. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 139–156). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  32. Nurden, A. T., & Nurden, P. (2014). Congenital platelet disorders and understanding of platelet function. British Journal of Haematology, 165(2), 165–178.

    Article  CAS  PubMed  Google Scholar 

  33. Coburn, L. A., Damaraju, V. S., Dozic, S., Eskin, S. G., Cruz, M. A., & McIntire, L. V. (2011). GPIbalpha-vWF rolling under shear stress shows differences between type 2B and 2M von Willebrand disease. Biophysical Journal, 100(2), 304–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Colace, T. V., & Diamond, S. L. (2013). Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(1), 105–113.

    Article  CAS  PubMed  Google Scholar 

  35. Fredrickson, B. J., Dong, J. F., McIntire, L. V., & Lopez, J. A. (1998). Shear-dependent rolling on von Willebrand factor of mammalian cells expressing the platelet glycoprotein Ib-IX-V complex. Blood, 92(10), 3684–3693.

    CAS  PubMed  Google Scholar 

  36. Jackson, S. P., Mistry, N., & Yuan, Y. (2000). Platelets and the injured vessel wall—“rolling into action”: focus on glycoprotein Ib/V/IX and the platelet cytoskeleton. Trends in Cardiovascular Medicine, 10(5), 192–197.

    Article  CAS  PubMed  Google Scholar 

  37. Yago, T., Lou, J., Wu, T., Yang, J., Miner, J. J., Coburn, L., et al. (2008). Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. The Journal of Clinical Investigation, 118(9), 3195–3207.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Clemetson, K. J. (2007). A short history of platelet glycoprotein Ib complex. Thrombosis and Haemostasis, 98(1), 63–68.

    CAS  PubMed  Google Scholar 

  39. Li, R., & Emsley, J. (2013). The organizing principle of the platelet glycoprotein Ib-IX-V complex. Journal of Thrombosis and Haemostasis, 11(4), 605–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernard, J., & Soulier, J. (1948). Sur une nouvelle variété de dystrophie thrombocytaire-hémorragipare congénitale. Semin Hôp Paris, 24, 3217–3223.

    CAS  Google Scholar 

  41. Ozaki, Y., Suzuki-Inoue, K., & Inoue, O. (2013). Platelet receptors activated via mulitmerization: glycoprotein VI, GPIb-IX-V, and CLEC-2. Journal of Thrombosis and Haemostasis, 11(Suppl 1), 330–339.

    Article  PubMed  Google Scholar 

  42. Bernardo, A., Ball, C., Nolasco, L., Choi, H., Moake, J. L., & Dong, J. F. (2005). Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis, 3(3), 562–570.

    Article  CAS  PubMed  Google Scholar 

  43. De Ceunynck, K., De Meyer, S. F., & Vanhoorelbeke, K. (2013). Unwinding the von Willebrand factor strings puzzle. Blood, 121(2), 270–277.

    Article  PubMed  CAS  Google Scholar 

  44. Desch, A., Strozyk, E. A., Bauer, A. T., Huck, V., Niemeyer, V., Wieland, T., et al. (2012). Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin alphavbeta5-induced secretion of VEGF-A. The American Journal of Pathology, 181(2), 693–705.

    Article  CAS  PubMed  Google Scholar 

  45. Coller, B. S., & Shattil, S. J. (2008). The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood, 112(8), 3011–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, C., & Kim, M. C. (2013). Differences in alpha-beta transmembrane domain interactions among integrins enable diverging integrin signaling. Biochemical and Biophysical Research Communications, 436(3), 406–412.

    Article  CAS  PubMed  Google Scholar 

  47. Kim, C., Lau, T. L., Ulmer, T. S., & Ginsberg, M. H. (2009). Interactions of platelet integrin alphaIIb and beta3 transmembrane domains in mammalian cell membranes and their role in integrin activation. Blood, 113(19), 4747–4753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shattil, S. J. (2009). The beta3 integrin cytoplasmic tail: protein scaffold and control freak. Journal of Thrombosis and Haemostasis, 7(Suppl 1), 210–213.

    Article  CAS  PubMed  Google Scholar 

  49. Nurden, A. T., & Caen, J. P. (1974). An abnormal platelet glycoprotein pattern in three cases of Glanzmann's thrombasthenia. British Journal of Haematology, 28(2), 253–260.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips, D. R., Jenkins, C. S., Luscher, E. F., & Larrieu, M. (1975). Molecular differences of exposed surface proteins on thrombasthenic platelet plasma membranes. Nature, 257(5527), 599–600.

    Article  CAS  PubMed  Google Scholar 

  51. Glanzmann, E. (1918). Hereditare hammorhagische thrombastehnie. Beitr Pathologie Bluplatchen J Kinderkt, 88, 113–141.

    Google Scholar 

  52. Zhang, C., Zhang, L., Zhang, Y., Sun, N., Jiang, S., Fujihara, T. J., et al. (2016). Development of antithrombotic nanoconjugate blocking integrin alpha2beta1-collagen interactions. Scientific Reports, 6, 26292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Szanto, T., Joutsi-Korhonen, L., Deckmyn, H., & Lassila, R. (2012). New insights into von Willebrand disease and platelet function. Seminars in Thrombosis and Hemostasis, 38(1), 55–63.

    Article  CAS  PubMed  Google Scholar 

  54. Maurer, E., Schaff, M., Receveur, N., Bourdon, C., Mercier, L., Nieswandt, B., et al. (2015). Fibrillar cellular fibronectin supports efficient platelet aggregation and procoagulant activity. Thrombosis and Haemostasis, 114(6), 1175–1188.

    Article  PubMed  Google Scholar 

  55. McCarty, O. J., Zhao, Y., Andrew, N., Machesky, L. M., Staunton, D., Frampton, J., et al. (2004). Evaluation of the role of platelet integrins in fibronectin-dependent spreading and adhesion. Journal of Thrombosis and Haemostasis, 2(10), 1823–1833.

    Article  CAS  PubMed  Google Scholar 

  56. Schaff, M., Tang, C., Maurer, E., Bourdon, C., Receveur, N., Eckly, A., et al. (2013). Integrin alpha6beta1 is the main receptor for vascular laminins and plays a role in platelet adhesion, activation, and arterial thrombosis. Circulation, 128(5), 541–552.

    Article  CAS  PubMed  Google Scholar 

  57. Inoue, O., Suzuki-Inoue, K., McCarty, O. J., Moroi, M., Ruggeri, Z. M., Kunicki, T. J., et al. (2006). Laminin stimulates spreading of platelets through integrin alpha6beta1-dependent activation of GPVI. Blood, 107(4), 1405–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clemetson, K. J. (1995). Platelet activation: signal transduction via membrane receptors. Thrombosis and Haemostasis, 74(1), 111–116.

    CAS  PubMed  Google Scholar 

  59. Moroi, M., Jung, S. M., Okuma, M., & Shinmyozu, K. (1989). A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. The Journal of Clinical Investigation, 84(5), 1440–1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Asselin, J., Knight, C. G., Farndale, R. W., Barnes, M. J., & Watson, S. P. (1999). Monomeric (glycine-proline-hydroxyproline)10 repeat sequence is a partial agonist of the platelet collagen receptor glycoprotein VI. Biochemical Journal, 339(Pt 2), 413–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kehrel, B., Wierwille, S., Clemetson, K. J., Anders, O., Steiner, M., Knight, C. G., et al. (1998). Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood, 91(2), 491–499.

    CAS  PubMed  Google Scholar 

  62. Zahid, M., Mangin, P., Loyau, S., Hechler, B., Billiald, P., Gachet, C., et al. (2012). The future of glycoprotein VI as an antithrombotic target. Journal of Thrombosis and Haemostasis, 10(12), 2418–2427.

    Article  CAS  PubMed  Google Scholar 

  63. Li, P., Qiao, J. L., & Xu, K. L. (2017). Advances of studies on platelet GPVI as antithrombotic target—review. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 25(1), 264–269.

    PubMed  Google Scholar 

  64. Poulter, N. S., Pollitt, A. Y., Owen, D. M., Gardiner, E. E., Andrews, R. K., Shimizu, H., et al. (2017). Clustering of glycoprotein VI (GPVI) dimers upon adhesion to collagen as a mechanism to regulate GPVI signaling in platelets. Journal of Thrombosis and Haemostasis, 15(3), 549–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pierre, S., Linke, B., Suo, J., Tarighi, N., Del Turco, D., Thomas, D., et al. (2017). GPVI and thromboxane receptor on platelets promote proinflammatory macrophage phenotypes during cutaneous inflammation. The Journal of Investigative Dermatology, 137(3), 686–695.

    Article  CAS  PubMed  Google Scholar 

  66. Bergmeier, W., & Stefanini, L. (2013). Platelet ITAM signaling. Current Opinion in Hematology, 20(5), 445–450.

    Article  CAS  PubMed  Google Scholar 

  67. Takemoto, A., Okitaka, M., Takagi, S., Takami, M., Sato, S., Nishio, M., et al. (2017). A critical role of platelet TGF-beta release in podoplanin-mediated tumour invasion and metastasis. Scientific Reports, 7, 42186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakazawa, Y., Sato, S., Naito, M., Kato, Y., Mishima, K., Arai, H., et al. (2008). Tetraspanin family member CD9 inhibits aggrus/podoplanin-induced platelet aggregation and suppresses pulmonary metastasis. Blood, 112(5), 1730–1739.

    Article  CAS  PubMed  Google Scholar 

  69. Navarro-Nunez, L., Langan, S. A., Nash, G. B., & Watson, S. P. (2013). The physiological and pathophysiological roles of platelet CLEC-2. Thrombosis and Haemostasis, 109(6), 991–998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Suzuki-Inoue, K., Fuller, G. L., Garcia, A., Eble, J. A., Pohlmann, S., Inoue, O., et al. (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 107(2), 542–549.

    Article  CAS  PubMed  Google Scholar 

  71. Suzuki-Inoue, K., Kato, Y., Inoue, O., Kaneko, M. K., Mishima, K., Yatomi, Y., et al. (2007). Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. The Journal of Biological Chemistry, 282(36), 25993–26001.

    Article  CAS  PubMed  Google Scholar 

  72. Pula, B., Witkiewicz, W., Dziegiel, P., & Podhorska-Okolow, M. (2013). Significance of podoplanin expression in cancer-associated fibroblasts: a comprehensive review. International Journal of Oncology, 42(6), 1849–1857.

    CAS  PubMed  Google Scholar 

  73. Watson, A. A., Brown, J., Harlos, K., Eble, J. A., Walter, T. S., & O'Callaghan, C. A. (2007). The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. The Journal of Biological Chemistry, 282(5), 3165–3172.

    Article  CAS  PubMed  Google Scholar 

  74. Watson, A. A., & O'Callaghan, C. A. (2005). Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 61(Pt 12), 1094–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Suzuki-Inoue, K., Inoue, O., & Ozaki, Y. (2011). Novel platelet activation receptor CLEC-2: from discovery to prospects. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 44–55.

    Article  CAS  PubMed  Google Scholar 

  76. Johnston, G. I., Cook, R. G., & McEver, R. P. (1989). Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell, 56(6), 1033–1044.

    Article  CAS  PubMed  Google Scholar 

  77. Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., & Bainton, D. F. (1985). A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. The Journal of Cell Biology, 101(3), 880–886.

    Article  CAS  PubMed  Google Scholar 

  78. Zarbock, A., Muller, H., Kuwano, Y., & Ley, K. (2009). PSGL-1-dependent myeloid leukocyte activation. Journal of Leukocyte Biology, 86(5), 1119–1124.

    Article  CAS  PubMed  Google Scholar 

  79. Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., & Butcher, E. C. (1991). The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell, 66(5), 921–933.

    Article  CAS  PubMed  Google Scholar 

  80. Polley, M. J., Phillips, M. L., Wayner, E., Nudelman, E., Singhal, A. K., Hakomori, S., et al. (1991). CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proceedings of the National Academy of Sciences of the United States of America, 88(14), 6224–6228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., et al. (1992). The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. The Journal of Cell Biology, 117(4), 895–902.

    Article  CAS  PubMed  Google Scholar 

  82. Habets, K. L., Huizinga, T. W., & Toes, R. E. (2013). Platelets and autoimmunity. European Journal of Clinical Investigation, 43(7), 746–757.

    Article  CAS  PubMed  Google Scholar 

  83. Kazmi, R. S., Cooper, A. J., & Lwaleed, B. A. (2011). Platelet function in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37(2), 131–136.

    Article  PubMed  Google Scholar 

  84. Nurden, A. T. (2011). Platelets, inflammation and tissue regeneration. Thrombosis and Haemostasis, 105(Suppl 1), S13–S33.

    Article  CAS  PubMed  Google Scholar 

  85. Borsig, L. (2008). The role of platelet activation in tumor metastasis. Expert Review of Anticancer Therapy, 8(8), 1247–1255.

    Article  CAS  PubMed  Google Scholar 

  86. Dammacco, F., Vacca, A., Procaccio, P., Ria, R., Marech, I., & Racanelli, V. (2013). Cancer-related coagulopathy (Trousseau's syndrome): review of the literature and experience of a single center of internal medicine. Clinical and Experimental Medicine, 13(2), 85–97.

    Article  CAS  PubMed  Google Scholar 

  87. Erpenbeck, L., & Schon, M. P. (2010). Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood, 115(17), 3427–3436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gay, L. J., & Felding-Habermann, B. (2011). Contribution of platelets to tumour metastasis. Nature Reviews. Cancer, 11(2), 123–134.

    Article  CAS  PubMed  Google Scholar 

  89. Gay, L. J., & Felding-Habermann, B. (2011). Platelets alter tumor cell attributes to propel metastasis: programming in transit. Cancer Cell, 20(5), 553–554.

    Article  CAS  PubMed  Google Scholar 

  90. Kyriazi, V., & Theodoulou, E. (2013). Assessing the risk and prognosis of thrombotic complications in cancer patients. Archives of Pathology & Laboratory Medicine, 137(9), 1286–1295.

    Article  Google Scholar 

  91. McEver, R. P. (1997). Selectin-carbohydrate interactions during inflammation and metastasis. Glycoconjugate Journal, 14(5), 585–591.

    Article  CAS  PubMed  Google Scholar 

  92. Dangel, O., Mergia, E., Karlisch, K., Groneberg, D., Koesling, D., & Friebe, A. (2010). Nitric oxide-sensitive guanylyl cyclase is the only nitric oxide receptor mediating platelet inhibition. Journal of Thrombosis and Haemostasis, 8(6), 1343–1352.

    Article  CAS  PubMed  Google Scholar 

  93. Koziak, K., Sevigny, J., Robson, S. C., Siegel, J. B., & Kaczmarek, E. (1999). Analysis of CD39/ATP diphosphohydrolase (ATPDase) expression in endothelial cells, platelets and leukocytes. Thrombosis and Haemostasis, 82(5), 1538–1544.

    CAS  PubMed  Google Scholar 

  94. Moncada, S., Gryglewski, R., Bunting, S., & Vane, J. R. (1976). An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature, 263(5579), 663–665.

    Article  CAS  PubMed  Google Scholar 

  95. Sabetkar, M., Naseem, K. M., Tullett, J. M., Friebe, A., Koesling, D., & Bruckdorfer, K. R. (2001). Synergism between nitric oxide and hydrogen peroxide in the inhibition of platelet function: the roles of soluble guanylyl cyclase and vasodilator-stimulated phosphoprotein. Nitric Oxide, 5(3), 233–242.

    Article  CAS  PubMed  Google Scholar 

  96. Zimmermann, H. (1999). Nucleotides and cd39: principal modulatory players in hemostasis and thrombosis. Nature Medicine, 5(9), 987–988.

    Article  CAS  PubMed  Google Scholar 

  97. Aleman, M. M., Gardiner, C., Harrison, P., & Wolberg, A. S. (2011). Differential contributions of monocyte- and platelet-derived microparticles towards thrombin generation and fibrin formation and stability. Journal of Thrombosis and Haemostasis, 9(11), 2251–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feng, D., Nagy, J. A., Pyne, K., Dvorak, H. F., & Dvorak, A. M. (1998). Platelets exit venules by a transcellular pathway at sites of F-met peptide-induced acute inflammation in guinea pigs. International Archives of Allergy and Immunology, 116(3), 188–195.

    Article  CAS  PubMed  Google Scholar 

  99. Gawaz, M., & Vogel, S. (2013). Platelets in tissue repair: control of apoptosis and interactions with regenerative cells. Blood, 122(15), 2550–2554.

    Article  CAS  PubMed  Google Scholar 

  100. Lowenhaupt, R. W., Glueck, H. I., Miller, M. A., & Kline, D. L. (1977). Factors which influence blood platelet migration. The Journal of Laboratory and Clinical Medicine, 90(1), 37–45.

    CAS  PubMed  Google Scholar 

  101. Nathan, P. (1973). The migration of human platelets in vitro. Thrombosis et Diathesis Haemorrhagica, 30(1), 173–177.

    CAS  PubMed  Google Scholar 

  102. Schmidt, E. M., Munzer, P., Borst, O., Kraemer, B. F., Schmid, E., Urban, B., et al. (2011). Ion channels in the regulation of platelet migration. Biochemical and Biophysical Research Communications, 415(1), 54–60.

    Article  CAS  PubMed  Google Scholar 

  103. Banerjee, D., Mazumder, S., & Kumar Sinha, A. (2016). Involvement of nitric oxide on calcium mobilization and arachidonic acid pathway activation during platelet aggregation with different aggregating agonists. International Journal of Biomedical Sciences, 12(1), 25–35.

    Google Scholar 

  104. Philipose, S., Konya, V., Lazarevic, M., Pasterk, L. M., Marsche, G., Frank, S., et al. (2012). Laropiprant attenuates EP3 and TP prostanoid receptor-mediated thrombus formation. PloS One, 7(8), e40222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Feletou, M., Huang, Y., & Vanhoutte, P. M. (2010). Vasoconstrictor prostanoids. Pflügers Archiv, 459(6), 941–950.

    Article  CAS  PubMed  Google Scholar 

  106. Kandhi, S., Zhang, B., Froogh, G., Qin, J., Alruwali, N., Le, Y., et al. (2017). EETs promote hypoxic pulmonary vasoconstriction via constrictor prostanoids. American Journal of Physiology. Lung Cellular and Molecular Physiology ajplung 00038 02017.

  107. Bhagwat, S. S., Hamann, P. R., Still, W. C., Bunting, S., & Fitzpatrick, F. A. (1985). Synthesis and structure of the platelet aggregation factor thromboxane A2. Nature, 315(6019), 511–513.

    Article  CAS  Google Scholar 

  108. Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fukami, M. H., & Salganicoff, L. (1977). Human platelet storage organelles. A review. Thrombosis and Haemostasis, 38(4), 963–970.

    CAS  PubMed  Google Scholar 

  110. Koseoglu, S., & Flaumenhaft, R. (2013). Advances in platelet granule biology. Current Opinion in Hematology, 20(5), 464–471.

    Article  PubMed  Google Scholar 

  111. Wihlborg, A. K., Wang, L., Braun, O. O., Eyjolfsson, A., Gustafsson, R., Gudbjartsson, T., et al. (2004). ADP receptor P2Y12 is expressed in vascular smooth muscle cells and stimulates contraction in human blood vessels. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(10), 1810–1815.

    Article  CAS  PubMed  Google Scholar 

  112. Goschnick, M. W., & Jackson, D. E. (2007). Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Reviews in Medicinal Chemistry, 7(12), 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  113. Haining, E. J., Yang, J., & Tomlinson, M. G. (2011). Tetraspanin microdomains: fine-tuning platelet function. Biochemical Society Transactions, 39(2), 518–523.

    Article  CAS  PubMed  Google Scholar 

  114. Protty, M. B., Watkins, N. A., Colombo, D., Thomas, S. G., Heath, V. L., Herbert, J. M., et al. (2009). Identification of Tspan9 as a novel platelet tetraspanin and the collagen receptor GPVI as a component of tetraspanin microdomains. Biochemical Journal, 417(1), 391–400.

    Article  CAS  PubMed  Google Scholar 

  115. Israels, S. J., McMillan, E. M., Robertson, C., Singhory, S., & McNicol, A. (1996). The lysosomal granule membrane protein, LAMP-2, is also present in platelet dense granule membranes. Thrombosis and Haemostasis, 75(4), 623–629.

    CAS  PubMed  Google Scholar 

  116. Xu, L., Harada, H., & Taniguchi, A. (2008). The effects of LAMP1 and LAMP3 on M180 amelogenin uptake, localization and amelogenin mRNA induction by amelogenin protein. Journal of Biochemistry, 144(4), 531–537.

    Article  CAS  PubMed  Google Scholar 

  117. Vanags, D. M., Rodgers, S. E., Duncan, E. M., Lloyd, J. V., & Bochner, F. (1992). Potentiation of ADP-induced aggregation in human platelet-rich plasma by 5-hydroxytryptamine and adrenaline. British Journal of Pharmacology, 106(4), 917–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Petito, E., Momi, S., & Gresele, P. (2017). The migration of platelets and their interaction with other migrating cells. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 337–351). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  119. Sandri, G., Bonferoni, M. C., Rossi, S., Ferrari, F., Mori, M., Cervio, M., et al. (2015). Platelet lysate embedded scaffolds for skin regeneration. Expert Opinion on Drug Delivery, 12(4), 525–545.

    Article  CAS  PubMed  Google Scholar 

  120. Kurokawa, T., & Ohkohchi, N. (2017). Platelets in liver disease, cancer and regeneration. World Journal of Gastroenterology, 23(18), 3228–3239.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mancuso, M. E., & Santagostino, E. (2017). Platelets: much more than bricks in a breached wall. British Journal of Haematology, 4, 1–10.

  122. Anitua, E., Troya, M., Zalduendo, M., & Orive, G. (2017). Personalized plasma-based medicine to treat age-related diseases. Materials Science & Engineering. C, Materials for Biological Applications, 74, 459–464.

    Article  CAS  Google Scholar 

  123. Meschi, N., Castro, A. B., Vandamme, K., Quirynen, M., & Lambrechts, P. (2016). The impact of autologous platelet concentrates on endodontic healing: a systematic review. Platelets, 27(7), 613–633.

    Article  CAS  PubMed  Google Scholar 

  124. Mlynarek, R. A., Kuhn, A. W., & Bedi, A. (2016). Platelet-rich plasma (PRP) in orthopedic sports medicine. American Journal of Orthopedics (Belle Mead, N.J.), 45(5), 290–326.

    Google Scholar 

  125. Goubran, H. A., Stakiw, J., Radosevic, M., & Burnouf, T. (2014). Platelets effects on tumor growth. Seminars in Oncology, 41(3), 359–369.

    Article  CAS  PubMed  Google Scholar 

  126. Unwith, S., Zhao, H., Hennah, L., & Ma, D. (2015). The potential role of HIF on tumour progression and dissemination. International Journal of Cancer, 136(11), 2491–2503.

    Article  CAS  PubMed  Google Scholar 

  127. Schmidt, E. M., Kraemer, B. F., Borst, O., Munzer, P., Schonberger, T., Schmidt, C., et al. (2012). SGK1 sensitivity of platelet migration. Cellular Physiology and Biochemistry, 30(1), 259–268.

    Article  CAS  PubMed  Google Scholar 

  128. Kraemer, B. F., Borst, O., Gehring, E. M., Schoenberger, T., Urban, B., Ninci, E., et al. (2010). PI3 kinase-dependent stimulation of platelet migration by stromal cell-derived factor 1 (SDF-1). Journal of Molecular Medicine (Berlin), 88(12), 1277–1288.

    Article  CAS  Google Scholar 

  129. Brandt, E., Ludwig, A., Petersen, F., & Flad, H. D. (2000). Platelet-derived CXC chemokines: old players in new games. Immunological Reviews, 177, 204–216.

    Article  CAS  PubMed  Google Scholar 

  130. Stone, R. L., Nick, A. M., McNeish, I. A., Balkwill, F., Han, H. D., Bottsford-Miller, J., et al. (2012). Paraneoplastic thrombocytosis in ovarian cancer. The New England Journal of Medicine, 366(7), 610–618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kraemer, B. F., Schmidt, C., Urban, B., Bigalke, B., Schwanitz, L., Koch, M., et al. (2011). High shear flow induces migration of adherent human platelets. Platelets, 22(6), 415–421.

    Article  CAS  PubMed  Google Scholar 

  132. Chatterjee, M., Huang, Z., Zhang, W., Jiang, L., Hultenby, K., Zhu, L., et al. (2011). Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood, 117(14), 3907–3911.

    Article  CAS  PubMed  Google Scholar 

  133. Shenkman, B., Brill, A., Brill, G., Lider, O., Savion, N., & Varon, D. (2004). Differential response of platelets to chemokines: RANTES non-competitively inhibits stimulatory effect of SDF-1 alpha. Journal of Thrombosis and Haemostasis, 2(1), 154–160.

    Article  CAS  PubMed  Google Scholar 

  134. Gleissner, C. A., von Hundelshausen, P., & Ley, K. (2008). Platelet chemokines in vascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(11), 1920–1927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rossaint, J., & Zarbock, A. (2015). Platelets in leucocyte recruitment and function. Cardiovascular Research, 107(3):386–95.

  136. Garraud, O., Berthet, J., Hamzeh-Cognasse, H., & Cognasse, F. (2011). Pathogen sensing, subsequent signalling, and signalosome in human platelets. Thrombosis Research, 127(4), 283–286.

    Article  CAS  PubMed  Google Scholar 

  137. von Hundelshausen, P., & Weber, C. (2007). Platelets as immune cells: bridging inflammation and cardiovascular disease. Circulation Research, 100(1), 27–40.

    Article  CAS  Google Scholar 

  138. Rath, D., Chatterjee, M., Borst, O., Muller, K., Langer, H., Mack, A. F., et al. (2015). Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. Journal of Thrombosis and Haemostasis, 13(5), 719–728.

    Article  CAS  PubMed  Google Scholar 

  139. Rafii, S., Cao, Z., Lis, R., Siempos, I. I., Chavez, D., Shido, K., et al. (2015). Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nature Cell Biology, 17(2), 123–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chatterjee, M., Seizer, P., Borst, O., Schonberger, T., Mack, A., Geisler, T., et al. (2014). SDF-1alpha induces differential trafficking of CXCR4-CXCR7 involving cyclophilin A, CXCR7 ubiquitination and promotes platelet survival. The FASEB Journal, 28(7), 2864–2878.

    Article  CAS  PubMed  Google Scholar 

  141. Rath, D., Chatterjee, M., Borst, O., Muller, K., Stellos, K., Mack, A. F., et al. (2014). Expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 on circulating platelets of patients with acute coronary syndrome and association with left ventricular functional recovery. European Heart Journal, 35(6), 386–394.

    Article  CAS  PubMed  Google Scholar 

  142. Iannacone, M. (2016). Platelet-mediated modulation of adaptive immunity. Seminars in Immunology, 28(6), 555–560.

    Article  CAS  PubMed  Google Scholar 

  143. Danese, S., & Fiocchi, C. (2016). Endothelial cell-immune cell interaction in IBD. Digestive Diseases, 34(1–2), 43–50.

    Article  PubMed  Google Scholar 

  144. Chatterjee, M., & Geisler, T. (2016). Inflammatory contribution of platelets revisited: new players in the arena of inflammation. Seminars in Thrombosis and Hemostasis, 42(3), 205–214.

    Article  CAS  PubMed  Google Scholar 

  145. Carestia, A., Kaufman, T., & Schattner, M. (2016). Platelets: new bricks in the building of neutrophil extracellular traps. Frontiers in Immunology, 7, 271.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lam, F. W., Vijayan, K. V., & Rumbaut, R. E. (2015). Platelets and their interactions with other immune cells. Comprehensive Physiology, 5(3), 1265–1280.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Kapur, R., Zufferey, A., Boilard, E., & Semple, J. W. (2015). Nouvelle cuisine: platelets served with inflammation. Journal of Immunology, 194(12), 5579–5587.

    Article  CAS  Google Scholar 

  148. Cognasse, F., Nguyen, K. A., Damien, P., McNicol, A., Pozzetto, B., Hamzeh-Cognasse, H., et al. (2015). The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 6, 83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Chatterjee, M., Rath, D., & Gawaz, M. (2015). Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochemical Society Transactions, 43(4), 720–726.

    Article  CAS  PubMed  Google Scholar 

  150. Varki, A. (2011). Since there are PAMPs and DAMPs, there must be SAMPs? Glycan “self-associated molecular patterns” dampen innate immunity, but pathogens can mimic them. Glycobiology, 21(9), 1121–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Menter, D. G., Steinert, B. W., Sloane, B. F., Taylor, J. D., & Honn, K. V. (1987). A new in vitro model for investigation of tumor cell-platelet-endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Research, 47(9), 2425–2432.

    CAS  PubMed  Google Scholar 

  152. Chopra, H., Timar, J., Rong, X., Grossi, I. M., Hatfield, J. S., Fligiel, S. E., et al. (1992). Is there a role for the tumor cell integrin alpha IIb beta 3 and cytoskeleton in tumor cell-platelet interaction? Clinical & Experimental Metastasis, 10(2), 125–137.

    Article  CAS  Google Scholar 

  153. Bennett, J. S., Zigmond, S., Vilaire, G., Cunningham, M. E., & Bednar, B. (1999). The platelet cytoskeleton regulates the affinity of the integrin alpha(IIb)beta(3) for fibrinogen. The Journal of Biological Chemistry, 274(36), 25301–25307.

    Article  CAS  PubMed  Google Scholar 

  154. Breckenridge, M. T., Egelhoff, T. T., & Baskaran, H. (2010). A microfluidic imaging chamber for the direct observation of chemotactic transmigration. Biomedical Microdevices, 12(3), 543–553.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Ellingsen, T., Storgaard, M., Moller, B. K., Buus, A., Andersen, P. L., Obel, N., et al. (2000). Migration of mononuclear cells in the modified Boyden chamber as evaluated by DNA quantification and flow cytometry. Scandinavian Journal of Immunology, 52(3), 257–263.

    Article  CAS  PubMed  Google Scholar 

  156. Friedl, P., Wolf, K., & Lammerding, J. (2011). Nuclear mechanics during cell migration. Current Opinion in Cell Biology, 23(1), 55–64.

    Article  CAS  PubMed  Google Scholar 

  157. Bdeir, K., Gollomp, K., Stasiak, M., Mei, J., Papiewska-Pajak, I., Zhao, G., et al. (2017). Platelet-specific chemokines contribute to the pathogenesis of acute lung injury. American Journal of Respiratory Cell and Molecular Biology, 56(2), 261–270.

    CAS  PubMed  Google Scholar 

  158. Bruce, I. J., & Kerry, R. (1987). The effect of chloramphenicol and cycloheximide on platelet aggregation and protein synthesis. Biochemical Pharmacology, 36(11), 1769–1773.

    Article  CAS  PubMed  Google Scholar 

  159. Borisova, T. A., & Markosian, R. A. (1977). Age and biosynthesis and breakdown of thrombocyte proteins. Biulleten' Eksperimental'noĭ Biologii i Meditsiny, 83(1), 20–21.

    CAS  PubMed  Google Scholar 

  160. Pagel, O., Walter, E., Jurk, K., & Zahedi, R. P. (2017). Taking the stock of granule cargo: platelet releasate proteomics. Platelets, 28(2), 119–128.

    Article  CAS  PubMed  Google Scholar 

  161. Melki, I., Tessandier, N., Zufferey, A., & Boilard, E. (2017). Platelet microvesicles in health and disease. Platelets, 28(3), 214–221.

    Article  CAS  PubMed  Google Scholar 

  162. Wang, Z. T., Wang, Z., & Hu, Y. W. (2016). Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis, 248, 10–16.

    Article  CAS  PubMed  Google Scholar 

  163. Franco, A. T., Corken, A., & Ware, J. (2015). Platelets at the interface of thrombosis, inflammation, and cancer. Blood, 126(5), 582–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cointe, S., Lacroix, R., & Dignat-George, F. (2017). Platelet-derived microparticles. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 379–392). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  165. Zilberman-Rudenko, J., Sylman, J. L., Lakshmanan, H. H. S., McCarty, O. J. T., & Maddala, J. (2017). Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cellular and Molecular Bioengineering, 10(1), 16–29.

    Article  CAS  PubMed  Google Scholar 

  166. Whyte, C. S., Mitchell, J. L., & Mutch, N. J. (2017). Platelet-mediated modulation of fibrinolysis. Seminars in Thrombosis and Hemostasis, 43(2), 115–128.

    Article  CAS  PubMed  Google Scholar 

  167. Biolik, G., Kokot, M., Sznapka, M., Swieszek, A., Ziaja, D., Pawlicki, K., et al. (2017). Platelet reactivity in thromboelastometry. Revision of the FIBTEM test: a basic study. Scandinavian Journal of Clinical and Laboratory Investigation, 77(3), 216–222.

    Article  CAS  PubMed  Google Scholar 

  168. Mammadova-Bach, E., Ollivier, V., Loyau, S., Schaff, M., Dumont, B., Favier, R., et al. (2015). Platelet glycoprotein VI binds to polymerized fibrin and promotes thrombin generation. Blood, 126(5), 683–691.

    Article  CAS  PubMed  Google Scholar 

  169. Kral, J. B., Schrottmaier, W. C., Salzmann, M., & Assinger, A. (2016). Platelet interaction with innate immune cells. Transfusion Medicine and Hemotherapy, 43(2), 78–88.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Clark, S. R., Ma, A. C., Tavener, S. A., McDonald, B., Goodarzi, Z., Kelly, M. M., et al. (2007). Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Medicine, 13(4), 463–469.

    Article  CAS  PubMed  Google Scholar 

  171. Joshi, S., & Whiteheart, S. W. (2017). The nuts and bolts of the platelet release reaction. Platelets, 28(2), 129–137.

    Article  CAS  PubMed  Google Scholar 

  172. Suades, R., Padro, T., & Badimon, L. (2015). The role of blood-borne microparticles in inflammation and hemostasis. Seminars in Thrombosis and Hemostasis, 41(6), 590–606.

    Article  CAS  PubMed  Google Scholar 

  173. Gill, P., Jindal, N. L., Jagdis, A., & Vadas, P. (2015). Platelets in the immune response: revisiting platelet-activating factor in anaphylaxis. The Journal of Allergy and Clinical Immunology, 135(6), 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  174. Momi, S., & Wiwanitkit, V. (2017). Phylogeny of blood platelets. In P. Gresele, N. Kleiman, J. Lopez, & C. Page (Eds.), Platelets in thrombotic and non-thrombotic disorders (Vol. 2, pp. 11–19). Switzerland: Springer International Publishing.

    Chapter  Google Scholar 

  175. Roch, G. J., & Sherwood, N. M. (2014). Glycoprotein hormones and their receptors emerged at the origin of metazoans. Genome Biology and Evolution, 6(6), 1466–1479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. He, W., Tang, Y., Qi, B., Lu, C., Qin, C., Wei, Y., et al. (2014). Phylogenetic analysis and positive-selection site detecting of vascular endothelial growth factor family in vertebrates. Gene, 535(2), 345–352.

    Article  CAS  PubMed  Google Scholar 

  177. Mercer, P. F., & Chambers, R. C. (2013). Coagulation and coagulation signalling in fibrosis. Biochimica et Biophysica Acta, 1832(7), 1018–1027.

    Article  CAS  PubMed  Google Scholar 

  178. Yamaguchi, Y., & Yoshikawa, K. (2001). Cutaneous wound healing: an update. The Journal of Dermatology, 28(10), 521–534.

    Article  CAS  PubMed  Google Scholar 

  179. Gerarduzzi, C., & Di Battista, J. A. (2017). Myofibroblast repair mechanisms post-inflammatory response: a fibrotic perspective. Inflammation Research, 66(6), 451–465.

    Article  CAS  PubMed  Google Scholar 

  180. Greaves, N. S., Ashcroft, K. J., Baguneid, M., & Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of Dermatological Science, 72(3), 206–217.

    Article  CAS  PubMed  Google Scholar 

  181. Carthy, J. M. (2017). TGFbeta signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. Journal of Cellular Physiology. doi:10.1002/jcp.25879.

  182. Ghosh, D., McGrail, D. J., & Dawson, M. R. (2017). TGF-beta1 pretreatment improves the function of mesenchymal stem cells in the wound bed. Frontiers in Cell and Development Biology, 5, 28.

    Article  Google Scholar 

  183. Valcourt, U., Carthy, J., Okita, Y., Alcaraz, L., Kato, M., Thuault, S., et al. (2016). Analysis of epithelial-mesenchymal transition induced by transforming growth factor beta. Methods in Molecular Biology, 1344, 147–181.

    Article  PubMed  Google Scholar 

  184. Das, U. N. (2016). Inflammatory bowel disease as a disorder of an imbalance between pro- and anti-inflammatory molecules and deficiency of resolution bioactive lipids. Lipids in Health and Disease, 15, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Gensel, J. C., & Zhang, B. (2015). Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Research, 1619, 1–11.

    Article  CAS  PubMed  Google Scholar 

  186. Shinde, A. V., & Frangogiannis, N. G. (2014). Fibroblasts in myocardial infarction: a role in inflammation and repair. Journal of Molecular and Cellular Cardiology, 70, 74–82.

    Article  CAS  PubMed  Google Scholar 

  187. Arwert, E. N., Hoste, E., & Watt, F. M. (2012). Epithelial stem cells, wound healing and cancer. Nature Reviews. Cancer, 12(3), 170–180.

    Article  CAS  PubMed  Google Scholar 

  188. Dovizio, M., Sacco, A., & Patrignani, P. (2017). Curbing tumorigenesis and malignant progression through the pharmacological control of the wound healing process. Vascular Pharmacology, 89, 1–11.

    Article  CAS  PubMed  Google Scholar 

  189. Dvorak, H. F. (2015). Tumors: wounds that do not heal-redux. Cancer Immunology Research, 3(1), 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lichtenberger, L., Fang, D., Bick, R., Poindexter, B., Phan, T., Bergeron, A., et al. (2017). Unlocking aspirin's chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Reseach, 10, 142–152.

    Article  CAS  Google Scholar 

  191. Menter, D. G., Hatfield, J. S., Harkins, C., Sloane, B. F., Taylor, J. D., Crissman, J. D., et al. (1987). Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clinical & Experimental Metastasis, 5(1), 65–78.

    Article  CAS  Google Scholar 

  192. Menter, D. G., Harkins, C., Onoda, J., Riorden, W., Sloane, B. F., Taylor, J. D., et al. (1987). Inhibition of tumor cell induced platelet aggregation by prostacyclin and carbacyclin: an ultrastructural study. Invasion & Metastasis, 7(2), 109–128.

    CAS  Google Scholar 

  193. Umar, A., Steele, V. E., Menter, D. G., & Hawk, E. T. (2016). Mechanisms of nonsteroidal anti-inflammatory drugs in cancer prevention. Seminars in Oncology, 43(1), 65–77.

    Article  CAS  PubMed  Google Scholar 

  194. Drew, D. A., Cao, Y., & Chan, A. T. (2016). Aspirin and colorectal cancer: the promise of precision chemoprevention. Nature Reviews. Cancer, 16(3), 173–186.

    Article  CAS  PubMed  Google Scholar 

  195. Holmes, C. E., Jasielec, J., Levis, J. E., Skelly, J., & Muss, H. B. (2013). Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clinical and Translational Science, 6(5), 386–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bardia, A., Ebbert, J. O., Vierkant, R. A., Limburg, P. J., Anderson, K., Wang, A. H., et al. (2007). Association of aspirin and nonaspirin nonsteroidal anti-inflammatory drugs with cancer incidence and mortality. Journal of the National Cancer Institute, 99(11), 881–889.

    Article  CAS  PubMed  Google Scholar 

  197. Bosetti, C., Rosato, V., Gallus, S., Cuzick, J., & La Vecchia, C. (2012). Aspirin and cancer risk: a quantitative review to 2011. Annals of Oncology, 23(6), 1403–1415.

    Article  CAS  PubMed  Google Scholar 

  198. Chan, A. T., Manson, J. E., Feskanich, D., Stampfer, M. J., Colditz, G. A., & Fuchs, C. S. (2007). Long-term aspirin use and mortality in women. Archives of Internal Medicine, 167(6), 562–572.

    Article  PubMed  Google Scholar 

  199. Ratnasinghe, L. D., Graubard, B. I., Kahle, L., Tangrea, J. A., Taylor, P. R., & Hawk, E. (2004). Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Research, 24(5B), 3177–3184.

    PubMed  Google Scholar 

  200. Sandler, R. S., Halabi, S., Baron, J. A., Budinger, S., Paskett, E., Keresztes, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. The New England Journal of Medicine, 348(10), 883–890.

    Article  CAS  PubMed  Google Scholar 

  201. Baron, J. A., Cole, B. F., Sandler, R. S., Haile, R. W., Ahnen, D., Bresalier, R., et al. (2003). A randomized trial of aspirin to prevent colorectal adenomas. The New England Journal of Medicine, 348(10), 891–899.

    Article  CAS  PubMed  Google Scholar 

  202. Burn, J., Gerdes, A. M., Macrae, F., Mecklin, J. P., Moeslein, G., Olschwang, S., et al. (2011). Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet, 378(9809), 2081–2087.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Drew, D. A., Chin, S. M., Gilpin, K. K., Parziale, M., Pond, E., Schuck, M. M., et al. (2017). ASPirin intervention for the REDuction of colorectal cancer risk (ASPIRED): a study protocol for a randomized controlled trial. Trials, 18(1), 50.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: a potent antimetastatic agent. Science, 212(4500), 1270–1272.

    Article  CAS  PubMed  Google Scholar 

  205. Honn, K. V., Menter, D., Cavanaugh, P. G., Neagos, G., Moilanen, D., Taylor, J. D., et al. (1983). A review of prostaglandins and the treatment of tumor metastasis. Acta Clinica Belgica, 38(1), 53–67.

    Article  CAS  PubMed  Google Scholar 

  206. Gasic, G. J., Gasic, T. B., & Stewart, C. C. (1968). Antimetastatic effects associated with platelet reduction. Proceedings of the National Academy of Sciences of the United States of America, 61(1), 46–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Woods, J. R. (1964). Experimental studies of the intravascular dissemination of Ascitic V2 carcinoma cells in the rabbit, with special reference to fibrinogen and fibrinolytic agents. Bulletin der Schweizerischen Akademie der Medizinischen Wissenschaften, 20, 92–121.

    CAS  PubMed  Google Scholar 

  208. Horejsova, M., Pavlickova, V., Koukolik, F., & Strritesky, J. (1995). Morphologic verification of neoplastic portal vein obstruction. Casopís Lékar̆ů C̆eských, 134(20), 655–657.

    CAS  PubMed  Google Scholar 

  209. Benazzi, C., Al-Dissi, A., Chau, C. H., Figg, W. D., Sarli, G., de Oliveira, J. T., et al. (2014). Angiogenesis in spontaneous tumors and implications for comparative tumor biology. ScientificWorldJournal, 2014, 919570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Fein, M. R., & Egeblad, M. (2013). Caught in the act: revealing the metastatic process by live imaging. Disease Models & Mechanisms, 6(3), 580–593.

    Article  Google Scholar 

  211. Starke, J., Wehrle-Haller, B., & Friedl, P. (2014). Plasticity of the actin cytoskeleton in response to extracellular matrix nanostructure and dimensionality. Biochemical Society Transactions, 42(5), 1356–1366.

    Article  CAS  PubMed  Google Scholar 

  212. Gritsenko, P. G., Ilina, O., & Friedl, P. (2012). Interstitial guidance of cancer invasion. The Journal of Pathology, 226(2), 185–199.

    Article  CAS  PubMed  Google Scholar 

  213. Friedl, P., Sahai, E., Weiss, S., & Yamada, K. M. (2012). New dimensions in cell migration. Nature Reviews. Molecular Cell Biology, 13(11), 743–747.

    Article  CAS  PubMed  Google Scholar 

  214. Friedl, P., Wolf, K., & Zegers, M. M. (2014). Rho-directed forces in collective migration. Nature Cell Biology, 16(3), 208–210.

    Article  CAS  PubMed  Google Scholar 

  215. Haeger, A., Krause, M., Wolf, K., & Friedl, P. (2014). Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochimica et Biophysica Acta, 1840(8), 2386–2395.

    Article  CAS  PubMed  Google Scholar 

  216. Deng, G., Krishnakumar, S., Powell, A. A., Zhang, H., Mindrinos, M. N., Telli, M. L., et al. (2014). Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow. BMC Cancer, 14, 456.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Powell, A. A., Talasaz, A. H., Zhang, H., Coram, M. A., Reddy, A., Deng, G., et al. (2012). Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PloS One, 7(5), e33788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Tang, J., Gao, X., Zhi, M., Zhou, H. M., Zhang, M., Chen, H. W., et al. (2015). Plateletcrit: a sensitive biomarker for evaluating disease activity in Crohn's disease with low hs-CRP. Journal of Digestive Diseases, 16(3), 118–124.

    Article  CAS  PubMed  Google Scholar 

  219. Pasula, S., Cai, X., Dong, Y., Messa, M., McManus, J., Chang, B., et al. (2012). Endothelial epsin deficiency decreases tumor growth by enhancing VEGF signaling. The Journal of Clinical Investigation, 122(12), 4424–4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Hellberg, C., Ostman, A., & Heldin, C. H. (2010). PDGF and vessel maturation. Recent Results in Cancer Research, 180, 103–114.

    Article  CAS  PubMed  Google Scholar 

  221. Carmeliet, P. (2005). VEGF as a key mediator of angiogenesis in cancer. Oncology, 69(Suppl 3), 4–10.

    Article  CAS  PubMed  Google Scholar 

  222. Keskin, D., Kim, J., Cooke, V. G., Wu, C. C., Sugimoto, H., Gu, C., et al. (2015). Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Reports, 10(7), 1066–1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Nagy, J. A., Dvorak, A. M., & Dvorak, H. F. (2012). Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspectives in Medicine, 2(2), a006544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Fukumura, D., & Jain, R. K. (2008). Imaging angiogenesis and the microenvironment. APMIS, 116(7–8), 695–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kisucka, J., Butterfield, C. E., Duda, D. G., Eichenberger, S. C., Saffaripour, S., Ware, J., et al. (2006). Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proceedings of the National Academy of Sciences of the United States of America, 103(4), 855–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schumacher, D., Strilic, B., Sivaraj, K. K., Wettschureck, N., & Offermanns, S. (2013). Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell, 24(1), 130–137.

    Article  CAS  PubMed  Google Scholar 

  227. O'Byrne, K. J., & Steward, W. P. (2001). Tumour angiogenesis: a novel therapeutic target in patients with malignant disease. Expert Opinion on Emerging Drugs, 6(1), 155–174.

    PubMed  Google Scholar 

  228. Satelli, A., Mitra, A., Brownlee, Z., Xia, X., Bellister, S., Overman, M. J., et al. (2015). Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clinical Cancer Research, 21(4), 899–906.

    Article  CAS  PubMed  Google Scholar 

  229. Labelle, M., & Hynes, R. O. (2012). The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discovery, 2(12), 1091–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20(5), 576–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. van Es, N., Sturk, A., Middeldorp, S., & Nieuwland, R. (2014). Effects of cancer on platelets. Seminars in Oncology, 41(3), 311–318.

    Article  PubMed  CAS  Google Scholar 

  232. Nistico, P., Bissell, M. J., & Radisky, D. C. (2012). Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harbor Perspectives in Biology, 4(2), 1–10.

  233. Gresele, P., Falcinelli, E., Sebastiano, M., & Momi, S. (2017). Matrix metalloproteinases and platelet function. Progress in Molecular Biology and Translational Science, 147, 133–165.

    Article  PubMed  Google Scholar 

  234. Fidler, I. J. (1978). Tumor heterogeneity and the biology of cancer invasion and metastasis. Cancer Research, 38(9), 2651–2660.

    CAS  PubMed  Google Scholar 

  235. Billroth, T. (1878). Lectures on surgical pathology and therapeutics, a handbook for students and practitioners (Vol. II). London: The New Sydenham Society.

    Google Scholar 

  236. Johnson, J. H., & Woods, J. R. (1963). An in vitro study of fibrinolytic agents on V2 carcinoma cells and intravascular thrombi in rabbits. Bulletin of the Johns Hopkins Hospital, 113, 335–346.

    CAS  PubMed  Google Scholar 

  237. Baserga, R., & Saffiotti, U. (1955). Experimental studies on histogenesis of blood-borne metastases. A.M.A. Archives of Pathology, 59(1), 26–34.

    CAS  PubMed  Google Scholar 

  238. Jones, D. S., Wallace, A. C., & Fraser, E. E. (1971). Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. Journal of the National Cancer Institute, 46(3), 493–504.

    CAS  PubMed  Google Scholar 

  239. Chew, E. C., & Wallace, A. C. (1976). Demonstration of fibrin in early stages of experimental metastases. Cancer Research, 36(6), 1904–1909.

    CAS  PubMed  Google Scholar 

  240. Warren, B. A., & Vales, O. (1972). The adhesion of thromboplastic tumour emboli to vessel walls in vivo. British Journal of Experimental Pathology, 53(3), 301–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Warren, B. A., & Vales, O. (1972). The release of vesicles from platelets following adhesion to vessel walls in vitro. British Journal of Experimental Pathology, 53(2), 206–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Warren, B. A. (1976). Some aspects of blood borne tumour emboli associated with thrombosis. Zeitschrift für Krebsforschung und Klinische Onkologie. Cancer Research and Clinical Oncology, 87(1), 1–15.

    CAS  PubMed  Google Scholar 

  243. Kinjo, M. (1978). Lodgement and extravasation of tumour cells in blood-borne metastasis: an electron microscope study. British Journal of Cancer, 38(2), 293–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Gastpar, H. (1978). Inhibition of cancer cell stickiness, a model for the testing of in vivo thrombocyte aggregation inhibitors. IV. Effect of sulfinpyrazone. Fortschritte der Medizin, 96(36), 1823–1827.

    CAS  PubMed  Google Scholar 

  245. Paul, C. D., Mistriotis, P., & Konstantopoulos, K. (2017). Cancer cell motility: lessons from migration in confined spaces. Nature Reviews. Cancer, 17(2), 131–140.

    Article  CAS  PubMed  Google Scholar 

  246. Tonisen, F., Perrin, L., Bayarmagnai, B., van den Dries, K., Cambi, A., & Gligorijevic, B. (2017). EP4 receptor promotes invadopodia and invasion in human breast cancer. European Journal of Cell Biology, 96(2), 218–226.

    Article  PubMed  CAS  Google Scholar 

  247. Lonsdorf, A. S., Kramer, B. F., Fahrleitner, M., Schonberger, T., Gnerlich, S., Ring, S., et al. (2012). Engagement of alphaIIbbeta3 (GPIIb/IIIa) with alphanubeta3 integrin mediates interaction of melanoma cells with platelets: a connection to hematogenous metastasis. The Journal of Biological Chemistry, 287(3), 2168–2178.

    Article  CAS  PubMed  Google Scholar 

  248. Lichtenberger, L. M., Fang, D., Bick, R. J., Poindexter, B. J., Phan, T., Bergeron, A. L., et al. (2017). Unlocking aspirin’s chemopreventive activity: role of irreversibly inhibiting platelet cyclooxygenase-1. Cancer Prevention Research (Philadelphia, Pa.), 10(2), 142–152.

    Article  CAS  Google Scholar 

  249. Hu, Q., Wang, M., Cho, M. S., Wang, C., Nick, A. M., Thiagarajan, P., et al. (2016). Lipid profile of platelets and platelet-derived microparticles in ovarian cancer. BBA Clin, 6, 76–81.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Haemmerle, M., Bottsford-Miller, J., Pradeep, S., Taylor, M. L., Choi, H. J., Hansen, J. M., et al. (2016). FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. The Journal of Clinical Investigation, 126(5), 1885–1896.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Qi, C., Li, B., Guo, S., Wei, B., Shao, C., Li, J., et al. (2015). P-selectin-mediated adhesion between platelets and tumor cells promotes intestinal tumorigenesis in Apc(min/+) mice. International Journal of Biological Sciences, 11(6), 679–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.

    CAS  PubMed  Google Scholar 

  253. Oleksowicz, L., Mrowiec, Z., Schwartz, E., Khorshidi, M., Dutcher, J. P., & Puszkin, E. (1995). Characterization of tumor-induced platelet aggregation: the role of immunorelated GPIb and GPIIb/IIIa expression by MCF-7 breast cancer cells. Thrombosis Research, 79(3), 261–274.

    Article  CAS  PubMed  Google Scholar 

  254. Bouvenot, G., Escande, M., Xeridat, B., Simonin, G., Boucoiran, J., & Delboy, C. (1977). Thrombocytosis and cancer. Apropos of a chronological series of 100 patients. La Semaine des Hôpitaux, 53(36), 1921–1925.

    CAS  PubMed  Google Scholar 

  255. Honn, K. V., Tang, D. G., & Crissman, J. D. (1992). Platelets and cancer metastasis: a causal relationship? Cancer Metastasis Reviews, 11(3–4), 325–351.

    Article  CAS  PubMed  Google Scholar 

  256. Levin, J., & Conley, C. L. (1964). Thrombocytosis associated with malignant disease. Archives of Internal Medicine, 114, 497–500.

    Article  CAS  PubMed  Google Scholar 

  257. Rank, A., Liebhardt, S., Zwirner, J., Burges, A., Nieuwland, R., & Toth, B. (2012). Circulating microparticles in patients with benign and malignant ovarian tumors. Anticancer Research, 32(5), 2009–2014.

    CAS  PubMed  Google Scholar 

  258. Nieuwland, R., Berckmans, R. J., Rotteveel-Eijkman, R. C., Maquelin, K. N., Roozendaal, K. J., Jansen, P. G., et al. (1997). Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation, 96(10), 3534–3541.

    Article  CAS  PubMed  Google Scholar 

  259. van Doormaal, F., Kleinjan, A., Berckmans, R. J., Mackman, N., Manly, D., Kamphuisen, P. W., et al. (2012). Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study. Thrombosis and Haemostasis, 108(1), 160–165.

    Article  PubMed  CAS  Google Scholar 

  260. Cokic, V. P., Mitrovic-Ajtic, O., Beleslin-Cokic, B. B., Markovic, D., Buac, M., Diklic, M., et al. (2015). Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediators of Inflammation, 2015, 453020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Matsuo, K., Hasegawa, K., Yoshino, K., Murakami, R., Hisamatsu, T., Stone, R. L., et al. (2015). Venous thromboembolism, interleukin-6 and survival outcomes in patients with advanced ovarian clear cell carcinoma. European Journal of Cancer, 51(14), 1978–1988.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grant and other support

Boone Pickens Distinguished Chair for Early Prevention of Cancer, Duncan Family Institute, Colorectal Cancer Moon Shot, P30CA016672-41, 1R01CA187238-01, 5R01CA172670-03, and 1R01CA184843-01A1, CA177909, and the American Cancer Society Research Professor Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Menter.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menter, D.G., Kopetz, S., Hawk, E. et al. Platelet “first responders” in wound response, cancer, and metastasis. Cancer Metastasis Rev 36, 199–213 (2017). https://doi.org/10.1007/s10555-017-9682-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9682-0

Keywords

Navigation